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Abstract

Theory suggests that firms with market power should discriminate between users

when setting prices or advertising levels. For platforms, this price discrimination should

take into account the heterogeneous network effects provided by users on different sides

of the market in addition to heterogeneity in elasticity of demand across users. We

construct and illustrate a practical approach for estimating optimal platform pricing

strategies, the social welfare implications of a change in regulatory policy or market

structure, or changes in platform value or participation after a demand shock. We find

that a profit maximizing platform should decrease fees or advertising for users who

elastically demand the platform (the direct effect) and who create high amounts of

network value for other profitable users who themselves demand the platform elastically

(the network effect). We evaluate our model using data collected from a survey of over

40,000 US internet users on their demand for Facebook. Our non-parametric estimate,

using only local information about marginal valuations, suggests that Facebook could

increase profits by decreasing the amount of advertising on some market segments and

increasing it for others. Our parametric estimates, which assumes demand for Facebook

follows a logistic distribution, suggests that a large increase in social welfare is possible

from Facebook reducing advertising.

1 Introduction

Much of the value of many digital platform businesses comes from what are known as

“network effects”. A network effect is an externality that one participant in a market,
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digital platform, or similar system provides to others. But how exactly can one measure

and exploit the value of network effects for any particular business or industry? In this

paper we propose and implement a flexible strategy for the measurement and optimal

harnessing of network effects.

Our paper begins by introducing a model of platform participation that allows for

several dimensions of heterogeneity. Users vary in their opportunity cost for using

the platform, the value they get from other types of users using the platform, and

the disutility they receive from advertising. It is a model of an n-sided network in

the sense that each individual or market segment can be thought of as a side of the

network.1 In this setting, the optimal price discrimination strategy is to decrease fees

or advertising for users who elastically demand the platform (the direct effect) and

who create high amounts of network value for other profitable users who themselves

demand the platform elastically (the network effect).

A major contribution of our model is that it is designed to be implemented using

real world data available to regulators and asset pricers who do not have inside infor-

mation from the platform. After introducing and analyzing our model, we proceed to

an empirical illustration. We collected information on US internet users’ demand for

Facebook across over 40,000 surveys conducted through Google Surveys. We categorize

the surveyed into ten demographic groups by their age and gender. To collect informa-

tion on Facebook demand and network effects, we use an experimental choice approach

(Brynjolfsson et al., 2019).2 We adapt this approach to our case by giving consumers

the choice to give up access to a subset of their network in exchange for monetary com-

pensation. Using this information about demand for Facebook, we estimate marginal

elasticities (for the non-parametric analysis) and estimate the parameters of a logistic

demand curve (for the parametric analysis).

In our non-parametric analysis, we estimate the marginal consequence of Facebook

raising or lowering the quantity of advertisements (ad load) on users of different types.

The disutility from advertising is relatively low, and groups demand Facebook relatively

inelastically, implying that the direct effect of raising the level of advertising would be

to increase revenues. However, taking network effects into account, our results suggest

that Facebook should reduce the level advertising on most groups, and only raise them

1When concieved of this way, any platform, including a one-sided platform, can be thought of as a n-sided
platform once we account for the heterogeneity in users within a side. For example, a telephone network,
which is the classic example of a one-sided network, can be thought of as consisting of multiple sides that can
be distinguished based on various characteristics including business vs. personal use, demographics, regional
location, heterogeneity in activity (frequent users or not) and type of activity (always callers, callers and
receivers, always receivers).

2Brynjolfsson et al. (2019) measure the consumer surplus generated by digital goods by conducting
discrete choice experiments where they offer consumers the choice to give up access to the good in exchange
for monetary compensation.
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for for males aged 25 to 34 and females aged 35 to 44.

In a parametric analysis, we use information from the distribution of surveys to

fit a logistic model of demand for Facebook for each demographic group. Using this

model we quantitatively estimate the impact on Facebook use and social welfare of

Facebook eliminating advertisements on its platform (as it would if forced into perfect

competition, with a marginal cost of zero). Our parametric results suggests a large

increase in social welfare, on the order of $90 billion a month, would result from such

a change.

The paper concludes with a discussion of the strengths and weaknesses of this

approach to modelling platform businesses and possible extensions.

2 Related Literature

A rich stream of theoretical literature studying network effects in the context of plat-

form businesses has evolved over the past decade and a half. Following the seminal work

of Parker and Van Alstyne (2005) and Rochet and Tirole (2003), platform researchers

have extensively studied the impact of direct and indirect network effects on vari-

ous strategic issues including pricing (Hagiu (2009)), launch (Evans and Schmalensee

(2010)) and openness (Boudreau (2010)). The core insight of this research is that it

can be optimal for a two-sided platform to subsidize one side and increase fees for the

other side (Eisenmann et al. (2006)).

The above papers all focus on what are known as one or two-sided platforms.

Examples of two-sided platforms are Uber (riders and drivers) and Ebay (sellers and

buyers). In a two-sided platform, it can make sense to price discriminate based on

side, because different types of users may provide different network externalities. For

example, an additional Uber driver in a region provides a positive externality to riders

(they will get a ride faster) but a negative externality to other drivers (they will have

to wait longer in-between fares). However, a large literature suggests that even within

a ‘side’ of a one or two-sided platform, users are heterogenous in the effect their actions

have on the network. The empirical literature on network effects uses several techniques

for their estimation, including studying exogenous shocks to the network (e.g. Tucker

(2008)), using an instrumental variable approach (e.g. Aral and Nicolaides (2017)) and

conducting field experiments (e.g. Aral and Walker (2012)).

