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1. Introduction

The Internet has revolutionized the world in more than one way. Of particular interest
is the phenomenon of private contributions to collective projects such as Wikipedia,
bulletin boards, or open source software. As Lerner and Tirole (2002) put it, to an
economist the behavior of individual contributors appears somewhat puzzling: is it a
case of altruism, or are there ulterior motives behind private contributions to a public
good?1

Our paper addresses this research question using data from Stack Overflow, one
of the leading online question boards for programming-related matters. We consider
a hypothesis put forward by Lerner and Tirole (2002), namely that contributions are
motivated by career concerns: the desire to signal one’s ability so as to obtain better
employment.

Associated to Stack Overflow (SO), the Stack Overflow Careers (SOC) site hosts
job listings and contributors’ CVs so as to match employers and employees. The
information regarding each job candidate includes their employment history as well
as various summary statistics regarding their contribution to SO. A tantalizing pos-
sibility — the hypothesis we propose to test — is that contributing to SO is a way of
signaling one’s ability and thus find a better job.

We construct complete histories of each individual’s online trajectory. This in-
cludes the contribution to SO as well as individual characteristics and employment
history. We test the career-concerns hypothesis by identifying shifts in behavior fol-
lowing career-relevant shifts, namely employment changes.

We find that before changing to a new job, a contributor gives more and better
answers but asks fewer questions. However, right after the job change, there is a
significant drop in answers both in terms of quality and quantity. We conclude that
contribution levels decrease by 22.3% right after a job change, and 14.5% is due to
change in the level of career concerns.

To the best of our knowledge, ours is the first paper empirically to estimate the
relation between changes in career status and free contributions to online communities
as an indirect measure of career concerns. We believe our methodology can be helpful
in other contexts; and we believe our empirical results are important, considering the
increasing prevalence of user-generated content in a variety of settings (Wikipedia,
Stack Overflow, GitHub, YouTube, etc).

Related literature. We are by no means the first to examine empirically the phe-
nomenon of free user contributions. Zhang and Zhu (2011) show that, when access
to Chinese Wikipedia was blocked in mainland China in October 2005, contributions
by users outside of mainland China dropped by more than 42.8%, an effect that they
attribute to the intrinsic and internalized-extrinsic motivation for free user contribu-

1. von Krogh et al. (2012) distinguish three types of motivation: intrinsic (e.g., altruism, ide-
ology, fun, kinship); internalized extrinsic (e.g., reputation, learning, reciprocity, own-use);
and extrinsic (e.g., career concerns, pay).
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tions (see von Krogh et al. (2012)). By contrast, we show that extrinsic motivations
also play an important role.

Most of the theoretical and empirical literature on free user contributions addresses
the issue of Open Source Software (OSS). In many ways, the OSS phenomenon is very
similar to free user contributions to sites such as SO or Wikipedia, so a review of this
literature is warranted.2 At a conceptual level, Lerner and Tirole (2001), Blatter and
Niedermayer (2008) and Mehra, Dewan, and Freimer (2011) show how contributors
to OSS projects may lead to better career prospects. At an empirical level, Bitzer and
Geishecker (2010) show that the propensity to work on OSS projects is higher among
university dropouts, a pattern which they interpret as evidence of career-oriented
motivations. Roberts, Hann, and Slaughter (2006) and Hann, Roberts, and Slaughter
(2013) find evidence of subsequent returns from participation in OSS projects.

2. Theoretical model

Consider an infinite-period, discrete time line, and suppose agents discount the future
according to the factor δ. Each agent is a SO contributor and a job seeker. The agent’s
state space is limited to s ∈ {0, 1}, where s = 0 stands for current (or old) job and
s = 1 stands for future (or new) job. We assume s = 1 is an absorbing state. To the
extent this is not the case, our estimates of career concerns should be regarded as a
lower bound of the real size of career concerns.

