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Abstract

Strong network e¤ects typically lead to multiple equilibria in two-sided markets.
In response to the methodological challenge in selecting a suitable equilibrium, this
paper shows that many two-sided market models are weighted potential games, and
thus potential-maximizer selection (Monderer and Shapley 1996) can always select a
unique equilibrium in these models. As shown in the game theory literature, the
selected equilibrium coincides with the unique equilibrium under global-game selection,
p-dominance selection, perfect foresight dynamics, and log-linear dynamics; it is also
robust to incomplete information and widely supported by experimental results. Under
potential-maximizer selection, platforms often subsidize one side and charge the other
side, i.e., divide and conquer. The fundamental determinant of which side to subsidize
or monetize is the cross-side network e¤ects only. This divide-and-conquer strategy
implies that platforms are often designed to favor the money side much more than the
subsidy side.
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1 Introduction

Two groups of agents often interact via platforms: men and women meet in a nightclub,

buyers and sellers trade on a marketplace, consumers and merchants transact through a

payment card, etc. These markets are known as two-sided markets.1 Typically, positive

cross-side network e¤ects are present in these markets, creating strategic complementarities

among the agents. For example, a man (woman) will join a heterosexual nightclub only if

there are some women (men) joining the nightclub. Therefore, to attract men, the nightclub

needs a lot of women, but to attract women, the nightclub needs a lot of men. This issue

is known as the classic �chicken and egg�problem (Caillaud and Jullien 2003)� one of the

most di¢ cult challenges for many two-sided platforms, and a methodological challenge for

researchers on two-sided markets.

Formally speaking, in a typical two-sided market model where platforms set prices in

stage 1 and all agents simultaneously make their joining decisions in stage 2, agents often

engage in a coordination game with multiple equilibria in stage 2. For example, if there is a

monopoly platform and agents from the same side are identical, there can be two equilibria

in stage 2: (i) all agents join the platform, and (ii) no one joins the platform. If there are

competing platforms, all agents will coordinate on one of the platforms in the equilibrium

when the network e¤ects are su¢ ciently strong, but which platform will they coordinate on?

In other words, how should we deal with the multiple equilibria issue?

In the two-sided market literature, researchers impose various equilibrium selection cri-

teria to deal with multiple equilibria in stage 2. A popular selection criterion is Pareto-

dominance selection, i.e., to select the Pareto-dominant equilibrium whenever there are

multiple equilibria. However, this criterion often fails to select a unique equilibrium un-

der platform competition because coordinating on one of the platforms does not necessarily

Pareto-dominate the others. Under platform competition, a popular selection criterion is

focal-platform selection, i.e., to assume that all agents always coordinate on a pre-speci�ed

platform whenever there are multiple equilibria (Caillaud and Jullien 2001; Hagiu 2006; Jul-

1See Rysman (2009) for an early survey of the two-sided market literature.
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lien 2011).2 The drawback of this criterion is that we have to impose this asymmetry among

the competing platforms. Another selection criterion is to assume that the number of agents

from each side who join the platform decreases with the platform�s prices (Caillaud and

Jullien 2003; Armstrong and Wright 2007).3 Yet, this criterion is often too weak to select a

unique equilibrium, even for the monopoly-platform markets.4 More recently proposed se-

lection criteria include the concept of coalitional rationalizability (Ambrus and Argenziano

2009) and insulating tari¤s (Weyl 2010; White and Weyl 2016). Nevertheless, both criteria

sometimes fail to select a unique equilibrium under platform competition.5

In addition to the above-mentioned limitations, di¤erent selection criteria often lead to

di¤erent predictions and implications. Yet, there is no consensus in the two-sided mar-

ket literature on which selection criterion we should or should not use. Hence, there is a

methodological challenge in selecting a suitable equilibrium. In response to this challenge,

this paper proposes using another approach� the potential-game approach� to resolve the

multiple equilibria issue in two-sided markets. This approach is justi�ed by many solid mi-

crofoundations in the game theory literature, widely supported by experimental results, and

can select a unique equilibrium for many two-sided market models.

The concept of potential games was formalized by Monderer and Shapley (1996),6 which

I will explain in detail in Section 2.3. In short, a game is a potential game if it is strategically

equivalent to an identical interest game, in which all players share the same utility function.

In the corresponding identical interest game, (generically) there is a unique Pareto-dominant

2In the literature, this selection criterion is also called favorable/unfavorable (or good/bad) expectations

(Caillaud and Jullien 2001; Hagiu 2006; Jullien 2011), optimistic/pessimistic beliefs (Halaburda and Yehezkel

2013), focality (Halaburda and Yehezkel 2019), or incumbency advantage (Biglaiser et al. 2019).
3This criterion imposes no restriction when the price increases on one side but decreases on the other.
4For instance, both Pareto-dominance selection and Pareto-dominated selection (i.e., to select the Pareto-

dominated equilibrium whenever there are multiple equilibria) satisfy this criterion.
5Coalitional rationalizability fails when agents are su¢ ciently heterogeneous (Ambrus and Argenziano

2009, Abstract). Insulating tari¤s fail when agents from the same side are homogeneous and the network

e¤ects are su¢ ciently strong (White and Weyl 2016, Proposition 4c).
6The use of potential games appeared in several earlier papers such as Rosenthal (1973) and Blume (1993).
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equilibrium, called the potential maximizer. In the game theory literature, many selection

criteria select the potential maximizer if a game is a potential game. For example, the

unique equilibrium under global-game selection (Frankel et al. 2003, Theorem 4) and p-

dominance selection (Morris and Ui 2005, Lemma 7) is the potential maximizer.7 The

potential maximizer is also the unique state that is absorbing and globally accessible under

perfect foresight dynamics (Hofbauer and Sorger 1999; Oyama et al. 2008) and the unique

stochastically stable state under log-linear dynamics (Blume 1993, Theorem 6.3, 6.5; Alos-

Ferrer and Netzer 2010; Okada and Tercieux 2012).8 Even without relying on other selection

criteria, the potential maximizer itself is also robust to incomplete information (Ui 2001;

Morris and Ui 2005). Given these solid microfoundations in the game theory literature,

potential-maximizer selection, which was �rst proposed by Monderer and Shapley (1996,

Section 5), is to select the potential maximizer whenever there are multiple equilibria.9 Last

but not least, potential-maximizer selection is supported by ample experimental evidence

(Van Huyck et al. 1990; Goeree and Holt 2005; Chen and Chen 2011).10

7For games with strategic complements, these results hold for a more general class of potential games,

called monotone potential games (Morris and Ui 2005, Section 6). For the concept of global games, see

Carlsson and van Damme (1993) and Morris and Shin (2003). Jullien and Pavan (2018) study a two-sided

market model under the global-game setting, but their paper is not about equilibrium selection (see p. 5 of

their paper). By contrast, Sakovics and Steiner (2012) study a one-sided network model under global-game

selection. For the concept of p-dominance, see Kajii and Morris (1997).
8For games with strategic complements, the results under perfect foresight dynamics and log-linear dy-

namics hold for monotone potential games and local potential games (the latter is a special case of monotone

potential games; see Morris and Ui (2005, Section 6) for details) respectively. For the concept of perfect

foresight dynamics, see Matsui and Matsuyama (1995).
9Clearly, we can also apply other selection criteria (e.g. global-game selection) to a potential game and

obtain the potential maximizer as the unique equilibrium. Nevertheless, potential-maximizer selection is

the most tractable selection criterion because we can directly work on a complete information game as

demonstrated in this paper.
10Anderson et al. (2001) introduce the notion of stochastic potential by adding some noise to the standard

potential (the former converges to the latter as the noise goes to zero; see p. 194 of their paper for details).

Both Goeree and Holt (2005) and Chen and Chen (2011) �nd that subjects often end up at the maximizer

of the stochastic potential.
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Although potential-maximizer selection is applicable only to potential games, many two-

sided market models are indeed potential games.11 In particular, for the four most-cited

papers on two-sided markets (namely, Rochet and Tirole 2003, 2006; Armstrong 2006; Cail-

laud and Jullien 2003), all of their main models with strategic complements are (weighted)

potential games, where potential-maximizer selection is applicable. In fact, one contribution

of this paper is to unveil the signi�cant applications of potential games on two-sided markets.

The purpose of this paper is to demonstrate how potential-maximizer selection can resolve

the multiple equilibria issue and to derive novel insights into two-sided markets. To achieve

this goal, I study a few variants of Armstrong�s (2006) models, which I outline below.

Sections 2 analyzes the baseline model, which is a special case of Armstrong�s (2006,

Section 3) monopoly-platform model where agents from the same side are identical. Under

potential-maximizer selection, the platform has to leave enough surplus to the agents by

setting su¢ ciently low prices in stage 1, so that all agents will join the platform in stage 2.

It turns out that the platform�s optimal pricing strategy is to fully subsidize one side and set

the highest possible price on the other side, i.e., to divide and conquer (Caillaud and Jullien

2003). The only determinant of which side to monetize or subsidize is the relative size of

the network e¤ects, i.e., the platform monetizes the side that enjoys a larger per-interaction

bene�t. In other words, the money/subsidy side is independent of the total number of agents

on each side and the costs of serving the agents. This divide-and-conquer strategy implies

that the optimal design of the monopoly platform is to favor the money side only, which is

socially suboptimal.