There are several recent papers which model pricing in the presence of multi-

dimensional network effects. For example, Bernstein and Winter (2012) determines

a mechanism for optimally renting storefronts in a shopping mall where stores have

heterogenous externalities on other stores. Candogan et al. (2012) and Fainmesser

and Galeotti (2015) consider monopolistic pricing of a divisible network good, where
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utility from the good is quadratic in the amount consumed and linear in the impact

of neighbors’ consumption. In (Candogan et al., 2012), the platform firm has perfect

knowledge about all individuals’ utility functions, but allows for individuals to vary in

their utility from the platform good (although this utility must be quadratic). They

show that the problem of determining profit maximizing prices is NP hard, but de-

rive an algorithm guaranteeing 88% of the maximum. Fainmesser and Galeotti (2015)

considers a similar model but assumes that all individuals have the same demand for

the network good, while allowing for a random distribution of network connections.

They find that allowing for the network to lower prices on ‘influencers’ must increase

social welfare, but allowing firms to fully price discriminate might be harmful. The

paper in this literature with a model most similar to ours is Weyl (2010). That paper,

like ours, considers an indivisible platform good with network effects. It also, like this

paper, allows for groups to vary in both their network effect on other groups and in

their opportunity cost for using the platform. It finds that a wedge exists between the

profit maximizing and social welfare maximizing pricing strategy.3

Our paper builds on these prior papers along several dimensions. First, our model

features more realistic monetization, allowing for different types of users to face different

levels of disutility from the firm increasing their level of advertising. This is in contrast

to (Candogan et al., 2012) and (Fainmesser and Galeotti, 2015) which do not allow for

such variation, and Weyl (2010) which features an unrealistic pricing scheme, where

users are charged based on the level of participation of other users (i.e. an ‘insulating

tariff’). Weyl (2010) use of insulating tariffs in pricing forces users to immediately

jump to a desired equilibrium in response to a price change, which prevents a dynamic

analysis of a pricing change. Second, unlike (Candogan et al., 2012) and (Fainmesser

and Galeotti, 2015) our model has a realistic amount of uncertainty within a side of

a model, meaning that first degree price discrimination that drives consumer surplus

to zero is impossible. 4 The most important contribution of our model is that it is

the first one to allow for straightforward calibration. To the best of our knowledge, no

previous paper has made quantitative model-based recommendations about multi-sided

platform pricing, or quantitatively evaluated the welfare consequences of a platform

regulation market structure change.

The illustration in our paper is of Facebook, a platform primarily monetized through

advertising. Most platforms keep the quantity of ads (“ad load” to those in the in-

3The exact nature of this wedge – as a marginal, not an average distortion – was clarified in a published
comment(Tan and Wright, 2018).

4The fact that platforms cannot fully first-degree price discriminate is testified to by papers that shows
users benefit considerably on average from joining a platform. For example, Ceccagnoli et al. (2011) find
that independent software publishers experience an increase in sales and a greater likelihood of issuing an
IPO after joining a major platform ecosystem, and Brynjolfsson et al. (2019) find large consumer surplus
from the use of digital platforms.
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dustry) shown per user fixed while showing different ads to different users based on

their characteristics and bid outcomes of ad auctions (e.g. Google (Hohnhold et al.,

2015), Pandora (Huang et al., 2018a)). Platforms with a newsfeed, such as Facebook,

WeChat and Linkedin, understand the tradeoff between ad load and user engagement.

Some of them show the same number of ads per person (see Huang et al. (2018b) for

advertising on WeChat), while others fix the number of ads a user sees based on the

expected revenue generated by the user in the long term (Yan et al. (2019) describe

Linkedin’s ad load strategy). While this optimization takes user engagement into ac-

count, network externalities generated by a user are not explicitly modeled and users

generating different amounts of network externalities end up seeing the same number

of ads.5

3 Analytic Model

The foundational element of a model of network effects is a stance on how agents

connect to and gain welfare from the network. In our model, individuals with hetero-

geneous characteristics decide whether or not to participate in a network. Their desire

to participate in the network is a function of their expectation of which other individ-

uals will participate. For example, Jane Doe’s desire to use Instagram is a function

of which of her friends are also using Instagram. The key term in the model is the

externality that users gain from others. Unlike other models of platforms, we allow for

individuals of different characteristics to gain different amounts of value from the par-

ticipation of others on the network. These different market segments are the different

sides of the platform.

We use the example of a social network, because our implementation section takes

place in that setting. Therefore, in our baseline model, other incidental network char-

acteristics mimic that of an internet social network. Once two users are using the

network, there is no additional cost for them to form a connection. All connections

where both users gain weakly positive value are immediately formed. We assume that

the fee or subsidy faced by each participating network user is a binary function of their

decision to participate on the network. This assumption is easy to modify for other

contexts where fees are a function of the number or type of connections or interactions.6

The platform’s monetization is also modeled. Users face disutility depending on

5Based on informal conversation with researchers who have worked with Facebook, our understanding
is that in constructing its newsfeed, Facebook gives every potential entry a score, based on the amount of
engagement the entry is expected to create in the user who sees the ad, the amount of revenue that might
be generated (if it is an advertisement) and a penalty for being similar to a recently displayed entry.

6An example of an online platform with network effects and a non-binary fee structure would be an online
auction house like eBay. eBay’s main source of revenue is a progressive fee on the value of every transaction.
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how intensely they are monetized by the platform. This may correspond to the un-

pleasantness of advertisements or the disutility of knowing one’s data will be harvested

and resold. Alternatively, it may correspond to an explicit participation charge, such

as WhatsApp’s original $1 subscription cost.

This model is implementable in the sense that there is a clear strategy for mea-

suring all the terms that appear in the model. It is scalable in the sense that these

terms can be measured with as much precision and for as small a market segment as

desired. As a first pass, a platform might distinguish between the network externali-

ties and demand characteristics of broad user groups such as women and men. A more

sophisticated platform with a larger research budget might estimate and incorporate

into their optimization network externalities at the individual level. In the parametric

calibration of the model, we will make additional assumptions about the functional

form of user demand for the platform.