A fundamental hypothesis that we propose to test is that the probability of job
transition — that is, the transition from s = 0 to s = 1 — is endogenous, specifically,
a function of the agent’s reputation:

P
(
st = 1 | st−1 = 0

)
= p(rt)

In each period, agents must decide how to allocate their time. We consider three
types of tasks: Work, Answers and Edits. Let wt, et and at be the time devoted to
each of these tasks. Each agent’s time constraint is then given by

wt + et + at = T

Consistently with the structure of SO, we assume that rt is a function of past values
of at but not of past values of et. In fact, a crucial difference between Answers and
Edits is that the former is a vote-generating activity whereas the latter is not.3

We assume each agent’s utility each period is additively separable in each of the
three tasks:

ut = gs(wt) + f(et) + f(at) (1)

2. Spiegel (2009) highlights the theoretical difference between free contributions to OSS and to
Stack Overflow (whereas the former might succeed or fail, users always benefit from higher
contribution levels in the latter).

3. In addition to Answers, Questions are also a vote-generating activity. For simplicity, we limit
our theoretical analysis to the case of one vote-generating activity. In the empirical part of
the paper we also consider Questions as part of an agent’s optimization process.
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where f(·) and g(·) are twice differentiable functions such that f ′, g′ > 0 and f ′′, g′′ <
0. Notice we allow the utility from work to be state-dependent. In fact, the agent’s
demand for a new job results from our assumption that g1(w) > g0(w).

Agents are forward looking: in each period, they choose wt, et, at so as to maximize
value Vs, where s = 0, 1. The value functions are determined recursively as follows:

V0 = g0(wt) + f(et) + f(at) + δ p(rt+1)V1 + δ
(
1− p(rt+1)

)
V0

V1 = g1(wt) + f(et) + f(at) + δ V1

Finally, we assume reputation at time t is given by the number of answers in t− 1

rt = at−1

(In the empirical part of the paper we consider various other possibilities. The qual-
itative nature of our theoretical results remains valid if we assume more complicated
reputation functions.)

Our main theoretical result is that a change in state (getting a “better” job)
implies an absolute decline in the number of answers as well as a decline in the ratio
answers / edits. Moreover, the latter takes place if and only if career concerns matter:

Proposition 1. Suppose that g0(w) < g1(w). Then

at | s = 1
< at | s = 0

Moreover,
at
et

∣∣∣∣
s = 1

<
at
et

∣∣∣∣
s = 0

iff p′(·) > 0

Proof of Proposition 1: Let x∗s be the optimal value of control variable x (x =
w, e, a) in state s (s = 0, 1). Suppose that V1 ≤ V0. Then by choosing xt = x∗0 when
s = 1 a strictly higher value of V1 and V0 is obtained. Thus it must be

V1 > V0 (2)

At state s, the agent maximizes Vs subject to w + e+ a = T (for simplicity we omit
the time subscript). The first-order conditions at s = 1 are given by

λ1 = g′1(w1)

λ1 = f ′(e1)

λ1 = f ′(a1)

(3)

where λ1 is the Lagrange multiplier in state 1. At s = 0, we have

λ0 = g′0(w0)

λ0 = f ′(e0)

λ0 = f ′(a0) + δ p′(a0)
(
V1 − V0

) (4)
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The second and third equations in (3) imply that e∗1 = a∗1. The second and third
equations in (4), together with (2), imply that e∗1 < a∗1 if and only if p′(a0) 6= 0.
Together, these equations imply the second part of the Proposition.

Regarding the first part of the Proposition, it helps to make the comparison in two
steps. First consider changing (3) by substituting g′0 for g′1. Since, g′1 > g′0, this results
in a higher value of a (and of e). Second, consider adding the term δ p′(a0)

(
V1 − V0

)
.

Given (2) and to the extent that p′ ≥ 0, again the value of a increases.