Two-sided platforms often divide and conquer in reality: women enjoy free admission

on ladies� nights while men pay an admission fee; shoppers visit shopping malls for free

while retailers pay the rent; consumers are paid to use credit cards while merchants pay

for the service, etc. The existing literature shows that a monopoly platform would divide

and conquer only when the elasticities of demand or the network e¤ects of the two sides

11It means that every subgame in stage 2 of these two-sided market models is a potential game. Chan

(2019, Section 3) shows that many one-sided network models are potential games.
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are signi�cantly di¤erent (Armstrong 2006; Rochet and Tirole 2003, 2006).12 By contrast,

under potential-maximizer selection, the monopoly platform�s divide-and-conquer strategy

is ubiquitous in the baseline model.

Section 3 extends the baseline model to allow for heterogeneous agents, in which they

incur idiosyncratic personal costs from joining the platform. When agents are homogeneous

on one side and heterogeneous on the other, the platform has an additional incentive to

attract more agents from the latter side by lowering the price on this side. Nonetheless, under

potential-maximizer selection, the platform monetizes the homogeneous side and subsidizes

the heterogeneous side if and only if the per-interaction bene�t of the former is larger than

that of the latter� the same implication as in the baseline model� and this is irrespective of

the details of the heterogeneity among the agents as long as some regularity conditions are

satis�ed. Moreover, the optimal design of the platform tends to favor one side (not necessarily

the heterogeneous side) much more than the other side. Hence, all the key implications of

the baseline model are naturally extended to this richer framework.

When agents are su¢ ciently heterogeneous on both sides as in Armstrong�s (2006, Section

3) original model, the platform has a high incentive to attract more agents by lowering the

prices on both sides; this in turn leaves a lot of surplus to the agents. Therefore, it is possible

that the equilibrium outcome under potential-maximizer selection coincides with that under

Pareto-dominance selection.

Section 4 analyzes a variant of Armstrong�s (2006, Section 4) duopoly-platform model,

in which the platforms are vertically (but not horizontally) di¤erentiated. Under potential-

maximizer selection, the platforms�price-setting stage is analogous to the standard Bertrand

competition with vertical di¤erentiation. The entire market tips to a platform in the equi-

librium. The dominant platform always divides and conquers as in the baseline model. By

contrast, the money/subsidy side depends on the relative size of the average per-interaction

bene�ts across the competing platforms rather than its own per-interaction bene�ts of the

12Alternatively, Caillaud and Jullien (2003) and Jullien (2011) derive the divide-and-conquer strategy

under platform competition together with focal-platform selection.
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two sides. The optimal design of the platforms tends to favor both (one) sides when the

platforms are very (not) competitive.

Section 5 discusses and compares potential-maximizer selection with focal-platform selec-

tion and discusses several extensions to show the generality of potential-maximizer selection.

Section 6 concludes.

2 Monopoly Platform: Homogeneous Agents

Section 2.1 presents the baseline model, which is a special case of Armstrong�s (2006, Sec-

tion 3) monopoly-platform model where agents from the same side are identical. Section

2.2 analyzes the model under Pareto-dominance selection as a benchmark. For the base-

line model, focal-platform selection (with the monopoly platform being �focal�), coalitional

rationalizability, and insulating tari¤s coincide with Pareto-dominance selection.13 Section

2.3 introduces the potential-game approach and shows that the equilibrium outcome under

potential-maximizer selection is very di¤erent from that under Pareto-dominance selection.

This section studies the more realistic �nite-agent model; the next section studies the more

popular continuum-agent model.

2.1 The Baseline Model

A monopoly platform serves two groups of agents, namely, group 1 and group 2, and there

are N1 2 N group-1 agents and N2 2 N group-2 agents. The game has two stages. In stage

1, the platform sets subscription fees (p1; p2) 2 R2 to the two groups. In stage 2, all group-1

and group-2 agents observe the platform�s prices and simultaneously decide whether to join

the platform. Let aki 2 f0�Not join, 1�Joing denote the action of agent k 2 f1; : : : ; Nig

from group i = 1; 2.

If the platform attracts n1 �
PN1

k=1 a
k
1 group-1 agents and n2 �

PN2
k=1 a

k
2 group-2 agents,

13Similarly, Armstrong (2006, p. 672) allows the platform to directly choose the agents�utility levels rather

than setting prices, which is also equivalent to Pareto-dominance selection.
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the payo¤ of a group-i agent from joining the platform is

ui(nj; pi) = vinj � pi; (j = 1; 2; j 6= i) (1)

where vi 2 R++ is the per-interaction bene�t of a group-i participant from interacting with

each group-j participant. If an agent does not join the platform, his payo¤ is zero.

The platform�s payo¤ is equal to its pro�t:

�(n1; n2; p1; p2) = (p1 � c1)n1 + (p2 � c2)n2; (2)

where ci 2 R+ is the (su¢ ciently low) marginal cost of serving each group-i participant.

In what follows, I am interested in the pure strategy subgame perfect equilibria of this

two-stage game.14

2.2 Pareto-Dominance Selection

I solve this game backwards, starting from stage 2. Multiple equilibria often arise in stage

2 due to the cross-side network e¤ects between the two sides. In particular, there are two

equilibria in stage 2 when (p1; p2) 2 [0; v1N2]� [0; v2N1]:15

1. all agents join the platform;

2. no one joins the platform.

Clearly, the �rst equilibrium Pareto-dominates the second equilibrium for all agents (as

well as for the platform). As a benchmark, I apply Pareto-dominance selection to the

14There are some mixed strategy equilibria in the model. Nevertheless, these equilibria are unstable (i.e.,

they cannot be reached by any dynamic process) and never selected under Pareto-dominance selection or

potential-maximizer selection (see footnote 18 for details). These equilibria play no role in the subsequent

analysis, and I will not discuss them throughout this paper.
15If pi > viNj (pi < 0), there is a unique equilibrium with no (Ni) group-i participants. When pi = viNj

or pi = 0, there are equilibria with only some (but not all) group-i agents joining the platform because they

are indi¤erent between joining or not. Nevertheless, the platform can avoid these equilibria by lowering the

price pi a bit in stage 1. These equilibria play no role in the subsequent analysis, and I will not discuss them

throughout this paper.

8



model, i.e., to assume that all agents always join the platform whenever there are multiple

equilibria in stage 2. Under this selection criterion, the platform charges both groups the

highest possible prices in stage 1 so that all agents will join the platform with zero surplus

in stage 2, i.e.,

p�1 = v1N2; p�2 = v2N1:

Hence, from (2), the platform�s equilibrium pro�t is

�� = (v1 + v2)N1N2 � c1N1 � c2N2:

2.3 Potential-Maximizer Selection

I now analyze the model under potential-maximizer selection. Section 2.3.1 illustrates the

potential-game approach with the simplest case where there are only one group-1 agent and

one group-2 agent. Section 2.3.2 analyzes the general case with N1 group-1 agents and N2

group-2 agents. Section 2.3.3 discusses and compares the results under potential-maximizer

selection with the benchmark results.

2.3.1 Simplest Case: N1 = N2 = 1

When there are only two agents, the subgame in stage 2 can be represented by the following

payo¤ matrix:

Join Not join

Join v1 � p1; v2 � p2 �p1; 0

Not join 0;�p2 0; 0

(3)

Consider a function P de�ned on the strategy space of the same game as below:

Join Not join

Join 1� p1
v1
� p2

v2
�p1
v1

Not join �p2
v2

0

(4)
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P is constructed in a way that the change in each agent�s payo¤ from unilaterally switching

actions in (3) is proportional to the corresponding change in P . To see this, the payo¤

di¤erence between (Join, Join) and (Not join, Join) for the group-1 agent is v1� p1, and the

corresponding di¤erence in P is 1� p1
v1
= 1

v1
(v1� p1). Similarly, his payo¤ di¤erence between

(Join, Not join) and (Not join, Not join) is �p1, and the corresponding di¤erence in P is

�p1
v1
= 1

v1
(�p1). The same logic applies to the group-2 agent.

Hence, if we view (4) as an identical interest game in which the two agents share the

same payo¤ function P , then this game is strategically equivalent to (3).16 In particular,

the best-response correspondence and the set of equilibria for these two games are identical.

Therefore, we can view P as a su¢ cient statistic for the equilibrium analysis of (3): P is also

called the potential function of (3). A game is a weighted potential game if such a potential

function P exists, and thus (3) is a weighted potential game. The formal de�nition is given

as follows. The mathematical de�nition is given in Appendix B.

De�nition 1 A game is a weighted potential game if there exists a function P de�ned on

the strategy space of the game, such that the change in any player�s payo¤ from unilaterally

switching actions is (positively) proportional to the corresponding change in P . P is called

the game�s potential function.

For a weighted potential game, the maximizer of the potential function (called the po-

tential maximizer) always exists, and it is generically unique.17 For example, the potential

maximizer in (4) when p1; p2 � 0 is

(Join, Join) if
p1
v1
+
p2
v2
� 1; (5)

(Not join, Not join) if
p1
v1
+
p2
v2
� 1:

16In fact, these two games are von Neumann-Morgenstern equivalent as de�ned by Morris and Ui (2004).
17The potential function P is unique up to positive a¢ ne transformations, i.e., P 0 � C1P +C2 (C1 2 R++;

C2 2 R) is also a potential function of the game. Thus, the potential maximizer is invariant to the choice of

the potential function.
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Note that the potential maximizer is always a pure strategy Nash equilibrium of the game:18

if someone deviates from the potential maximizer, the potential will decrease, and, by de�-

nition, the deviator will have a lower payo¤.