3.1 Consumers

A consumer i chooses whether to participate in the platform (Pi = 1) or not (Pi = 0).7

If the consumer i uses the platform (Pi = 1)), they expect to receive

E[Ui(Pi = 1)] = µi(P1, .., PI ,−φi) (1)

where Pj is the probability individual j participates on the platform. φi is the

revenue the platform raises from individual i. A firm which monetizes using advertising

might raise $1 in revenue by displaying additional ads which create $.20 in additional

disutility (i.e. ∂µi
∂φi

= .2. Local telephone calls and pre-2106 WhatsApp monetized by

charging a flat fee for participation (i.e. ∂µi
∂φi

=$1). 8 Note that users do not directly

care about what other users are charged, but it is indirectly important to them insofar

as it causes other users to participate on the network.
∂µi
∂Pj

is the marginal utility of j being on the network to i (if i participates). For

convenience, we will sometimes write the marginal value of a user j to a user i as

Ui(j) =
∂µi
∂Pj

(2)

7Note that while demand functions are here defined at the individual level, as a practical matter firms
may estimate them at the level of a demographic or social group. We consider an example with ten market
segments in our calibration.

8In general, platforms monetize in many different ways. Some monetize by charging fees for transactions
(Ebay, AirBnB, etc), some subsidize one side while charging others (Credit Cards), some by charging a flat
fee for participation (Local telephone calls, pre-2106 WhatsApp), and some monetize by charging advertisers
or selling advertisements (social networks). Our baseline model is best suited for evaluating the latter two
approaches, but can be straightforwardly modified to handle other monetization methods.
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and the marginal disutility of advertising as

ai =
∂µi
∂φi

(3)

In our non-parametric analysis, our only assumption is that µi be continuously dif-

ferentiable. In our parametric analysis, which is designed to make inferences about

equilibria far from the current one, we further assume that utility from the platform

is linearly additive in the network effect from friends and disutility from φ. In other

words, the parametric analysis assumes that Ui(j) and ai are constant.9

The value to a consumer of not using the platform, their ‘opportunity cost’, is an

ex-ante unknown random variable.

Ui(Pi = 0) = εi (4)

where εi are independent random variables (not necessarily symmetrical or mean

0). ε’s distribution may vary by individual. This means that the probability of partic-

ipating on a network, P , conditional on a given level of utility from the network good

U(P = 1) is consumer specific.

The distribution of εi determines how elastic i will be to changes in the platforms’

attractiveness. Consider the case where εi is expected to be approximately equal to

the utility of participation Ui(Pi = 1) – in other words, that it is likely that the user is

‘on the fence’ about using the platform. In this case, changes in φi or other consumers’

participation will be highly likely to change i’s participation.

Each consumer gets to see the resolution of their private outside option εi before

participating, but not the resolution of anyone else’s. Therefore, they base their de-

cision to participate on the platform based on their beliefs in the likelihood of others

participating. The ex-post consumer demand function isPi = 1 if E[Ui(Pi = 1)] > εi

Pi = 0 otherwise

9The assumption that the value of platform connections are linearly additive is not a harmless one, despite
being made in all of the most similar papers extant ((Candogan et al., 2012), (Fainmesser and Galeotti, 2015),
and (Weyl, 2010) all make this assumption). It means, for example, the additional value that Jane Doe gets
from James Smith joining Instagram isn’t a function of whether any third person is already on Instagram.
This is a useful simplification in the context of social networks, but in the case of other networks it is
likely unrealistic. Taking a food delivery platform as an example, it is likely the case that the 10th pizza
delivery service joining the platform provides less platform value to the typical user than the 1st. A related
simplification is the assumption that the value of a connection is only a function of the characteristics of
the connected individuals. In general, the value of a connection to one individual may be a function of that
individuals’ connections to other individuals. We abstract from these possibilities in the parametric model.
The measurement of non-linearly additive network effects introduces large measurement challenges beyond
the scope of this paper’s illustration.
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Note that Pi’s are independent because εi’s are independent.

We can write the ex-ante demand function (i.e. expected demand before εi is

known) as:

Pi = Prob[E[(Ui(Pi = 1)] > εi] = Ωi(µi) (5)

for more useful notation, define

Ui ≡ E[Ui(Pi = 1)] = µi (6)

The network is in equilibrium when individuals’ decisions to participate are optimal

responses to their beliefs about every other individuals’ decision to participate.

For the symmetric network (i.e. where all individuals have the same ε distribution,

A, and network externality), where utility is linearly additive in the network effects

and disutility from advertising, the equilibrium is stable so long as

1 >
∂Ω

∂U
U(i)(I − 1) (7)

where U(i) is the value from any consumer participating in the network to any

other consumer. The derivation of this equation is in appendix 40.

4 Profit Maximization

There are many questions you can ask about optimal platform strategy in this setting.

Here we focus on profit maximization by a social network which can price discriminate

among its users taking their demand functions (as well as the actions of competitors)

as given. Platforms in this setting can price discriminate either by directly charging or

subsidizing some users, or by giving some subset of users more or less advertisements.

Firms maximize expected total profits. After uncertainty is resolved, the firm’s

revenues are

Φ =

I∑
i

φiPi − F (8)

Where φi is the revenue collected from or distributed to consumer i if they participate

in the network. It is a choice variable from the perspective of the firm. Pi is a binary

indicator of whether the consumer participates. F is the fixed cost of the platform

firms operation.10

10We assume the platform faces no marginal costs, but adding a marginal cost does not change the
qualitative results.
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Pi’s are independent random variables, so firms maximize

E[Φ] =
I∑
i

φiPi − F (9)

where

Pi = E[Pi] = Ωi(Ui) (10)

the probability of a consumer participating Pi is an individual specific function of Ui.

Ωi is the effective individual specific demand function.

The firm seeks to maximize revenues

max
φi

E[Φ] =
I∑
i

φiPi (11)

s.t.