Proposition 1 establishes two effects of a job change: a decline in the time spent
on Answers; and a decline in the relative time spent on Answers vis-a-vis Edits. The
first effect (decline of Answers) can be decomposed into two effects: an increase in
the marginal utility of time spend at work; and a decline in the utility of Answers
derived from career concerns. Since there are two effects, a decline in Answers is a
necessary but not sufficient condition for our career-concerns hypothesis. By contrast,
the second effect takes place if and only if career concerns are present. It provides,
therefore, a sharper test of our central hypothesis.

One advantage of a theoretical model is that it helps clarify the assumptions un-
derlying an empirical identification strategy. The assumption that the Edits and the
Answers components in the utility function share the same functional form f(·) plays
an important role. It can be shown that the results go through if these components
are the same up to a linear transformation. This is an important point because, if
taken literally, our model implies that et = at while in state s = 1, a very strong
restriction. Allowing for the Edits and Answers components in the utility function
to vary gives an extra degree of freedom regarding levels while maintaining the result
regarding the relative values of e and a. For example, one possible functional form
would be

ut = αwβst eγt a
η
t

Taking logarithms (a monotonic transformation of the utility function, which therefore
does not change change optimal choices), we get an expression similar to (1) except
that the coefficients γ and η appear in from of f(·), which in the present case is given
by f(·) = ln(·).

3. Data

Our dataset is derived from the Stack Overflow (SO) and Stack Overflow Careers
(SOC) sites. SO is the largest programming site where programmers ask and an-
swer programming-related questions. It provides for Wikipedia-style editing; and it
includes a system of votes, badges and user reputation that ensures high-quality, peer-
reviewed answers. SO is widely used by both programmers and programming-related
companies. Founded in 2008 by Joel Spolsky and Jeff Atwood, it currently comprise
3.5 million users. Some summary statistics regarding the site’s activity: 6.7 million
visits/day; 7.4 thousand questions/day; 8.1 million cumulative questions, 14 million
cumulative answers.

4



SOC is a related job matching website that hosts programming-related job listings
as well as candidate resumes. For contributors, creating a resume on the website (as
shown in Figure 1) is free of charge but by invitation only; and the invitation is
based on the contributors’ recent activity to the site as well as their field expertise.4

On the resume, contributors can easily provide a link to their SO profile, through
which employers can learn more about the job applicants’ expertise: that is, potential
employers observe the user’s reputation score, a reflection of the quantity and quality
of the user’s contribution to SO.

SOC helps employers by reducing hiring search costs (although access to SOC is
paid). First, SOC provides a select sample of high-level contributors invited by SO.
Second, SOC includes a wealth of information regarding the job applicants’ skill sets,
including in particular their contribution history to SO. Finally, employers who access
SOC may post their openings as well as search candidates by location, skills, and so
on.

Measures of user activity. We divide a user’s activity on SO into four different
categories:

Questions Any registered user can ask a Question. A Question can be voted up
or down. A hard but important Question is usually voted up to get
attention from more contributors. A duplicate or unclear Question is
usually voted down.

Answers Any registered user can provide Answers to others’ Questions. A Ques-
tion can have multiple Answers and the latter are ranked by total votes.

Edits Registered users can also make or suggest minor changes to questions
and answers: Edits.5 Edits help make the questions and answers more
readable and understandable to future viewers.

Votes Finally, registered users can give upvotes or downvotes to Questions and
Answers but not to Edits. Votes contribute to the post owner’s reputa-
tion: upvotes on a Question give the asker 5 points, whereas upvotes on
an Answer are worth 10 points.

Data selection. We focus on a set of users that satisfy a series of criteria required
by our empirical test:

• Located in the U.S. and Canada: this ensures a more homogenous sample.6

4. The exact criteria is not disclosed by SO. An alternative path to an invitation is to request
it on the website.

5. Most Edits correct grammar or spelling mistakes; clarify the meaning of a post; or add related
information.

6. A large fraction of the jobs posted on SOC are located in the United States and Canada.
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Figure 1
Sample profile on Stack Overflow Careers
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Table 1
Descriptive statistics

Mean Median Std. Dev. Min. Max.