Both (Join, Join) and (Not join, Not join) in (3) are equilibria when (p1; p2) 2 [0; v1] �

[0; v2]. Nevertheless, (generically) only one of them is the potential maximizer as shown

in (5). As stated in the Introduction (p. 4), many selection criteria in the game theory

literature select the potential maximizer, and there is ample experimental evidence showing

that subjects often end up at the potential maximizer. Therefore, the equilibrium selection

criterion based on potential games is to select the potential maximizer. The formal de�nition

is given as follows.

De�nition 2 Potential-maximizer selection is to select the potential-maximizing equilibrium

of a weighted potential game.

Under potential-maximizer selection, the (generically) unique equilibrium of the subgame

for this simplest case is given by (5) when p1; p2 � 0. It implies that the two agents will join

the platform only when the prices (p1; p2) set by the platform in stage 1 are su¢ ciently low.

Otherwise, they will not join the platform. Note that (3) is a two-player two-action game

where the potential-maximizing equilibrium coincides with the risk-dominant equilibrium.19

2.3.2 General Case

Section 2.3.1 shows that every subgame in stage 2 is a weighted potential game when there

are one group-1 agent and one group-2 agent. I now prove the same result for the general

case with N1 group-1 agents and N2 group-2 agents. Note that the potential function P of

the subgame in stage 2 depends on the prices (p1; p2) set by the platform in stage 1. Given

18The potential of a mixed strategy Nash equilibrium is a convex combination of the potentials de�ned

on the pure strategy action space. Therefore, (generically) a mixed strategy Nash equilibrium is not the

potential maximizer.
19For the concept of risk dominance, see Harsanyi and Selten (1988).
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that agents from the same side are identical, P is symmetric in the sense that it depends

only on the number of participants n1 and n2.

Lemma 1 Every subgame in stage 2 is a weighted potential game with the potential function

P (n1; n2jp1; p2) = n1n2 �
p1
v1
n1 �

p2
v2
n2: (6)

Proof. The proof is to verify that the function P de�ned in (6) is indeed the potential

function. For a group-1 agent, if there are n1 (excluding himself) and n2 participants, his

payo¤ di¤erence between joining the platform or not is

u1(n2; p1)� 0 = v1n2 � p1: (by (1))

The corresponding di¤erence in P is

P (n1 + 1; n2jp1; p2)� P (n1; n2jp1; p2)

=

�
(n1 + 1)n2 �

p1
v1
(n1 + 1)�

p2
v2
n2

�
�
�
n1n2 �

p1
v1
n1 �

p2
v2
n2

�
(by (6))

= n2 �
p1
v1
:

Clearly, the change in the group-1 agent�s payo¤ from unilaterally switching actions is pro-

portional (with proportion v1) to the change in P . The same logic applies to a group-2 agent

(with proportion v2 for him). Therefore, every subgame is a weighted potential game with

the potential function given by (6).

After identifying the potential function, the next step is to identify the potential maxi-

mizer. If there is a unique equilibrium in the subgame (i.e., (p1; p2) =2 [0; v1N2]� [0; v2N1]),

the potential maximizer is the unique equilibrium. If there are two equilibria in the subgame

(i.e., (p1; p2) 2 [0; v1N2]� [0; v2N1]), the potential maximizer is the equilibrium with a higher

potential. By Lemma 1, the respective potentials of the two equilibria are

P (N1; N2jp1; p2) = N1N2 �
p1
v1
N1 �

p2
v2
N2;

P (0; 0jp1; p2) = 0:
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Given the above analysis, the potential maximizer of the subgame, which is the selected

equilibrium in stage 2 under potential-maximizer selection, is summarized as follows.20

Lemma 2 When p1; p2 � 0, the unique equilibrium of the subgame in stage 2 under potential-

maximizer selection is

all agents join the platform if
p1
v1N2

+
p2
v2N1

� 1;

no one joins the platform otherwise.21

As shown in Lemma 2, the platform has to leave enough surplus to the participants by

setting su¢ ciently low prices (p1; p2) in stage 1, so that all agents will join the platform in

stage 2. Hence, from (2) and Lemma 2, the platform�s pro�t-maximization problem in stage

1 becomes

max
p1;p2�0

(p1 � c1)N1 + (p2 � c2)N2 s.t.
p1
v1N2

+
p2
v2N1

� 1:

Generically and w.l.o.g., assume that group-1 agents enjoy less per-interaction bene�t than

group-2 agents do, i.e., v1 < v2. Solving the above optimization problem shows that the

platform�s optimal pricing strategy is to set zero price for group 1 and the highest possible

price for group 2, i.e.,

p�1 = 0; p�2 = v2N1:

Hence, the platform�s equilibrium pro�t is

�� = v2N1N2 � c1N1 � c2N2:
20Lemma 2 omits the cases where p1 and/or p2 are strictly negative because the platform will not set such

prices in the equilibrium: joining the platform is the (weakly) dominant strategy for the agents whenever it

is free to do so.
21Both equilibria are potential maximizers when p1

v1N2
+ p2

v2N1
= 1. Nevertheless, the platform can lower

the prices p1 or p2 a bit in stage 1 so that the former is the unique potential maximizer in stage 2. Therefore,

we can assume for simplicity that the equilibrium in stage 2 is the former when p1
v1N2

+ p2
v2N1

= 1.
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2.3.3 Comparison and Discussion

Table 1 summarizes and compares the results with the benchmark results.

Pareto-dominance selection Potential-maximizer selection

p�1 = v1N2; p�2 = v2N1 p�1 = 0; p�2 = v2N1

�� = (v1 + v2)N1N2 � c1N1 � c2N2 �� = v2N1N2 � c1N1 � c2N2

Division of total surplus:

Group 1: 0; Group 2: 0 Group 1: v1N1N2; Group 2: 0

Platform: (v1 + v2)N1N2 � c1N1 � c2N2 Platform: v2N1N2 � c1N1 � c2N2

Table 1: Comparisons between the two selection criteria (with v1 < v2).

Under both selection criteria, the platform charges group-2 agents the same maximum price

and fully extracts their surplus. By contrast, the platform provides free access for group-1

agents and leaves them a lot of surplus under potential-maximizer selection. Hence, the

platform�s equilibrium pro�t is much lower than that of the benchmark. In this case, we

refer to group 1 as the subsidy side and group 2 as the money side.

There are three key implications in this model.

Divide-and-conquer strategy The platform�s divide-and-conquer strategy that subsi-

dizes one side and monetizes the other side is ubiquitous because the per-interaction bene�ts

of the two sides are (generically) di¤erent. As mentioned in the Introduction (p. 5), two-sided

platforms often divide and conquer in reality. To derive this divide-and-conquer strategy un-

der the current framework (and without using potential-maximizer selection), one would need

to rely on Pareto-dominated selection, i.e., to assume that all agents always coordinate on

not joining the platform whenever there are multiple equilibria. Yet, this selection criterion

is often regarded as even �less plausible�than Pareto-dominance selection. Surprisingly, the
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equilibrium outcome under Pareto-dominated selection actually coincides with that under

potential-maximizer selection in the current model.22 This equivalence no longer holds when

I extend the model in the next two sections.

Money/subsidy side The money/subsidy side of the platform depends only on the rela-

tive size of the per-interaction bene�ts v1 and v2. In other words, the money/subsidy side is

independent of the total number of agents N1 and N2 on each side, i.e., the platform does not

necessarily monetize the group with more agents. For example, shopping malls have more

shoppers than retailers, but only the latter are charged. The reason is that when there are

more, say, group-1 agents, the platform can extract more surplus from group 1 by increasing

p1. Yet, having more group-1 agents also increases the group-2 agents�bene�ts from joining

the platform. Hence, the platform can also extract more surplus from group 2 by increasing

p2. These two e¤ects cancel out perfectly in this model, and thus the money/subsidy side is

independent of the number of agents.

Similarly, the money/subsidy side is independent of the marginal costs c1 and c2 for

serving the agents, i.e., the platform does not necessarily monetize the �more pro�table�

side. For example, for open-access academic journals, the marginal cost of an additional

reader is zero and reviewing a paper is costly, but these journals only charge the authors. The

reason is that, in the current model, all agents coordinate on either joining or not joining the

platform in the equilibrium. Therefore, the total cost c1N1 + c2N2 incurred by the platform

is equivalent to a �xed cost, which does not a¤ect the decision on the money/subsidy side.

Optimal design Oftentimes, the agents�per-interaction bene�ts v1 and v2 are not exoge-

nous, but rather the platform�s endogenous choice. For example, shopping malls are often

designed to maximize shoppers�travel distances by locating anchor stores far from each other

22Under Pareto-dominated selection, the platform needs to guarantee participation from one side by pro-

viding free access for that side. Then, the platform can charge the highest possible price on the other side.

Clearly, the choice of the money/subsidy side under Pareto-dominated selection is the same as that under

potential-maximizer selection.
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and placing escalators at opposite ends; this bene�ts retailers but harms shoppers. Hence,

the following discussion investigates the comparative statics of v1 and v2.