Pi = Ωi(Ui) (12)

This yields the following first order condition

∂Φ

∂φi
= Pi + φi

∂Pi
∂φi

+
J∑
j 6=i

φj
∂Pj
∂φi

(13)

where

∂Pi
∂φi

=
∂Ωi

∂Ui

(
− ∂µi
∂φi

+

J∑
j

( ∂µi
∂Pj

∂Pj
∂φi

))
(14)

and,

∂Pj
∂φi

=
∂Ωj

∂Uj

(
∂µj
∂Pi

∂Pi
∂φi

+

K∑
k 6=i

∂µj
∂Pk

∂Pk
∂φi

)
(15)

This recursion is natural as Pi is a function of Pj , which is a function of Pi, etc.

Equation (15) will converge to a finite value so long as each recursion of the network

effect dampens out (which will occur so long as the equilibrium is stable).

4.1 Profit Maximization Problem Simplified

Equation 13 gives conditions for the optimal schedule of fees (or other revenue raising

monetization strategies) and subsidies for the general case. Even if not enough is known

about the entire curve of functions to find the optimum, knowing the first derivative

of the goal with respect to the choice parameters is useful. An experimenting firm can

simply use these equations to inch towards a local maximum via gradient decent.

To simplify the recursion of network effects, we retain only first term in brackets in
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14 and 15. In other words, the following equations only take into account one cascade

of network effects.11 For clarity and parsimony, we also make the substitutions from

equations 2 and 3

∂Pi
∂φi

=
∂Ωi

∂Ui

(
− ai +

��
�
��

�
��H

HHH
HHHH

J∑
j 6=i

(
Ui(j)

∂Pj
∂φi

))
(16)

and,

∂Pj
∂φi

=
∂Ωj

∂Uj

(
Uj(i)

∂Pi
∂φi

+

��
��

�
��HHH

HHHH

K∑
k 6=i

Uj(k)
∂Pk
∂φi

)
(17)

Then, substituting into 13, yields a new simplified first order condition

∂Φ

∂φi
= Pi − φiai

∂Ωi

∂Ui︸ ︷︷ ︸
Direct Effect

− ai
∂Ωi

∂Ui

J∑
j 6=i

φj
∂Ωj

∂Uj
Uj(i)︸ ︷︷ ︸

Network Effect

(18)

The simplified first order condition consists of two sets of terms. The first two

terms report the direct effect of raising the amount of advertising on individual i by

one dollar. This will raise revenue, based on that individual’s current likelihood of

participation, and lose revenue based on how elastic that individual’s participation is.

The two direct effect terms are what normal firms have to consider when pricing their

products (note that when Uj(i) = 0 ∀ i, j, i.e. when no network effects are present, 18

reduces to this pair of terms).

The last term in equation 18 is the network effect of an advertising increase. The

increase in advertising makes i less likely to participate (in this approximation, by

an amount ai
∂Ωi
∂Ui

) which leads others to stop participating (by an amount
∂Ωj
∂Uj

Uj(i)).

When these third parties stop participating, the platform loses on the current revenues

that they were paying φj .

In other words, the fee or level of disutilitous advertising should be increased on user

i if the increased revenue (Pi) is greater than the decreased revenue from the person

directly impacted possibly dropping out (second term) plus the decreased revenue from

all the charged person’s friends potentially dropping out (third term).

This simplified first order condition can be made more precise by taking into account

additional cascades of the network effect. In other words, because user i’s fee increasing

causes j to be less likely to participate, all those connected to j should be less likely

to participate as well.

11In the parametric section we will show that the first cascade of network effects is quantitatively much
more important than subsequent cascades for a reasonable parameterization.
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5 Empirical Illustration

The setting for our empirical illustration is Facebook. Facebook is an ad-supported

social network. It was selected because it is used by a very large percentage of the US

population, and previous research has demonstrated that many value it highly.

To illustrate how our method can be used by firms to price discriminate, we collected

survey data to estimate our model. We conducted approximately 40,000 surveys on a

representative sample of US internet population. Google Surveys provides information

on a survey participants’ gender and age group, so we distinguish market segments

based on those characteristics. We divided Facebook users into ten market segments.

These are a pair of genders and five age brackets. The list of surveys conducted is

summarized in figure 1. Figure 2 gives examples of how the surveys appeared to

respondents. Respondents answered these surveys either as part of Google Rewards or

to access premium content on websites.

5.1 Modifying the Model for Facebook Market Segments

First, however, we must modify the model to allow for demographic groups of different

size, and to allow for heterogenous rates of friendship between these groups. Let Pi,d

be the probability individual d on side i participates on the network. Then,

E[Ui,d(Pi,d = 1)] = µi(P1,1, ..., P1,D, .., PI,1, ..., PI,D,−φi) (19)

Assuming that individuals within a side i are identical except for their draw of an

outside option, we can sum over the number of individuals on a side. So,

E[Ui,d(Pi,d = 1)] = µi(P1D1, .., PIDI ,−φi) (20)

where Di is the potential number of platform users on side i.

Finally, we make a modification to match the nature of network effects on Facebook

and how our network data is collected. We solicit the value of Facebook friends on the

network. Individuals who are not friends on Facebook have minimal direct network

effects on each other on average. Therefore, we assume that network value is only

provided by the share of people within a demographic which are friends. Letting zij

be the fraction of people of type j on the network who i is friends with yields

E[Ui,d(Pi,d = 1)] = µi(P1zi(1)D1, .., PIzi(I)DI ,−φi) (21)

For firm revenues, we also must adjust the expected revenue equation to account

for the different amounts of people in each group.
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E[Φ] =
I∑
i

φiPiDi (22)

5.2 Non-Parametric Results

In our non-parametric analysis we are interested in the question of how a small change

in a level of advertising φi would change Facebook revenues. In other words, we wish

to estimate ∂Φ
∂φi

Therefore, we re-derive equation 18 with the modifications described

above. This produces equation 23

∂Φ

∂φi
= Pi − aiφi

∂Ω

∂Ui
− ai

∂Ωi

∂Ui

J∑
j 6=i

φj
∂Ωj

∂Uj
Uj(i)zj(i)Dj (23)

the two additional terms are displayed in red and blue. zj(i) is the share of people

of type i on platform who j’s are friends with. Dj is the number of potential users

of type j. These two terms represent how many valuable friendships we would expect

to exist between individuals in demographic group j to an individual in group i if

every possible participant used the platform. Note that equation 23 gives the expected

change in total monthly profit when increasing φ on a single individual in group i. To

estimate the consequences of raising the fee on all individuals in group i, this estimate

should be multiplied by the total population of i.12

To evaluate equation 23 we need information on the elasticity of FB use (∂Ωi
∂Ui

),

number of friends, the value of friends (Uj(i)), and the disutility of advertising by

market segment (ai). To collect this information we conducted additional surveys

using Google Surveys.