User Activity

Answers 4.055 0 12.310 0 417

Votes (from Answers) 5.967 0 23.023 0 966

Questions 0.637 0 1.933 0 58

Edits 1.748 0 9.883 0 689

User Characteristics

Profile Views 359.723 71 2170.283 0 112,967

Total UpVotes 334.669 82 800.728 0 15,143

Reputation Points 1603.965 150 6204.839 -6 132,122

Age 33.889 33 7.433 16 95

Time on SO 4.225 4.337 1.503 0.167 6.507

• Job changers: the change in the level of career concerns comes from a job
change; we select users who experienced a job change from November 2008
until November 2014, the month when we stopped collecting data.

• Job switchers: Employment status (employed vs. unemployed) introduces un-
necessary noise; we select users who switch from one job to another (with a gap
less than or equal to one month between two jobs).7

• Active users: for many users, we do not observe any activity on SO during
periods of job change; for more accurate estimation, we focus on active users,
defined as having at least one answer and at least one edit within four months
before and after the month of job change.

• Profile with link to SO: the ability to track users’ online activity requires the
link to SO.

Applying this series of criteria results in a sample of 1249 users with 1500 job switches.
Obviously, the sample we use is not representative of the population, so coefficient
estimates should be interpreted accordingly. We return to this issue later.

Table 1 provides some descriptive statistics. Looking at the user activity, we see
that the typical SO user is not active in writing Questions or Answers — or voting,
for that matter. The activity distributions are fairly right-skewed, suggesting that a
few users are disproportionally responsible for much of the content created on SO.

7. We are currently also working on the analysis of contributors who experience a change in
employment status, i.e., from unemployed to employed.
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Figure 2
Identification: difference-in-differences
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The lower portion of the table suggests that typical users of SO are in their early 30s
and have been on SO for 4 years (SO has existed for 7 years).

4. Identification strategy

Conceptually, our identification strategy is quite straightforward: job seekers are
active on SO to signal their ability and thus obtain a better job. If career concerns
are important, then we expect a drop in such activity once the goal (a better job)
is attained. Since no one expects to remain in the same job for the rest of their
lives, career concerns might not entirely disappear; but at least they are diminished
following a change in jobs.

In practice, there are various confounding factors that make measurement of
career-concern effects difficult. In particular, a reduction in online activity follow-
ing a job change may simply result from a reduction in time availability: a new job
often requires training and more generally some time investment so as to be famil-
iarized with a new environment. In fact, as the first part of Proposition 1 states, we
expect a drop in at through two effects: a drop in career concerns (measured by p(rt)
in the model); and an increase in work activities (measured by the shift from g0(w)
to g1(w) in the model).

To account for these effects, we conduct difference-in-differences regressions using
Edits as a control group that proxies for time availability. A crucial difference between
Edits and Answers is that the latter give rise to votes, whereas the former does
not. Therefore, we expect the career-concerns effect to act through the Answers
channel but not through the Edits channel. (Questions are also reputation generating
activities; we will focus on these later.)

The implicit assumption in our difference-in-difference approach is that, aside
from changes in job status, Edits and Answers follow a parallel path. Essentially, this
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Figure 3
Average monthly activity by period
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corresponds to the assumption in Section 2 regarding the utility function functional
form. Since this is such a crucial assumption, in Section 6 we provide various pieces
of evidence in its support.

Essentially, our difference-in-difference approach corresponds to the second part of
Proposition 1. Figure 2 illustrates the main idea: after starting a new job, the reduc-
tion in Answers activity results from two effects: career concerns and time availability
(or, opportunity cost of work time); however, the reduction in Edits activity results
exclusively from the time availability effect; therefore, the difference between the
changes in Answers and in Edits identifies the effect of job change on career-concerns
incentives for Answers.