As shown in Table 1, the optimal design of the pro�t-maximizing platform under Pareto-

dominance selection is to favor both sides, i.e., to increase both v1 and v2. This is not true

under potential-maximizer selection. The platform�s equilibrium pro�t is independent of v1

as long as v1 < v2. Therefore, the platform only has the incentive to increase v2: the optimal

design of the platform is to favor the money side only. Under Pareto-dominance selection,

social surplus is equal to the platform�s equilibrium pro�t. Therefore, the optimal design of

the platform maximizes social welfare. By contrast, the optimal design of the platform is

socially suboptimal under potential-maximizer selection: the platform has no incentive to

increase group-1 agents�surplus by increasing v1.

Table 1 demonstrates how di¤erent selection criteria can lead to totally di¤erent pre-

dictions and implications: this is the methodological challenge in two-sided markets. Nev-

ertheless, potential-maximizer selection, a selection criterion justi�ed by many solid micro-

foundations and experimental evidence, yields more realistic predictions in this model. In

fact, these predictions already capture many distinct features of two-sided markets. In other

words, these distinct features do not rely on the heterogeneity of the agents within the same

side nor a particular market structure; rather, they rely on a suitable equilibrium selection

criterion. Sections 3 and 4 extend the baseline model to allow for heterogeneous agents and

competing platforms respectively. All the above key implications are naturally extended to

these richer frameworks.

3 Monopoly Platform: Heterogeneous Agents

Sections 3.1�3.2 extend the baseline model with heterogeneous agents on one side as in

Armstrong and Wright (2007, Section 4), where agents from that side incur idiosyncratic

personal costs from joining the platform.23 Section 3.3 further extends the analysis to Arm-

23For example, for physical platforms such as shopping malls and trade fairs, transport cost is likely to

be a major consideration for buyers but not for sellers. An alternative interpretation is that agents from
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strong�s (2006, Section 3) original model, in which agents are heterogeneous on both sides.

Under these richer frameworks, every subgame in stage 2 remains a weighted potential game;

potential-maximizer selection remains applicable. For convenience, this section presents the

continuum-agent model; Appendix C analyzes the corresponding limiting case of the �nite-

agent model.

3.1 Model

The baseline model is modi�ed as follows. There are now a continuum [0; N1] of identical

group-1 agents and a continuum [0; N2] of heterogeneous group-2 agents (N1; N2 2 R++). If

the platform attracts n1 �
R N1
0
ak1dk group-1 agents and n2 �

R N2

0
ak2dk group-2 agents, the

payo¤s of a group-1 agent and agent k 2 [0; N2] (agent k always refers to a group-2 agent in

this section) from joining the platform are

u1(n2; p1) = v1n2 � p1; uk2(n1; p2) = v2n1 � p2 � t(k); (7)

where the function t : [0; N2] ! R+ speci�es each group-2 agent�s stand-alone cost from

joining the platform. I assume that t is strictly increasing, convex, log-concave, twice-

di¤erentiable, t(0) = 0, and t(N2) ! 1. Under these assumptions, group-2 agents are

su¢ ciently heterogeneous in a smooth way.24

For simplicity, I assume away the marginal costs of serving the participants. Hence, the

platform�s pro�t is

�(n1; n2; p1; p2) = p1n1 + p2n2: (8)

The rest of the model setup is the same as that of the baseline model.

one side have di¤erent reservation values. See p. 354 and 361 of Armstrong and Wright (2007) for more

interpretations and examples. See also Hagiu and Spulber (2013) for a similar model.
24These assumptions merely guarantee that the platform�s pro�t-maximization problem in stage 1 is well-

behaved. Even if all these assumptions are violated, every subgame in stage 2 remains a weighted potential

game; potential-maximizer selection remains applicable. Besides, the analysis can be easily extended to allow

for negative values of t, i.e., group-2 agents can derive some stand-alone bene�ts from joining the platform.
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3.2 Analysis

Compared to the baseline model, there is now an additional demand expansion e¤ect on

group 2. More precisely, for any group-2 price p2 � v2N1 set by the platform in stage 1,25

not joining the platform is the strictly dominant strategy for agent k 2 (N2; N2], where

0 � N2 � t�1(v2N1 � p2) < N2: (9)

These group-2 agents are �irrelevant�, and I refer to the remaining group-1 and group-2

agents as relevant agents. In addition, if p2 is negative,26 joining the platform is the strictly

dominant strategy for agent k 2 [0; N2), where

0 � N2 � t�1(�p2) < N2: (10)

From the above discussions, it is clear that multiple equilibria often arise in stage 2. To be

exact, there are two stable27 equilibria and an unstable equilibrium in stage 2 if and only if

Case 1: (p1; p2) 2 [0; v1N2]� [0; v2N1], or

Case 2: (p1; p2) 2 [v1N2; v1N2]� (�1; 0].

Denote ai as group-i agents�action pro�le, ai = 0 and ai = 1 as no one and all agents

from group i joining the platform respectively, and 1S as the indicator function where

1S(k) �
�
1 if k 2 S;
0 if k =2 S:

As shown in Figure 1 (left), the three equilibria in stage 2 for Case 1 are

25If p2 > v2N1, not joining the platform is the strictly dominant strategy for all group-2 agents. The

platform never sets such a high group-2 price in the equilibrium, and thus I omit the discussion on these

prices throughout this section.
26As pointed out by Armstrong (2006, footnote 5), �It is often unrealistic to suppose negative prices are

feasible�. For completeness, this section analyzes both cases, i.e., with or without the non-negative price

constraint; see footnote 32 for equilibrium outcome under the non-negative price constraint. When I study

platform competition in Section 4, I only analyze the model under the non-negative price constraint.
27An equilibrium is stable (unstable) if it can (cannot) be reached by some dynamic process.
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Figure 1: The equilibria of the subgame in stage 2 for Case 1 (left) and Case 2 (right).

1. Pareto-dominant equilibrium: (a�1; a
�
2) = (1;1[0;N2]);

2. unstable equilibrium: (a�1; a
�
2) = (1[0; bN1];1[0; bN2]);28

3. Pareto-dominated equilibrium: (a�1; a
�
2) = (0;0).

As shown in Figure 1 (right), the three equilibria in stage 2 for Case 2 are

1. Pareto-dominant equilibrium: (a�1; a
�
2) = (1;1[0;N2]);

2. unstable equilibrium: (a�1; a
�
2) = (1[0; bN1];1[0; bN2]);

3. Pareto-dominated equilibrium: (a�1; a
�
2) = (0;1[0;N2]

).

Clearly, both Pareto-dominance selection and Pareto-dominated selection are applicable

to the current model. Appendix D analyzes these two benchmarks and shows that their

equilibrium outcomes always di¤er from that under potential-maximizer selection.

I now analyze the model under potential-maximizer selection. First, I show that every

subgame in stage 2 is a weighted potential game. Group-2 agents are heterogeneous in the

28Given that group-1 agents are identical, a�1 = 1[0; bN1]
simply means that the mass of group-1 participants

is bN1. Thus, strictly speaking, there is a continuum of unstable equilibria.
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current framework, and thus the potential function P depends on group-2 agents�action

pro�le a2 rather than the number of group-2 participants n2.

Lemma 3 Every subgame in stage 2 is a weighted potential game with the potential function

P (n1; a2jp1; p2) = n1n2 �
p1
v1
n1 �

p2
v2
n2 �

1

v2

Z N2

0

t(k)ak2dk: (11)

Proof. See Appendix C.

Compared to Lemma 1 in the baseline model, the extra term 1
v2

R N2

0
t(k)ak2dk captures

the total stand-alone cost incurred by group-2 participants.

After identifying the potential function, the next step is to identify the potential maxi-

mizer. It can be done so by following the same approach in Section 2.3.2 as shown below.

Note that the unstable equilibrium is never selected under potential-maximizer selection.

Lemma 4 Under potential-maximizer selection, the unique equilibrium of the subgame in

stage 2 is

1. when 0 � p2 � v2N1: (a�1; a
�
2) = (1;1[0;N2]) if p1 �

v1
v2N1

Z N2

0

(t(N2)� t(k))dk;

(a�1; a
�
2) = (0;0) otherwise.

2. when p2 � 0: (a�1; a
�
2) = (1;1[0;N2]) if p1 � v1N2 +

v1
v2N1

Z N2

N2

(t(N2)� t(k)) dk;

(a�1; a
�
2) = (0;1[0;N2]

) otherwise.

Proof. See Appendix A.1.

As shown in Lemma 4, the platform has to leave enough surplus to the participants

by setting su¢ ciently low prices (p1; p2) in stage 1, so that all relevant agents will join the

platform in stage 2.29 Therefore, for any group-2 price p2 � v2N1 set by the platform (which
29We can easily verify that the terms v1

v2N1

R N2

0
(t(N2)� t(k))dk and v1N2 +

v1
v2N1

R N2

N2
(t(N2)� t(k)) dk in

Lemma 4 are decreasing in p2. Thus, lowering the group-2 price makes it easier for all relevant agents to

coordinate on joining the platform.
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determines the values of N2 and N2 by (9) and (10) respectively), the platform optimally

sets the highest possible group-1 price until the constraint in Lemma 4 binds, i.e.,

p�1 =

8>>><>>>:
v1
v2N1

R N2
0
(t(N2)� t(k))dk if 0 � p2 � v2N1;

v1N2 +
v1
v2N1

R N2
N2
(t(N2)� t(k)) dk if p2 � 0:

(12)

It remains to derive the platform�s optimal group-2 price p�2. From (8) and (12), the plat-

form�s pro�t-maximization problem in stage 1 becomes

max
p2�v2N1

� =

8>>><>>>:
v1
v2

R N2
0
(t(N2)� t(k)) dk + p2N2 if 0 � p2 � v2N1;

v1N1N2 +
v1
v2

R N2
N2
(t(N2)� t(k)) dk + p2N2 if p2 � 0:

(13)

Solving the above optimization problem gives us p�2 (and thus N
�
2 and N

�
2). After that, we

can derive p�1 and �
� from (12) and (13) respectively. The equilibrium outcome of this game

is characterized as follows.