Figures 3 report the fraction of users, by gender, who reject an offer of $x to give

up Facebook for a month. These distributions can be thought of as a demand curve, as

it reports the fraction of users by their consumer surplus from Facebook. The figures

12Note also that we can also evaluate additional iterations of network effects in this setting. This would
be evaluated using the following equation

∂Φ

∂φi
= Pi − φi

∂Pi

∂φi
−

J∑
j 6=i

φj
∂Pj

∂φi
(24)

where

∂Pj

∂φi
=
∂Ωj

∂Uj
(−ai

∂Ωi

∂Ui
)(Uj(i) +

K∑
k 6=j

Uj(k)Uk(i)zk(i)Dk) (25)

and

∂Pi

∂φi
= −ai

∂Ωi

∂Ui
+

J∑
j 6=i

(Ui(j)
∂Pj

∂φi
zj(i)Dj) (26)
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reveal that there is significant heterogeneity between groups in the value they get from

Facebook.

We find men aged 65+ are the least likely to use Facebook (41.4% don’t use it) and

females aged 55-64 are the most likely to use (22.8%). Males aged 55-64 are the most

elastic users of Facebook (12.8% of users value it at less than 5 dollars a month) and

males aged 25-34 are the least elastic Facebook users (only .020% of users value it at

less than 5$ a month).

We use the information from these demand curves to evaluate equation 23 in two

ways. First, the share of users who value Facebook at 0-$5 is used to estimate how

elastic that group’s use of Facebook is. A group with many users who just barely

value Facebook more than 0 will be more likely to leave the platform after an increase

in advertising or a decrease in positive network effects. Specifically, we estimate ∂Ωi
∂Ui

as equal to the share of i who report a Facebook value of $0 − $5, less the share

of the population in that group who do not use Facebook (estimated from the share

responding ”I don’t use Facebook” in one of the other surveys) divided by 5. The

division by 5 comes from assuming that the distribution of valuations is locally uniform.

Second, we use the total average valuation of Facebook by the group to rescale

the total value that users get from each individual friend group on Facebook. In

other words, we rescale the total value that users get from each group of friends so

that they add to the average total Facebook valuation estimated with this question.

The average surplus a group member gets from Facebook is calculated as the average

consumer surplus from Facebook (calculated as the area under the linear curves in

figure 3 divided by the share of the group which uses Facebook).

Figure 4 reports the average number of friends each user has of different types. To

generate these estimates, we first took the average of the friend shares by demographic.

We rescaled these so that the percentages added to 100%. We then multiplied these

shares by the average total number of friends by demographic.

Using the average number of friends a person of a demographic has, as well as the

average responses to their WTA an offer to block all friends of a given demographic,

we can calculate the average marginal network effect of friends across demographic

groups. Figure 5 reports these estimated average network effect values.

Figure 6 gives the total number of valuable friends someone on of a given market

segment would have of another if everyone in the US used Facebook. To calculate this

figure, we begin by assuming that individuals only have friends in the United States.

We then divide the numbers from figure 4 by the share of people in a demographic in

the US who currently use Facebook.

There are two terms in equation 23 that we still need sources for. φ, the current

amount of revenue raised, is assumed to be uniform for all groups. It is taken from
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the Facebook quarterly earnings report, which gives Facebook’s revenue per North

American active user. Dividing to yield a monthly value gives φ = $11.62. ai is

calculated as the average reported disutility from advertisements (collected as one of

the survey questions) divided by the previous number.

Table 1 gives the final results of estimates of (23). It shows how the significant

heterogenity between group utility functions leads to signficant heterogeneity in how

their level of advertising should change. The final results, given in the third column,

are not primarily driven by the direct effect of an advertising increase on a particular

user’s participation. Rather, taking the value an individual provides to others into

account is critical.

Taking the results at face value, before considering network effects, Facebook should

increase advertisements for all, especially females aged 35-44. They participate in

Facebook at a high rate, and do so inelastically. However, not taking into account

network effects would be folly, as two groups with an estimated similar direct response

to an advertising increase – men aged 25-34 and women aged 55-64– have very different

network values to other users.

Taking a single cascade of network effects and the disutility from advertising into

account, Facebook should decrease advertisements on almost all groups. However, it

should increase advertisements on females age 35-44 and males age 25-34.

5.3 Building the Parametric Model

In the above analysis, we estimate the impact on Facebook revenues of a small change

in the level of advertising on a given group. However, in addition to understanding

the impact of small changes, we are interested in the total effect of large changes in

demand for Facebook or Facebook pricing. One important reason this is interesting is

for the purpose of regulation. Some argue that monopolistic platforms, by taking into

account network effects from users, are more likely to make social welfare optimizing

pricing decisions than competitive firms. Others argue that monopoly power allows

platforms to charge prices far above marginal cost, depressing social welfare.13

To perform this analysis we need estimates of

1. The market segment specific demand for Facebook function Ωi and distribution

of opportunity costs εi

2. The current revenue per user of a market segment collected by Facebook φi

13For example, Weyl (2010) derives the wedge between social optimal pricing and profit maximizing pricing
in both the perfect competition and monopolistic case for a platform good with network effects. However,
as explained in a published comment (Tan and Wright, 2018), the derived wedge is a marginal, not average
one, meaning that it gives little guidance in general.
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3. The market segment specific utility from Facebook as a function of the number of

other potential users, their participation rates, and the user’s level of advertising