Figure 3 provides preliminary evidence regarding our hypothesis. It plots the
monthly average of the logarithm of user activity in a 20-month window centered
around a contributor’s job change event. As can be seen, both Answers and Edits
activity experience a significant drop when a user starts a new job (month 1); however,
the drop in Answers activity is considerably more significant than the drop in Edits
activity. This evidence is consistent with the hypothesis that p′(at) > 0, that is, an
increase in Answers increases the probability of a job change.

Naturally, several other factors may explain these dyanmics. In the next section,
we carry our test one step forward by running a series of regressions that explain the
variation in Answers activity.

5. Regression analysis

We now come to a more formal test of the hypothesis implied by Proposition 1. Our
test is based on a panel of users who changed their job status from November 2008
to November 2014. We associate user resumes (which include dates of job changes)
to the user’s SO ID. With the user ID at hand, we then collect the user’s activity
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during the four-month period before and after the month of job change: number of
Answers and number of Edits (later we consider other activity measures).

Our sample is based on a series of criteria. First, so as to get some uniformity in
the type of users, we restrict attention to SOC members who are located in the US.
From this set, we exclude users whose resumes do not include a link to SO (and for
which we lack the crucial activity data). We also exclude users who did not change
jobs during our focus period. Some users experienced more than one switch; we
exclude such switches if they are less than 8 months apart. Finally, we exclude users
who, during the period under analysis, had a zero level of activity (in other words,
we exclude inactive SO users).

As the result of this sample selection criteria, we end up with 1,249 users who
were subject to 1,500 job switches during the November 2008–November 2014 period.
For each of these job switches, we measure activity levels by activity type and by
month. Specifically, define month 0 as the month when the job change took effect
(that is, the month listed on the resume as starting month for the new job). We
then consider 3 months prior to a job switch (−4,−3,−2); and 3 months subsequent
to a job switch (+1,+2,+3). We thus exclude months −1 and 0; in this way we
get a cleaner perspective on the periods before and after the job change without
contaminating the data with noise stemming from the process of job change.

We then use the following regression specifications to estimate the impact of career
incentive on online voluntary contribution:

yit = αi + β s+ εis (5)

yit = αi + β s+ γ d s+ εis (6)

In these equations, y represents a generic activity: y = e, a; as before, s is the
state: s = 0 corresponds to the period before a job change takes place, whereas s = 1
corresponds to the period after a job change takes place; α, β and γ are parameters to
estimate; and ε represents the equation’s residual. Finally, d is a dummy variable that
takes on the value 1 if the activity is question is a vote-generating activity (Answers)
and 0 otherwise (Edits).

Equations (5) and (6) essentially correspond to the two parts of Proposition 1.
Specifically we expect the level of SO activity to drop subsequently to a job shift,
that is, we expect β in (5) to be negative. Moreover, we expect the drop in Answers
(d = 1) to be great than that of Edits (d = 0), so that γ < 0 in (6), in addition to
β < 0.

Table 2 shows the results for our base regressions. There are three pair of regres-
sions, which differ in terms of regression method (fixed effects or negative binomial);
and in terms of dependent variable measurement (levels, logarithms). For each pair,
the first regression is limited to the activity Answers. We thus have 9,000 observations
(1,500 job switches times 6 months: three prior to the job switch, three subsequent
to the job switch); the second regression, includes both Answers and Edits, thus
doubling the number of observations.

Consider the third pair of regressions (that is, Regressions 5 and 6), where Answers

10



Table 2
Explaining activity y (Answers and Edits on SO)

(1)
y = a

(2)
y ∈ {a, e}

(3)
y = a

(4)
y ∈ {a, e}

(5)
y = a

(6)
y ∈ {a, e}

s -2.079***
(0.28)

-0.466***
(0.14)

-0.312***
(0.03)

-0.149***
(0.03)

-0.252***
(0.03)

-0.080***

s× d -1.614***
(0.31)

-0.162***
(0.04)

-0.172***
(0.03)