Proposition 1 Under potential-maximizer selection, there is a unique equilibrium in this

model. When v1 � v2, the platform�s optimal group-2 price p�2 and the equilibrium mass of

group-2 participants N�
2 are implicitly given by

p�2 = v2N1 � t(N�
2 ) =

�
1� v1

v2

�
N�
2 t
0(N�

2 ) � 0; 30 (14)

and the platform�s optimal group-1 price p�1 and its equilibrium pro�t �� are given by

p�1 =
v1
v2N1

Z N�
2

0

(t(N�
2 )� t(k)) dk;

�� =
v1
v2

Z N�
2

0

(t(N�
2 )� t(k)) dk + p�2N�

2 :

When v1 � v2, p�2, N�
2 , and N

�
2 are implicitly given by

p�2 = �t(N�
2) = v2N1 � t(N�

2 ) =

�
N�
2 �

v1
v2
(N�

2 �N�
2)

�
t0(N�

2 ) � 0; 31 (15)

30We can easily show that p�2 and N
�
2 exist. They are also unique because t is strictly increasing and

convex. p�2 is positive because v1 � v2 and t is increasing.
31We can easily show that p�2, N

�
2 , and N

�
2 exist. They are also unique because t is strictly increasing,

convex, and log-concave. We can also verify that p�2 is negative. See Appendix A.2 for the formal proof.
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and p�1 and �
� are given by

p�1 = v1N
�
2 +

v1
v2N1

Z N�
2

N�
2

(t(N�
2 )� t(k)) dk;

�� = v1N1N
�
2 +

v1
v2

Z N�
2

N�
2

(t(N�
2 )� t(k)) dk + p�2N�

2 :

As shown in Proposition 1, the platform�s optimal pricing strategy depends crucially on

the per-interaction bene�ts v1 and v2. When v1 � v2, the optimal group-2 price is equal to

the standard monopoly markup N�
2 t
0(N�

2 ), adjusted downward by the fraction 1 � v1
v2
due

to the positive network e¤ects generated to group 1. When v1 > v2, the platform strictly

subsidizes group 2.32 The higher the v1, the more the platform�s incentive to subsidize group

2. Unlike the baseline model, the platform always charges group 1 due to the additional

demand expansion e¤ect on group 2. Nevertheless, the platform monetizes group 1 and

subsidizes group 2 if and only if v1 � v2� the same feature as in the baseline model� and

this is irrespective of the details of the stand-alone cost function t (as long as it satis�es the

imposed assumptions in Section 3.1).

Table 2 summarizes the comparative statics results. Again, these results do not depend

on the exact form of the stand-alone cost function t.

N�
2 p�1 p�2 p�1N1 p�2N

�
2 �� N�

2 p�1 p�2 p�1N1 p�2N
�
2 ��

N1 + +=� + + + + N1 + + � + � +

v1 + + � + � + v1 + + � + � +

v2 +=� +=� + +=� + + v2 + +=� + +=� + +

Table 2: Comparative statics when v1 � v2 (left) and v1 � v2 (right).

Proof. See Appendix A.3.
32If the platform is not allowed to strictly subsidize the agents (as mentioned in footnote 26), it will

optimally set p�2 = 0. The equilibrium mass of group-2 participants will be N�
2 = t

�1(v2N1) by (9), and p�1

and �� will be given by the same expressions in Proposition 1.
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As shown in Table 2, when the mass of group-1 agents N1 increases, the platform always

generates more revenue from group 1. If additionally v1 � v2, the platform charges group-2

agents more because they now enjoy more bene�ts from joining the platform. On the other

hand, the platform subsidizes group 2 when v1 � v2. When N1 increases, it actually increases

the subsidy (i.e., p�2 decreases) to attract more group-2 participants, and then recovers the

loss by charging group 1 even more. Similarly, when v1 increases, the platform always lowers

the group-2 price to attract more group-2 participants, so it can charge group 1 even more.

In the literature, this is known as the �seesaw principle�(Rochet and Tirole 2006).33 On the

other hand, when v2 increases, the platform always charges group 2 more. Yet, N�
2 might

still increase because group-2 participants now enjoy a higher per-interaction bene�t. Hence,

depending on the parameter values, the platform may increase or decrease the group-1 price

when v2 increases.

I now discuss the optimal design of the platform, i.e., the comparative statics of v1 and v2

to the platform�s equilibrium pro�t ��. Unlike the baseline model, �� is (strictly) increasing

in both v1 and v2. Nevertheless, when v1 (v2) is relatively large, �� actually increases more

with a further increase in v1 (v2) than an increase in v2 (v1). Therefore, the optimal design

of the two-sided platforms tends to favor one side much more than the other side. The

following corollary formally states the result.

Corollary 1 @��

@v1
� @��

@v2
when 2v1 � v2; @�

�

@v1
� @��

@v2
when v1 � v2.

Proof. See Appendix A.4.

Sections 3.1�3.2 demonstrate how potential-maximizer selection can be applied to Arm-

strong�s model with heterogeneous agents on one side. Despite the additional demand expan-

sion e¤ect on the heterogeneous side, all the three key implications of the baseline model are

naturally extended to the current model. In general, there is no closed-form solution for the

current model. Appendix E provides two examples with closed-form solutions: the models

33The seesaw principle is de�ned by Rochet and Tirole (2006, p. 659), �. . . a factor that is conducive to a

high price on one side, to the extent that it raises the platform�s margin on that side, tends also to call for

a low price on the other side as attracting members on that other side becomes more pro�table�.
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with linear stand-alone cost and quadratic stand-alone cost. These examples verify all the

above results (i.e., Proposition 1, Table 2, and Corollary 1) and derive further implications.

3.3 Armstrong�s (2006, Section 3) Original Model

Given the analysis in Section 3.2, it is straightforward to extend the analysis to Armstrong�s

original model where agents are heterogeneous on both sides. The rest of this section dis-

cusses the main results. The formal analysis is given in Appendix F.

In Armstrong�s original model, both group-1 and group-2 agents incur idiosyncratic per-

sonal costs from joining the platform; demand expansion e¤ects are present on both sides.

Similar to the previous models, multiple equilibria often arise in stage 2. When agents from

each side are su¢ ciently heterogeneous in a smooth (and nice) way, there are only two stable

equilibria in stage 2: (i) the Pareto-dominant equilibrium with high participation, and (ii)

the Pareto-dominated equilibrium with low/no participation.

As explained in footnote 13, Armstrong (2006, Section 3) imposes Pareto-dominance

selection and derives the platform�s optimal prices (p�1; p
�
2) in stage 1. On the other hand,

under potential-maximizer selection, the platform faces an additional constraint in stage 1: it

has to set the prices (p1; p2) such that the Pareto-dominant equilibrium in stage 2 is also the

potential maximizer. As shown in Sections 2.3.2 and 3.2, this additional constraint always

binds in the equilibrium if agents are identical on at least one side. By contrast, when agents

are su¢ ciently heterogeneous on both sides, sometimes this additional constraint does not

bind in the equilibrium. The reason is that demand expansion e¤ects are now present on

both sides, and thus the platform has the incentive to attract more agents from both sides

by lowering both p1 and p2.34 Hence, the platform�s optimal prices (p�1; p
�
2) under Pareto-

dominance selection might be low enough that the Pareto-dominant equilibrium in stage 2

is also the potential maximizer. If this is the case, the equilibrium outcome under potential-

maximizer selection coincides with that under Pareto-dominance selection; otherwise, their

34By contrast, if agents are identical on one side, the platform always fully extracts these agents�surplus

under Pareto-dominance selection.
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equilibrium outcomes di¤er.

Appendix F.3 shows that when the stand-alone cost functions on both sides are monomi-

als35 with the same degree � > 1, the equilibrium outcome under potential-maximizer selec-

tion coincides with that under Pareto-dominance selection if and only if v1
v2
� 1

�
or v1

v2
� �. In

other words, their equilibrium outcomes are di¤erent whenever the per-interaction bene�ts

of the two sides do not di¤er too much, i.e., 1
�
< v1

v2
< �.

4 Platform Competition

This section demonstrates how potential-maximizer selection can resolve the multiple equi-

libria issue under platform competition and derives further insights into two-sided markets.

The baseline model is naturally extended to a duopoly-platform model, which is a special

case of Armstrong�s (2006, Section 4) duopoly-platform model and almost equivalent to

Caillaud and Jullien�s (2003, Section 5) model.36 Multiple equilibria naturally arise in both

of their models, but they do not attempt to select an equilibrium.37 By contrast, I apply

potential-maximizer selection to the model and derive the unique equilibrium.