µi

4. The total population of a market segment and the rate at which Facebook friend-

ships are formed between individuals of a market segment Di and zi(j)

To estimate Ωi we assume that it follows a logistic distribution. We estimate the

parameters of Ωi by running a logistic regression on responses to the question “Would

you refuse $X to stop using Facebook for a month?”. Figures 7 through 16 report

responses to these questions, and the logistic line of best fit.14

Table 2 reports the estimates underlying these curves. We convert from estimates

of the CDF logistic equation to the PDF of the distribution of εi’s using the equations

εi ∼
e
−x−ηi

si

si

(
1 + e

−x−ηi
si

)2 (27)

where

si = (Coef. on Costi)
−1 (28)

and

ηi = (−Intercepti)si (29)

In the non-parametric analysis, we assumed that Facebook raised $11.62 dollars a

month in revenue from US users through displaying them advertisements.15 However, it

is likely that they eyeballs of some US Facebook users are more valuable to Facebook

than others. To calculate initial revenue per user φi we take in data on the cost

of advertising to users of different types from Facebook’s advertisement API. After

selecting which demographic group you would like to target, Facebook tells you how

many impressions you are estimated to receive per dollar of spending. We take the

inverse of this measure to be the relative value of a demographic to Facebook’s ad

revenue. By taking as given that the average value of a user per month is $11.62, we

can then calculate the revenue per user of a demographic using the following equations

14Although we also collected information on the fraction of users who would refuse $1,000 to continue using
Facebook, we drop these responses to surveys in the parametric analysis, as an unrealistically high share of
individuals report high valuations on this question. In future work, we will include a parameterization using
all of these questions’ data in a robustness analysis.

15This is derived from Facebook’s 2019 Q1 annual report, where they report $ 34.86 in revenues per North
American user per quarter.
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φi = zRelative Valuei (30)

and

11.62 = q

∑I Relative ValueiPiDi∑I PiDi

(31)

where q is a scaling term, Pi is the estimate of the initial participation rate on Facebook

by the demographic group (taken as Ωi(0)), and Di is the total population of the group

in the US.

We assume that µi, the utility a member of demographic group i gets from partic-

ipating on the platform, takes the functional form

µi =
J∑
Ui(j)Pjzi(j)Dj − aiφi + Ci (32)

We estimate Ui(j) using the same survey questions and approach as in the non-

parametric analysis, except that we do not rescale answers so that total average Face-

book valuations are equal to the sum of the value from network effects. We estimate

ai, the linear disutiltiy from a dollar raised in revenue from advertisements, as

ai =
Ai

φi
(33)

where Ai is the average disutility from current Facebook as reported in our surveys.

Ci, the value or disutility from using Facebook if one had no Facebook connections is

calculated so that µi takes the value 0 in the initial period.16 Finally, Di and zi(j) are

calculated exactly as in the non-parametric case.

We calculate the impact of a change in advertising strategy over the course of

multiple cascades. We denote the period when platform changes its advertising level

as t = 1. The participation rate on the platform for a demographic group after cascade

t is

Pi,t = Ωi(

J∑
Ui(j)zi(j)DjPj,t−1 − aiφi,t + Ci) (34)

where Pi,0 = Pi, the initial rate of platform participation for the market segment.

We calculate the perceived welfare to a user of demographic i from the existence of

Facebook after cascade t as∫ Pi,t

0

(
(µi(~Pj,t−1, φi)− ei(ρi))

)
dρi (35)

16Of course, users of Facebook in the initial period will all have positive values from the decision to use
Facebook, on net, because εi – the opportunity cost of using Facebook – takes on a negative value for them.

16



where ei is the inverse of Ωi, giving the implied opportunity cost of Facebook use

for every percentile of the population, i.e.

ei = −silog(
1− pi
pi

) + µi (36)

the total welfare to a demographic group from the existence of Facebook is the

above amount times the number of users of that demographic group.

The revenue to Facebook from user participation of a given demographic after t

cascades is

Φi,t = φi,tDiPi,t (37)

Assuming no cost to providing the digital service, total social welfare is the sum of

private welfare and total revenues.

5.4 Parametric Results

We now can calculate the implications of different pricing strategies for total Facebook

participation, revenue, and social welfare. While a wide variety of scenarios are possi-

ble, we focus on Facebook setting its level of advertising revenue per user equal to its

marginal cost per user, assuming the marginal cost per user is zero. In other words,

we consider the implications of Facebook eliminating advertisements. This could occur

as a result of government regulations preventing Facebook from displaying advertise-

ments, or if a decentralized system of Facebook alternatives – each of which allowing

users on their platform to communicate to users on other platforms – were to emerge,

with low fixed cost of entry.

Figures 17 through 21 display participation rates, change in welfare per user, change

in Facebook revenues, and change in total social welfare initially and after N cascades

of the network effect after advertisements on Facebook are eliminated.

We predict large and positive changes in long-run social welfare after advertise-

ments on Facebook are eliminated. This is due to increased network surplus due to

greatly increased participation on the Facebook network. After only one cascade of

the network effect, that is, only taking into account the direct effect of eliminating ad-

vertisements, total social welfare actually decreases. This is because people’s disutility

from advertisements are only about one fifth of the revenue raised by advertisements.

However, as a result of this decrease in advertisements, participation increases dra-

matically over several cascades. After 10 cascades of the network effect, participation

increases by over 20 percentage points for some demographic groups. After 1000 cas-

cades, participation rates are over 72 percent for all demographic groups. Increased

participation dramatically increases welfare for those already on Facebook, by over

400 dollars a month for most demographic groups. In sum, our results suggest that
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eliminating advertisements from Facebook would boost US social welfare by over 94

Billion dollars a month once all network effect cascades have kicked in.

6 Conclusion and Managerial Implications

Building on Parker and Van Alstyne (2005) and Weyl (2010) we construct and illustrate

an approach for firms to incorporate network effects in their monetization strategies.