Data Count Count Count Count Log Log

Regression FE FE NB NB FE FE

N 9000 18000 9000 18000 9000 18000

R2 0.014 0.011 0.022 0.015

Robust standard errors in parentheses. NB: negative-binomial regression; FE: fixed-effects regression
y: generic online activity; a: Answers; e: Edits
s = 1 prior to job switch, s = 1 after job shift
d = 1 if y = a, d = 0 if y = e

and Edits are measured in logarithms. One advantage of this approach is that the
coefficients can be readily interpreted as percent variations. The fifth regression
(first in the pair) has Answers as a dependent variable and s (job status) as the sole
explanatory variable. The coefficient estimate on s suggests that, upon changing jobs,
users decrease their Answers activity by about 25%. This is consistent with the first
part of Proposition 1. However, as we mentioned earlier, it provides a weak test for
our main hypothesis.

The sixth regression (second regression of the last pair of regressions) has SO
activity as a dependent variable, including both Answers and Edits. As dependent
variables we have s and s interacted with d, the dummy indicator of the nature of
the activity. Proposition 1 predicts that both coefficients are negative. The results
confirm the prediction: a job switch is associated to an 8% decline in activity (both
Edits and Answers) and a further 17% reduction in Answers; this later variation we
attribute to career concerns.

6. Extensions and robustness checks

In our basic test of career concerns we made a series of decisions regarding measure-
ment of activity levels. Moreover, our identification strategy is based on a funda-
mental assumption, namely that the relative utility of Edits and Answers (aide from
career concerns) remains constant. In this section, we consider a variety of additional
results that address these and other issues.
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Figure 4
Monthly Answers and Edits activity
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Parallel-trend assumption. Any difference-in-difference analysis requires a par-
allel trend assumption, and our case is no exception. As we showed in Section 2, we
require that, were it not for a job shift, the relative importance of Edits and Answers
would have remained constant. Since this assumption plays a central role in our
identification strategy, additional evidence on it is warranted.

For each contributor with a profile on SOC, we identify a period of time when no
job change took place, that is, a period of stable employment. It seems reasonable to
assume that, during these periods, the change in the level of career concerns is small
compared to what we observe around the time of a job shift. Thus, consistent with
our basic identifying assumption, we expect the ratio at/et to remain constant.

Figures 4 shows the values of Answers and Edits for months 12 to 24 after an
agent’s job shift. Consistently with our underlying assumption, the ration between
the two is fairly constant.

Expertise mismatch. An alternative interpretation for the drop in Answers fol-
lowing a job shift is that the new occupation requires skills different from the previous
jobs’. For example, a C++ programmer may switch to a job that is based on Java;
such SO user would then be spending more time learning Java than answering C++
questions (in fact, such user might spend more time asking questions rather than
answering them).

User profiles on SOC provide detailed information regarding work experience as
well as user-provided information on the technology associated with each job, in
the form of tags. We use tag information associated to each job to conduct a triple-
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Table 3
Weekday and weekend activity on SO
Dependent variable: Answers and Edits

(1) (2) (3) (4)

s -0.152***
(0.03)

-0.068***
(0.02)

-0.207***
(0.08)

-0.066***
(0.02)

s× d -0.166***
(0.04)

-0.168***
(0.04)

-0.177*
(0.10)

-0.131***
(0.04)

Day Weekday Weekday Weekend Weekend

Data Count Log Count Log

Regression NB FE NB FE

N 16416 16512 5076 5136

R2 0.014 0.018

Robust standard errors in parentheses.
NB: negative-binomial regression; FE: fixed-effects regression.
s = 1 prior to job switch, s = 1 after job shift.
d = 1 if y = a, d = 0 if y = e

difference regression. First, we define a measure of skill-similarity between jobs. Then
we divide our sample into two groups: high and low similarity. Finally, we re-estimate
our basic regressions by adding the interaction between s, d and the dummy k, where
k = 1 denotes high similarity across jobs. We find the triple-difference coefficient is
not statistically different from zero.