4.1 Model

The baseline model is modi�ed as follows. There are now two competing platforms, indexed

by A and B. The payo¤ of a group-i agent from joining platform m 2 fA;Bg depends on
35Monomial stands for a polynomial which has only one term.
36The only di¤erence to Caillaud and Jullien�s model is that their agents can choose not to join any

platforms, while mine have to join one of the platforms as in Armstrong�s (2006, Section 4) model. My

model is a special case of Armstrong�s model with no transport cost (i.e., t1 = t2 = 0 in his model). Note

that the platforms in my model can be vertically di¤erentiated. In this sense, my model is more general

than theirs.
37Armstrong (2006) actually does not analyze this special case; he only studies the cases where transport

costs (i.e., t1 and t2 in his model) are su¢ ciently high so that there is a unique market-sharing equilibrium

for the competing platforms. In fact, White and Weyl (2016, p. 3) call this special case the �previously

intractable parameter values�, and it remains intractable in their paper.
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the number of group-j agents who join the same platform, i.e.,

umi (n
m
j ; p

m
i ) = v

m
i n

m
j � pmi : (16)

As shown in the above payo¤ function, the model allows group-i participants to enjoy dif-

ferent per-interaction bene�ts vmi 2 R++ at di¤erent platforms.38

For simplicity, I assume away the marginal costs of serving the participants. Hence,

platform m�s pro�t is

�m(nm1 ; n
m
2 ; p

m
1 ; p

m
2 ) = p

m
1 n

m
1 + p

m
2 n

m
2 : (17)

Following Armstrong and Wright (2007), I assume that the subscription fees pm1 and p
m
2 set

by the platforms are non-negative.39 As they have argued (p. 356), this is a reasonable

restriction for pure-subscription models because strictly subsidizing the participants will

create obvious adverse selection and moral hazard problems. Armstrong (2006, footnote 5)

also makes a similar argument.

The timing of the game is the same as before. In stage 1, the platforms simultaneously

set prices (pm1 ; p
m
2 ) 2 R2+ to the two groups. In stage 2, all agents observe the platforms�

prices and simultaneously decide which platform to join (they have to join one, and only

one).

4.2 Analysis

Similar to the previous models, multiple equilibria often arise in stage 2. Denote the price

di¤erences between the two platforms as

�p1 � pA1 � pB1 ; �p2 � pA2 � pB2 :
38As explained in Section 2.3.3, di¤erent designs of the platforms can lead to di¤erent per-interaction

bene�ts for the two sides. In reality, no two platforms share exactly the same design. Therefore, I allow the

competing platforms to deliver di¤erent per-interaction bene�ts for each side.
39In Section 2, the platform will not set negative price(s) in the equilibrium as explained in footnote 20.

Section 3 analyzes both cases (i.e., with or without the non-negative price constraint) for completeness as

explained in footnote 26.
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There are two equilibria in stage 2 when �pi 2 [�vBi Nj; vAi Nj] (i; j = 1; 2; j 6= i):40

1. all agents join platform A;

2. all agents join platform B.

Neither Pareto-dominance selection nor Pareto-dominated selection is applicable to the

current model: coordinating on one platform does not necessarily Pareto-dominate the other.

In fact, none of the popular selection criteria in the two-sided market literature is applicable

except focal-platform selection; the latter also su¤ers from several drawbacks as I will discuss

in Section 5 (p. 31�32). By contrast, potential-maximizer selection remains valid. First, I

show that every subgame in stage 2 is a weighted potential game.

Lemma 5 Every subgame in stage 2 is a weighted potential game with the potential function

P (nA1 ; n
A
2 j�p1;�p2) = nA1 nA2 �

vB1 N2 +�p1
vA1 + v

B
1

nA1 �
vB2 N1 +�p2
vA2 + v

B
2

nA2 : (18)

Proof. See Appendix A.5.

After identifying the potential function, the next step is to identify the potential maxi-

mizer. When �pi 2 [�vBi Nj; vAi Nj] (i; j = 1; 2; j 6= i), by Lemma 5, the respective potentials

of the two equilibria are

P (N1; N2j�p1;�p2) =
vA1 v

A
2 � vB1 vB2

(vA1 + v
B
1 )(v

A
2 + v

B
2 )
N1N2 �

�p1
vA1 + v

B
1

N1 �
�p2

vA2 + v
B
2

N2;

P (0; 0j�p1;�p2) = 0:

Hence, the potential-maximizing equilibrium is given as follows.

Lemma 6 When �pi 2 [�vBi Nj; vAi Nj] for all i; j = 1; 2; j 6= i, the unique equilibrium of

the subgame in stage 2 under potential-maximizer selection is

all agents join platform A if vA1 v
A
2 �

�
vA2 +v

B
2

N2
pA1 +

vA1 +v
B
1

N1
pA2

�
� vB1 vB2 �

�
vA2 +v

B
2

N2
pB1 +

vA1 +v
B
1

N1
pB2

�
;

all agents join platform B otherwise.

40We can easily verify that (i) there is a unique equilibrium if the prices are out of this range, and (ii) the

platforms�equilibrium prices (as characterized by Proposition 2) are indeed within this range.
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As shown in Lemma 6, we can view all group-1 and group-2 agents as a �representative

agent�who either joins A or B in stage 2: the �value�of platform m 2 fA;Bg is vm1 vm2 , its

�price� is vA2 +v
B
2

N2
pm1 +

vA1 +v
B
1

N1
pm2 , and the representative agent joins the platform that o¤ers

the higher �net value�. Hence, stage 1 is analogous to the standard Bertrand competition

with vertical di¤erentiation. Generically and w.l.o.g., assume that the �value�of A is higher,

i.e., vA1 v
A
2 > v

B
1 v

B
2 . Standard analysis for Bertrand competition implies that B charges the

minimum prices pB�1 = pB�2 = 0, and A slightly undercuts B to capture the entire market.

From Lemma 6, this implies that

vA2 + v
B
2

N2
pA�1 +

vA1 + v
B
1

N1
pA�2 = vA1 v

A
2 � vB1 vB2 : (19)

Subject to the above constraint, A maximizes its pro�t by optimally allocating the prices to

the two sides, i.e.,

max
pA1 ;p

A
2 �0

pA1N1 + p
A
2N2 s.t.

vA2 + v
B
2

N2
pA1 +

vA1 + v
B
1

N1
pA2 = v

A
1 v

A
2 � vB1 vB2 : (20)

Generically and w.l.o.g., assume that the average per-interaction bene�t across the competing

platforms for group 1 is smaller than that of group 2, i.e., vA1 + v
B
1 < v

A
2 + v

B
2 . Solving (20)

shows that A�s optimal pricing strategy is to set zero group-1 price and a positive group-2

price such that (19) holds, i.e.,

pA�1 = 0; pA�2 =
vA1 v

A
2 � vB1 vB2
vA1 + v

B
1

N1:

Hence, A�s equilibrium pro�t is

�A� =
vA1 v

A
2 � vB1 vB2
vA1 + v

B
1

N1N2:

The equilibrium outcome under potential-maximizer selection is summarized as follows.

Proposition 2 Generically and w.l.o.g., suppose vA1 v
A
2 > vB1 v

B
2 and vA1 + v

B
1 < vA2 + v

B
2 .

Under potential-maximizer selection, there is a unique equilibrium in this model. Stage 1 is

a Bertrand equilibrium with

pA�1 = 0; pA�2 =
vA1 v

A
2 � vB1 vB2
vA1 + v

B
1

N1; pB�1 = 0; pB�2 = 0:
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All agents join platform A in stage 2, and platform A�s equilibrium pro�t is

�A� =
vA1 v

A
2 � vB1 vB2
vA1 + v

B
1

N1N2:

As shown in Proposition 2, the market tips to a dominant platform with the higher value

of vm1 v
m
2 irrespective of the total number of agents N1 and N2 on each side. Following the

baseline model, I discuss the three key implications under the current framework.

Divide-and-conquer strategy Similar to the baseline model, the dominant platform (A)

always extracts surplus from one side and provides free access for the other side. The weaker

(in terms of vB1 and v
B
2 ) the competitor, the more surplus the dominant platform can extract

from the money side.

Money/subsidy side In contrast to the monopoly-platform models, the money/subsidy

side of the dominant platform depends on the average per-interaction bene�ts vA1 + v
B
1 and

vA2 + v
B
2 across the competing platforms rather than its own per-interaction bene�ts v

A
1 and

vA2 . This implies that the decision on the money/subsidy side for the dominant platform is

signi�cantly a¤ected by the per-interaction bene�ts delivered by other competing platforms,

even if the competitors�market shares are negligible. Therefore, there can be a reversal of

the money/subsidy side for the dominant platform under competition. To see this, consider

the following example:

vA1 = 3; vA2 = 2; vB1 = 1; vB2 = 5: (21)

Platform A favors group 1 more than group 2, but platform B favors group 2 much more

than group 1. Suppose that initially A is a monopolist. By Table 1 in Section 2.3.3 (with

group 1 and group 2 interchanged in that table), A monetizes group 1 and subsidizes group

2; its optimal pricing strategy and equilibrium pro�t are

pA�1 = 3N2; pA�2 = 0; �A� = 3N1N2: (22)
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Suppose now B enters the market. Under competition, A still dominates the market by

Proposition 2, and its optimal pricing strategy and equilibrium pro�t are

pA�1 = 0; pA�2 =
1

4
N1; �A� =

1

4
N1N2:

Now, A subsidizes group 1 and monetizes group 2: the money/subsidy side of the dominant

platform is reversed. Besides, if B is the monopolist, by Table 1, its optimal pricing strategy

and equilibrium pro�t are

pB�1 = 0; pB�2 = 5N1; �B� = 5N1N2:

Compared to (22), B actually makes a higher pro�t if A and B are separate monopolists

because B can extract more surplus from one side. This implies that the optimal design for

a monopoly platform might not work well under platform competition; this leads us to the

discussion on the optimal design of competing platforms.