The specific example we emphasize is a firm which can discriminate in its advertising to

profit maximize. Taking the first order condition for profit maximization with respect

to the advertising schedule yields a recursive equation that can be evaluated to the

desired decree of precision. The managerial insight is that platform owners should

increase advertising on market segments which inelastically demand the platform (the

direct effect), don’t have much disutility from advertisements, and don’t create much

network value for others. Platforms should decrease advertisements on those who

elastically demand the platform and create high amounts of network value for other

profitable users who demand Facebook elastically (the first recursion network effect).

We use this model to estimate the revenue and welfare consequences of different

pricing strategies and market structures in a parametric and non-parametric manner.

As far as we know this is the first paper to produce such quantitative yet theory

informed predictions.

That being said, our approach is not without weaknesses. The main issue is trick-

iness in soliciting the necessary data to estimate the model. Consumers may not

fully understand or reliably answer questions about their valuations for different friend

groups. Poor memory may also be an obstacle. There may also be important differ-

ences between short and long-term elasticities of demand. Similarly, if individuals have

very high variance or skewness in their platform valuations, network effects, or number

of friends, the average of these values within a group may be a poor summary statistic

– especially if these measures are correlated within a side of the market/demographic

group. However, with a larger budget, incentive compatible experiments, smaller mar-

ket segments or within-platform proprietary data, each of these concerns could be

addressed. Finally, our model conceives of consumers as atomistic price takers. This

ignores the possibility that highly valuable users with market power might bargain with

the platform or that users might unionize to demand a better equilibrium. However,

the implications of such a scenario could be estimated in an extension of the model. In

any case an intriguing area for future investigation is to actually conduct experiments

on platforms to see how well real world phenomena match our predictions.

In future work, we plan to generalize the model and use it to derive other impli-

cations. One possible use is for asset pricers and option traders. We can estimate the
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implications to the platforms of demand shocks, such as “how would total Facebook

revenues change if everyone under the age of 35 stopped using it”. Another important

implication is to competition policy. Some believe that large internet platforms are

monopolies that should be broken up, or otherwise restricted in their ability to price

discriminate. Using our approach, practitioners can evaluate whether more consumer

surplus is created by allowing or banning certain pricing strategies, or by reducing

market concentration, for a particular type of social network service.
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7 Tables and Figures

Figure 1: List of surveys conduced
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Figure 2: Google survey interface example. Note that each respondent only receives a
single survey question, and that responses are limited to seven multiple choice options.
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Figure 3: Fraction of users, by age and gender, who would reject an offered sum to retain
access to Facebook for a month. This is Ui − εi in the model. ∂Ωi

∂Ui
, that is, how elastic

demand is for a group i, is calculated as the share of individuals who use FB, but would
stop using it for an offer of $5 (our lowest offered valuation), divided by 5.

Gender Age Direct Effect ∂Φ
∂φi

∂Φ
∂φi

a = 1 a = 1 a = ai

Female 25-34 $0.41 $-3.27 $-0.38
Female 35-44 $0.62 $-0.63 $0.26
Female 45-54 $0.50 $-1.97 $-0.05
Female 55-64 $0.55 $-1.43 $-0.55
Female 65+ $0.35 $-3.28 $-0.79
Male 25-34 $0.55 $-0.10 $0.18
Male 35-44 $0.51 $-0.72 $-0.15
Male 45-54 $0.47 $-1.46 $-0.45
Male 55-64 $0.30 $-3.13 $-0.17
Male 65+ $0.38 $-1.96 $-0.16

Table 1: Non-Parametric Results: The estimated monthly profit consequences of increas-
ing advertisements or fees on a random individual of type i using equation 23. Column
one reports only the direct effect of the fee (i.e. the first two terms of 23) taking a= 1
(i.e. raising a dollar of revenue creates 1 dollar of direct disutility). Column 2 reports
the full estimate of equation 23, taking a=1. Column 3 also reports the full estimate,
but with a taking a different value of a (the disutility caused by an additional dollar in
revenue from advertising) for each demographic group (ranging from .14 to .66). The
number should be multiplied by the US population in group i to get the estimate on
total revenues of changing the advertising level for all individuals in that demographic.
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Figure 4: Average number of friends someone in Y-axis market segment has of the type
in the X-axis market segment.

Figure 5: Average value, in dollars, per month, of a friend of X-axis demographic to
someone of Y-axis demographic. This is Ui(j) in the model.

Figure 6: Total number of valuable friends someone on Y-axis would have of type on
X-axis if everyone in the US used Facebook.
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Figure 7: Underlying data and estimate of the the demand curve (Ωi) for women age
25-34. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.

Figure 8: Underlying data and estimate of the the demand curve (Ωi) for women age
35-44. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.
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Figure 9: Underlying data and estimate of the the demand curve (Ωi) for women age
45-54. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.

Figure 10: Underlying data and estimate of the the demand curve (Ωi) for women age
55-64. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.
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Figure 11: Underlying data and estimate of the the demand curve (Ωi) for women age 65
or older. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.

Figure 12: Underlying data and estimate of the the demand curve (Ωi) for men age 25-34.
The points are the mean response to the question “Would you give up Facebook for 1
month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals of
the group. Confidence intervals are based on binomial statistics. The curve, in green, is
the logistic line of best fit.
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Figure 13: Underlying data and estimate of the the demand curve (Ωi) for men age 35-44.
The points are the mean response to the question “Would you give up Facebook for 1
month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals of
the group. Confidence intervals are based on binomial statistics. The curve, in green, is
the logistic line of best fit.

Figure 14: Underlying data and estimate of the the demand curve (Ωi) for men age 45-54.
The points are the mean response to the question “Would you give up Facebook for 1
month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals of
the group. Confidence intervals are based on binomial statistics. The curve, in green, is
the logistic line of best fit.
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Figure 15: Underlying data and estimate of the the demand curve (Ωi) for men age 55-64.
The points are the mean response to the question “Would you give up Facebook for 1
month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals of
the group. Confidence intervals are based on binomial statistics. The curve, in green, is
the logistic line of best fit.