Integer constraints. One alternative interpretations for our result that at/et
drops subsequent to a job change is that Answers require a bigger set-up cost than
Edits. When an agent switches jobs, thus becoming busier (i.e., increasing wt), there
may be fewer time windows to justify working on an Answer rather than an Edit.
In other words, Edits typically require less time and can thus be fitted into a busy
schedule more easily.

To address this possibility, we split our sample into weekday and weekend SO
activity. The idea is that, to the extent that work hours are more highly concentrated
on weekdays, the above interpretation should imply a bigger effect on at/et during
weekdays.

Table 3 shows the results of our basic regressions split into weekday and weekend
days (for negative-binomial and fixed-effects regressions). Broadly speaking, the co-
efficient estimates are similar to those in the base model. The FE regressions show
a more negative coefficient for the weekday subsample. This is consistent with the
“set-up-cost” alternative hypothesis outlined above. However, the difference is rather
small (about 3%).
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Figure 5
Number of Answers and number of Votes to Answers

0.00
0.05
0.10
0.15
0.20
0.25

–0.25
–0.20
–0.15
–0.10
–0.05

0 2 4 6 8 10-10 -8 -6 -4 -2

log at, log et (demeaned)

month

Answers

Votes

Quality vs quantity measures. Our basic results are based on quantity measures
of SO activity: the number of Answers and the number of Edits. In principle, it is
possible that the effect of a job shift is also felt in terms of the quality of answers. To
address this possibility, we measure activity by number of Votes (given to Answers)
rather than the number of Answers. Figure 5 plots the time evolution of Votes and
Answers. The correlation between the two measures is remarkably high. In other
words, we find no evidence of effects on the quality of answers. Not surprisingly, our
tests of career concerns based on Votes rather than Answers produce very similar
results (which, for brevity, we omit).

Repeated changes. Our theoretical model assumes — somewhat unrealistically
— that agents change jobs at most once in their lifetime. For most people, finding a
new job is not the end of a person’s career progress. In fact, in your 6 year sample
period we observe a number of agents changing jobs more than once. This variation
in the data allows us to push our test one step further. Let τ be the expected
length of a user’s new job. Suppose that τ is observed by the agent but not by the
econometrician. A reasonable proxy for τ is ex-post job tenure. Unfortunately, given
the relatively narrow window we have data for (that is, given the relatively recency
of SO), most of our observations are censored (we have not yet observed the next job
shift). Given the data we have, a practical solution is to create a dummy variable t
that takes the value 1 if a job switch is followed by another job switch in our sample.
To the extent that these job switches are less permanent, a natural extension of our
theoretical model predicts that the effect of a job switch is lower.

Table 4 shows the results of our regressions where we add a triple-interaction term:
s× d× t. As per the discussion in the previous paragraph, we expect the coefficient
to be positive, that is, to moderate the effect of s× d. The results for the regression
on logarithms have a lower statistical significance level. However, all coefficients have
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Table 4
Repeated job changes
Dependent variable: Answers and Edits

(1) (2) (3)

s -0.427***
(0.14)

-0.154***
(0.03)

-0.080***
(0.02)

s× d -1.285***
(0.33)

-0.107***
(0.04)

-0.123*
(0.04)

s× d× t 2.214***
(0.50)

0.340***
(0.06)

0.325*
(0.06)

Data Count Count Log

Regression FE NB FE

N 17,544 17,544 17,544

R2 .013 0.019

Robust standard errors in parentheses.
NB: negative-binomial regression; FE: fixed-effects regression.
s = 1 prior to job switch, s = 1 after job shift.
d = 1 if y = a, d = 0 if y = e
t = 1 if there is a subsequent job switch, t = 0 otherwise

the sign predicted by theory, thus reinforcing our interpretation of the changes in
Answers following a job shift as resulting from changes in career incentives.

Reputation size and career concerns. Table 5 displays the results of our basic
model where we split the sample by reputation size (top third, middle third, bottom
third). Low-reputation users do not seem to change their behavior as a results of a job
change. By contrast, medium- and high-reputation users show effects of magnitudes
similar to our base regressions, with medium-reputation users a little above average
and high-reputation users a little below average.