Optimal design When the platforms are very competitive (say, vA1 v
A
2 � vB1 vB2 ), the opti-

mal design of the competing platforms tends to favor both sides (more precisely, to maximize

vm1 v
m
2 ) because the platform with a lower value of vm1 v

m
2 has zero market share in the equi-

librium. By contrast, when one of the platforms is inferior (say, vB1 � vB2 � 0), the optimal

design of the superior platform tends to favor only the money side in order to extract more

surplus from that side.41

When platform A dominates the market (i.e., vA1 v
A
2 > vB1 v

B
2 ), social surplus is (v

A
1 +

vA2 )N1N2; it can be less than the social surplus (v
B
1 + v

B
2 )N1N2 if all agents join platform B

instead (see (21) as an example). Besides, the optimal design of the dominant platform (A)

is likely to be socially suboptimal: when the platforms are very competitive, the optimal

design of A tends to maximize vA1 v
A
2 instead of v

A
1 + v

A
2 ; when B is inferior, the optimal

design of A tends to favor only the money side.

41In fact, when vB1 = v
B
2 = 0, platform A�s optimal pricing strategy and equilibrium pro�t in Proposition

2 are equal to those of the monopoly platform in Table 1.
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5 Discussion

This section discusses and compares potential-maximizer selection with focal-platform selec-

tion, the most popular selection criterion under platform competition. I also discuss several

extensions. Some of them are analyzed in the appendix.

Focal-platform selection As mentioned in the Introduction (p. 2�3), focal-platform

selection is asymmetric in the sense that all agents always coordinate on a pre-speci�ed

platform whenever there are multiple equilibria. By contrast, potential-maximizer selection

treats every platform symmetrically, i.e., the identity of a platform does not matter. Focal-

platform selection faces another challenge: without a speci�c context, we cannot determine

which platform should be the �focal�platform. By contrast, potential-maximizer selection

unambiguously identi�es the dominant platform in the equilibrium. In the equilibrium, the

dominant platform is indeed �focal�because all agents coordinate on the dominant platform.

Yet, this is an equilibrium outcome rather than an assumption from the start.

When multiple equilibria exist, consumers� expectations are the key. But how these

expectations are formed is even more important. As pointed out in the pioneering work

on network economics by Katz and Shapiro (1985, p. 439), �. . . the expectations formation

process remains an important element of the market to model explicitly�. They repeated the

same point subsequently (1994, p. 97), �. . . the two equilibria are rather di¤erent, and one

would like to have a theory that includes the factors that lead to one outcome or the other�.

Yet, this issue is largely ignored in the literature: researchers almost always take for granted

that consumers�expectations are exogenously given.

By contrast, potential-maximizer selection provides a microfoundation for the formation

of consumers� expectations by endogenizing them. By doing so, consumers� equilibrium

expectations depend crucially on the strengths of cross-side network e¤ects of the compet-

ing platforms as shown in Proposition 2. I thereby address the longest debate in network

economics: do network e¤ects lead to ine¢ cient lock-in? The answer is no. As shown in

Proposition 2, an inferior platform that delivers lower per-interaction bene�ts for both sides
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is defeated in the equilibrium. In other words, quality largely explains the success of a

dominant platform as repeatedly argued by Liebowitz and Margolis (1990, 1994, 1995, 1996,

1999, 2013). This argument is also supported by recent empirical evidence (Tellis et al.

2009a, 2009b; Gretz 2010) and experimental results (Hossain and Morgan 2009; Hossain et

al. 2011). Now, it is further justi�ed by the theoretical results in this paper.

Alternative pricing instruments This paper follows Armstrong�s framework where agents

are charged a subscription fee to join a platform. Yet, potential-maximizer selection is also

applicable to models with alternative pricing instruments such as transaction fees and two-

part tari¤s. If a monopoly platform charges transaction fees instead of subscription fees,

oftentimes there is a unique equilibrium in the model.42 By contrast, multiple equilibria

often arise even if the competing platforms use transaction fees. Hence, potential-maximizer

selection can be applied to resolve the multiple equilibria issue.

Appendix G modi�es the duopoly-platform model in Section 4 so that the competing

platforms charge transaction fees instead of subscription fees. In this alternative framework,

platforms can adjust the net per-interaction bene�ts of the two sides with transaction fees.

Thus, the market tips to a dominant platform with a larger sum of per-interaction bene�ts

vm1 + v
m
2 rather than the product of them v

m
1 v

m
2 as in Section 4. Both platforms often divide

and conquer. The money/subsidy side depends on its own per-interaction bene�ts vm1 and

vm2 rather than the average per-interaction bene�ts v
A
1 +v

B
1 and v

A
2 +v

B
2 across the competing

platforms as in Section 4. In addition, the optimal design of the competing platforms always

favor both sides (more precisely, to maximize vm1 + v
m
2 ), which is socially optimal. Appendix

G.3 demonstrates how the analysis can be extended to two-part tari¤s.

Same-side network e¤ects Sometimes same-side network e¤ects are present on one or

both sides of a platform; they can also be positive (e.g. peer/learning e¤ect) or negative

42If the monopoly platform in Section 2 charges transaction fees instead, it is easy to see that there is

a unique equilibrium in which the platform charges the highest possible transaction fees on both sides and

captures all agents�surplus.
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(e.g. competition/congestion e¤ect). Appendix H.1 extends the baseline model with neg-

ative same-side network e¤ects and shows that it is equivalent to the heterogeneous-agent

model in Section 3 from the platform�s point of view. In particular, the platform�s pro�t-

maximization problem in stage 1 is identical under these two frameworks. Thus, all the

results and implications in Section 3 carry over to this alternative framework. Appendix

H.2 extends the baseline model with positive same-side network e¤ects and shows that all

the three key implications in Section 2 carry over to this richer framework. In particular,

the platform always divides and conquers, and the money/subsidy side is independent of the

same-side network e¤ects.

Heterogeneous per-interaction bene�ts Section 3 follows Armstrong�s framework where

agents are heterogeneous in their personal costs from joining the platform. Yet, potential-

maximizer selection is applicable even if agents are also heterogeneous in their per-interaction

bene�ts. In this case, Spence distortions become an important issue as emphasized by Weyl

(2010), i.e., platforms internalize network e¤ects to marginal rather than average users.

Nevertheless, as I argue elsewhere (Chan 2019), Spence distortions should not arise under

strong network e¤ects with multiple tipping equilibria because platforms compete for the

adoption of all users rather than competing for the marginal user. The main �nding of that

paper is that all popular selection criteria in the literature lead to Spence distortions under

strong network e¤ects while potential-maximizer selection does not. This provides another

justi�cation for using potential-maximizer selection in platform markets.

Generalizing potential-maximizer selection Not all two-sided market models are weighted

potential games. For example, if agents can multihome, in general this is not a weighted

potential game. Nevertheless, potential-maximizer selection is not restricted to weighted

potential games; it is also applicable to other weaker forms of potential games (see footnotes

7 and 8 for details). Hence, extending potential-maximizer selection to two-sided market

models that are other weaker forms of potential games is a fruitful direction for future re-

search.
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6 Conclusion

This paper demonstrates how potential-maximizer selection can resolve the multiple equilib-

ria issue and derives novel insights into two-sided markets. As explained, potential-maximizer

selection is justi�ed by many solid microfoundations in the game theory literature and widely

supported by experimental results. Moreover, this paper shows that many two-sided market

models are weighted potential games, and thus potential-maximizer selection can be applied

uniformly to these models. Furthermore, the predictions under potential-maximizer selec-

tion match the reality well. In particular, two-sided platforms often divide and conquer,

and the fundamental determinant of the money/subsidy side is the cross-side network e¤ects

only. This divide-and-conquer strategy implies that platforms are often designed to favor

the money side much more than the subsidy side, which is often socially suboptimal. Last

but not least, potential-maximizer selection is very tractable as demonstrated in this paper.

Given all the above-mentioned advantages of potential-maximizer selection, I thereby recom-

mend using potential-maximizer selection to resolve the multiple equilibria issue in two-sided

markets whenever possible.
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Appendix

A Proofs

A.1 Lemma 4

First, I identify the potential maximizer for Case 1, and then for Case 2. For Case 1, by

Lemma 3, the respective potentials of the three equilibria are

P (N1;1[0;N2]jp1; p2) = N1N2 �
p1
v1
N1 �

p2
v2
N2 �

1

v2

Z N2

0

t(k)dk

= �p1
v1
N1 +

1

v2

Z N2

0

(t(N2)� t(k))dk; (by (9)) (23)

P ( bN1;1[0; bN2]jp1; p2) = bN1 bN2 � p1
v1
bN1 � p2

v2
bN2 � 1

v2

Z bN2
0

t(k)dk

= �p2
v2
bN2 � 1

v2

Z bN2
0

t(k)dk ( bN2 = p1
v1
as shown in Figure 1) (24)

� 0;

P (0;0jp1; p2) = 0:

Given that the potential maximizer is the equilibrium with the highest potential, the unique

equilibrium in stage 2 under potential-maximizer selection for Case 1 is

(a�1; a
�
2) = (1;1[0;N2]) if p1 �

v1
v2N1

Z N2

0

(t(N2)� t(k))dk;

(a�1; a
�
2) = (0;0) otherwise.