Figure 16: Underlying data and estimate of the the demand curve (Ωi) for men age 65 or
older. The points are the mean response to the question “Would you give up Facebook
for 1 month in exchange for $X? Choose Yes if you do not use Facebook.” for individuals
of the group. Confidence intervals are based on binomial statistics. The curve, in green,
is the logistic line of best fit.

30



Intercept Coefficient on Cost Demo Group
.2241054 .002684 Female 25-34
.6247908 .0044958 Female 35-44
.4487355 .0041855 Female 45-54
.4957726 .0044395 Female 55-64
.1337358 .0045129 Female 65+
.175812 .0055666 Male 25-34
.0794195 .0041705 Male 35-44
.1046415 .0035566 Male 45-54
-.3053136 .0023273 Male 55-64
-.2883383 .0030162 Male 65+

Table 2: Coefficient estimates from a logit regression of willingness to stop using Face-
book on cost of Facebook proposed (equal to negative of the Price offered to stop using
Facebook).

Figure 17: Initial rate of Facebook use by demographic, and use of Facebook after N
cascades of network effects, after all advertisements on Facebook are eliminated.

Figure 18: Initial number of US Facebook users by demographic, and use of Facebook
after N cascades of network effects, after all advertisements on Facebook are eliminated.
Numbers reported in millions of users.
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Figure 19: Change in Facebook revenues, by demographic after N cascades of network
effects, after all advertisements on Facebook are eliminated. Note that, because all adver-
tisements are eliminated, the change in revenues does not vary with cascade. Reported
in millions of dollars per month.

Figure 20: Change in average net-welfare from Facebook participation (i.e.
∫ Pi

Pi
(µi−εi)−∫ Pi

0
−εi, by demographic after N cascades of network effects, after all advertisements on

Facebook are eliminated. Reported in dollars per month.
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Figure 21: Change in social welfare for each demographic group, and total including
decreased profit, after N cascades, due to advertisements being eliminated on Facebook.
Reported in billions of dollars per month.
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A Network Stability

A.1 Stability of Equilibria

An important first question is whether the network just described is stable. We define

a network as stable at equilibrium ~P if the derivative of a connected individual’s best

response function with response to these probabilities is less than 1.17 This is a version

of a ‘trembling hand’ perfect equilibrium, meaning that the equilibrium is robust to

small fluctuations in each individual’s likelihood of participation.

For a symmetric network (i.e. every individuals’ demand function Ω is identical),

assuming that utility is linearly additive in the network effects and disutility from

advertisements, the probability of participation for any individual is

P = Ω
( I∑

U(i)P − aφ
)

(38)

where U(i) is the value of any connection.18 Then the best response function is

∂Ω

∂P
=
∂Ω

∂U

( I∑
U(i)− aφ

)
(39)

And so a network equilibrium is stable so long as

1 >
∂Ω

∂U
U(i)(I − 1) (40)

In other words, a network equilibrium is stable so long as the average user doesn’t

have too many connections, is too elastic in their individual participation, or gains

too much value from every additional connection. If the inequality is violated, small

deviations from an equilibrium are liable to send participation to a boundary condition

of 100% participation or zero participation.

A.2 Stability of Equilibrium to Demand Shock

Relatedly, we can also consider the resilience of a network equilibrium to a shock in

preferences.

Theorem 1. Consider a symmetric network where Ω is continuously differentiable

and utility is linearly additive in network effects and the disutility from advertisement.

Then for any stable equilibrium (as defined above) Pi
φj

and Pi
φj

are finite

17This concept of equilibrium stability borrows from Jackson (2010) section (9.7.2). In that model, only
some individuals are connected in the network, but in our model all are connected. In that model p corre-
sponds to the percentage of neighbors who participate, but in our model it corresponds to the likelihood of
anyone who participates.

18the value of a ‘connection to oneself’ is assumed to be 0
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Proof. Rewriting equation 15 with the assumption all nodes are identical, before i gets

hit with a fee, yields:

∂Pj
∂φi

=
∂Ω

∂U

(
U(i)

∂Pi
∂φi

+
K∑
k 6=i

U(i)
∂Pk
∂φi

)
(41)

Substituting in 14 and summing yields

∂Pj
∂φi

=
∂Ω

∂U

(
(I − 2)

∂Pj
∂φi

U(i) +
∂Ω

∂U
U(i)

(
U(i)(I − 1)

∂Pj
∂φi
− ∂A

∂φi

))
(42)

Solving for
∂Pj
∂φi

yields

∂Pj
∂φi

=
−
(
∂Ω
∂U

)2
U(i) ∂A∂φi

1−
(
∂Ω
∂UU(i)(I − 2) +

(
∂Ω
∂U

)2(
U(i)

)2
(I − 1)

) (43)

The network will not unravel due to a welfare change so long as 43 is not infinite.

This is equivalent to showing that the denominator is not equal to zero (as all other

terms are finite).

However, the denominator never takes the value 0 when the network stability cri-

teria is satisfied. Rearranging terms, the denominator can be written as

1− ∂Ω

∂U
U(i)

(
(I − 2) +

( ∂Ω

∂U

)(
U(i)

)
(I − 1)

)
(44)

From the assumption that the network is stable, we have

1 >
∂Ω

∂U
U(i)(I − 1) (45)

This implies

I − 1 > (I − 2) +
∂Ω

∂U
U(i)(I − 1) (46)

and applying 40 again implies

1 >
∂Ω

∂U
U(i)

(
(I − 2) +

( ∂Ω

∂U

)(
U(i)

)
(I − 1)

)
(47)

And if
∂Pj
∂φi

is finite, clearly so to is ∂Pi
∂φi

. So long as the network is stable in the

normal sense, it is stable to welfare shocks.

Lemma 2. In a symmetric network, ∂Pi
∂φj

= 0 if
(
∂Ω
∂U

)2 ∂A
∂T U(j) = 0

Proof. Directly from (43)
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