Questions. As mentioned earlier, SO users can build a reputation by answering
questions but also by posting questions. Figure 6 shows the rate of Questions asked
around the time of a job shift. Unlike Answers and Edits, we observe little change in
the number of Questions. When we redo our basic regressions with Questions instead
of Answers as a vote-generating activity, we obtain a positive estimate of the s × d
interaction coefficient. Moreover, the size of the coefficient is approximately equal,
in absolute value, to the coefficient on s. In words, whereas the number of Edits is
reduced following a job shift, the number of Questions seems not to change. One
possible explanation is that, more than a reputation-increasing activity, Questions
are are used a a learning tool; and a shift to a new job creates new learning demands,
an effect that seems to compensate the higher opportunity cost of time spent on SO
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Table 5
Regression results by reputation size
Dependent variable: Answers and Edits

(1) (2) (3)

s 0.019
(0.04)

-0.126***
(0.04)

-0.178***
(0.04)

s× d -0.083
(0.06)

-0.208***
(0.06)

-0.155**
(0.07)

Reputation percentile 0-33% 34-66% 67-100%

N 1424 1424 1424

R2 0.003 0.080 0.076

Robust standard errors in parentheses.
y: generic online activity; a: Answers; e: Edits
s = 1 prior to job switch, s = 1 after job shift
d = 1 if y = a, d = 0 if y = e

Figure 6
Questions, Answers and Edits
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as well as the diminished incentive to build a reputation.

7. Discussion and concluding remarks

The Internet has created many opportunities for online collaboration and network-
ing. Some platforms have been enormously successful, some less so. Examples of
the former include Wikipedia, YouTube, Stack Overflow and Amazon Mechanical
Turk; examples of the latter include Yahoo! Answers, Digg. What distinguishes a
winner from a loser platform? We suggest that, as often is the case in economics,
incentives matter, both intrinsic and extrinsic incentives. In the context of Open
Source Software, Lerner and Tirole (2002) emphasize that distinguishing between
these two incentive sources would “provide lenses through which the structure of
open source projects, the role of contributors, and the movement’s ongoing evolution
can be viewed.” The same applies, we would argue, to other types of collaboration
projects as well.

In this paper, we take one step towards the distinction between intrinsic and
extrinsic motivation. We consider the specific case of Stack Overflow and show that
career concerns provide a strong incentive for users to contribute, namely to answer
questions posted on the various SO boards. Our strategy for identifying career-
concern-based incentives is to estimate the effect of a job change. Our regressions
suggest that achieving the goal of a new job leads users to decrease their contribution
to SO; and that a drop of about 15% can be assigned to a drop in career concerns.
This value is statistically significant and economically significant as well.

Regarding our estimate of the size of the job changing effect, some words of cau-
tion are in order. First, our sample results from selection according to a series of
criteria. For example, it is likely that the users who choose to link their SO record to
their resume are more concerned about their careers than those who keep their SO
record unlinked. In this sense, our estimate of career concerns may over-estimate the
population average effect. However, the simple theoretical model that forms the basis
of our empirical estimation assumes that there are only two states, and that s = 1
is an absorbing state. This implies that at s = 1 agents have no career concerns at
all, which is obviously not very realistic. This in turn suggests that our estimate of
career concerns may under-estimate the real value.

An alternative strategy for estimating the career-concerns theory of free user con-
tributions is to directly estimate the probability of a job switch as a function of
reputation. (We are currently working on this.) Statistically, one problem with this
approach is that easily it suffers from unobserved heterogeneity problems: shocks
that change a user’s level of contribution and also lead the user to change jobs may
suggest a causality link that does not exist. In principle, a similar objection might be
raised regarding our testing strategy. However, it seems more reasonable to assume
the change in the unobservable variable impacts the user’s habits at SO before it
impacts his or her employment situation.
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