I now turn to Case 2. The potentials of the Pareto-dominant equilibrium and the unstable

equilibrium are the same as those in Case 1, i.e., given by (23) and (24) respectively. By

Lemma 3, the potential of the Pareto-dominated equilibrium is

P (0;1[0;N2]
jp1; p2) = �

p2
v2
N2 �

1

v2

Z N2

0

t(k)dk � 0:

The above potential is positive because �p2 < t(k) for all k 2 (N2; bN2] by (10). Hence, the
potential maximizer is

(a�1; a
�
2) = (1;1[0;N2]) if p1 � v1N2 +

v1
v2N1

Z N2

N2

(t(N2)� t(k)) dk;

(a�1; a
�
2) = (0;1[0;N2]

) otherwise.
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A.2 Proposition 1

First, I show that p�2 and N
�
2 in (15) are unique. After that, it is obvious that p

�
2 is negative.

To prove the �rst part, it su¢ ces to show that the right-hand side of (15) decreases with p�2:

d
��
N�
2 � v1

v2
(N�

2 �N�
2)
�
t0(N�

2 )
�

dp�2

=

��
v1
v2
� 1
�

1

t0(N�
2 )
� v1
v2

1

t0(N�
2)

�
t0(N�

2 )�
�
N�
2 �

v1
v2
(N�

2 �N�
2)

�
t00(N�

2 )

t0(N�
2 )

= �1� v1
v2

�
t0(N�

2 )

t0(N�
2)
� 1
�
+
t(N�

2)t
00(N�

2 )

(t0(N�
2 ))

2
(by (15))

� �1 + t(N
�
2)t

00(N�
2 )

(t0(N�
2 ))

2
(t is increasing and convex)

� �1 + t(N
�
2)

t(N�
2 )

(t is log-concave, i.e., t(N�
2 )t

00(N�
2 ) � (t0(N�

2 ))
2)

� 0: (t is increasing)

I now show that p�2 � 0. When p�2 = 0, the left-hand side of (15) is zero while the right-hand

side is negative. Given that the left-hand side increases with p�2 while the right-hand side

decreases with p�2, p
�
2 must be negative.

A.3 Table 2

I �rst compute the comparative statics for the left table (where v1 � v2), and then for the

right table (where v1 � v2).

Left table Figures 2 and 3 in Appendix E show that the signs of @N
�
2

@v2
, @p

�
1

@v2
, and @p�1N1

@v2
are

ambiguous. I now compute the comparative statics in the following order:

N�
2 p�1 p�2 p�1N1 p�2N

�
2 ��

N1 [1]+ [9] + =� [3]+ [11]+ [6]+ [13]+

v1 [2]+ [10]+ [4]� [12]+ [7]� [14]+

v2 +=� +=� [5]+ +=� [8]+ [15]+
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N�
2 is characterized by (14) in Proposition 1; its comparative statics is also based on (14):

[1] @N�
2

@N1
=

v22
(2v2�v1)t0(N�

2 )+(v2�v1)N�
2 t
00(N�

2 )
� 0.

[2] @N�
2

@v1
=

N�
2 t
0(N�

2 )

(2v2�v1)t0(N�
2 )+(v2�v1)N�

2 t
00(N�

2 )
� 0.

As shown in (9), p�2 can be expressed as a function of N
�
2 . Hence, its comparative statics

is based on that of N�
2 in [1] and [2]:

[3] @p�2
@N1

= v2 � t0(N�
2 )
@N�

2

@N1
=

v2(v2�v1)(t0(N�
2 )+N

�
2 t
00(N�

2 ))

(2v2�v1)t0(N�
2 )+(v2�v1)N�

2 t
00(N�

2 )
� 0.

[4] @p�2
@v1
= �t0(N�

2 )
@N�

2

@v1
� 0.

[5] @p�2
@v2
= N1 � t0(N�

2 )
@N�

2

@v2
=

(v2�v1)N1(t0(N�
2 )+N

�
2 t
00(N�

2 ))+
v1
v2
N�
2 (t

0(N�
2 ))

2

(2v2�v1)t0(N�
2 )+(v2�v1)N�

2 t
00(N�

2 )
� 0.

The comparative statics of p�2N
�
2 is based on those of p

�
2 and N

�
2 in [1]�[5]:

[6] @p�2N
�
2

@N1
= N�

2
@p�2
@N1

+ p�2
@N�

2

@N1
� 0.

[7] @p�2N
�
2

@v1
= �v1

v2
N�
2 t
0(N�

2 )
@N�

2

@v1
� 0.

[8] @p�2N
�
2

@v2
=

(v2�v1)N1N�
2 (2t

0(N�
2 )+N

�
2 t
00(N�

2 ))+
�
v1
v2
N�
2 t
0(N�

2 )
�2

(2v2�v1)t0(N�
2 )+(v2�v1)N�

2 t
00(N�

2 )
� 0.

As shown in Proposition 1, p�1 is a function of N
�
2 . Hence, its comparative statics is based

on that of N�
2 in [1] and [2]:

[9] @p�1
@N1

= v1
v2N2

1

�
N1N

�
2 t
0(N�

2 )
@N�

2

@N1
�
R N�

2

0
(t(N�

2 )� t(k)) dk
�

= v1
v2N2

1

�
N�
2 t
0(N�

2 )
t(N�

2 )+
�
1� v1

v2

�
N�
2 t
0(N�

2 )�
2� v1

v2

�
t0(N�

2 )+
�
1� v1

v2

�
N�
2 t
00(N�

2 )
�N�

2 t(N
�
2 ) +

R N�
2

0
t(k)dk

�
.

@p�1
@N1

can be positive as shown in (33) of Appendix E.1. I now show with an example that
@p�1
@N1

can also be negative. Suppose N1 = 2:6111, v1 = 1, v2 = 10, and de�ne

bt(k) =
8>>>>>>><>>>>>>>:

ek

e3(x� 2)

0

if 3 � k � N2;

if 2 � k � 3;

if 0 � k � 2:
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The stand-alone cost function bt does not satisfy all the imposed assumptions in Section
3.1 because it is not strictly increasing nor twice-di¤erentiable. Yet, we can �perturb�bt a
bit to another function t, such that t satis�es all the imposed assumptions in Section 3.1,

t(3) = t0(3) = t00(3) = e3, and
R 3
0
t(k)dk is arbitrarily close to

R 3
0
bt(k)dk = e3

2
. Given this

stand-alone cost function t, by Proposition 1, the equilibrium mass of group-2 participants

is N�
2 = 3. Hence, by [9],

@p�1
@N1

= �2: 561 8� 10�2 < 0.

[10] @p�1
@v1
= 1

v2N1

�R N�
2

0
(t(N�

2 )� t(k)) dk + v1N�
2 t
0(N�

2 )
@N�

2

@v1

�
� 0.

The comparative statics of p�1N1 is based on that of p
�
1 in [9] and [10]:

[11] @p�1N1
@N1

= v1
v2
N�
2 t
0(N�

2 )
@N�

2

@N1
� 0.

[12] @p�1N1
@v1

= N1
@p�1
@v1
� 0.

�� is given by Proposition 1, and its comparative statics can be obtained by applying the

envelope theorem:

[13] @��

@N1
= v2N

�
2 � 0.

[14] @��

@v1
= 1

v2

R N�
2

0
(t(N�

2 )� t(k)) dk � 0.

[15] @��

@v2
=

N�
2

v2

�
1� v1

v2

�
(t(N�

2 ) +N
�
2 t
0(N�

2 )) +
v1
v22

R N�
2

0
t(k)dk � 0.

Right table When computing the comparative statics for the case v1 � v2, two expressions

based on re-organizing (15) in Proposition 1 are frequently used:

v2N1 = t(N�
2 )� t(N�

2); (25)
v1
v2

=
t(N�

2) +N
�
2 t
0(N�

2 )

(N�
2 �N�

2)t
0(N�

2 )
: (26)

I now compute the comparative statics in the following order (starting from [16]):
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N�
2 p�1 p�2 p�1N1 p�2N

�
2 ��

N1 [19]+ [25]+ [16]� [28]+ [22]� [31]+

v1 [20]+ [26]+ [17]� [29]+ [23]� [32]+

v2 [21]+ [27] + =� [18]+ [30] + =� [24]+ [33]+

p�2 is characterized by (15) in Proposition 1; its comparative statics is also based on (15):

[16] @p�2
@N1

=
�(v1�v2)+(v1N�

2�(v1�v2)N�
2 )

t00(N�2 )
t0(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� 0.43

[17] @p�2
@v1
= �

N�2�N
�
2

v2
t0(N�

2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� 0.

[18] @p�2
@v2
=

�
v1
v22
(N�

2�N�
2)�

�
v1
v2
�1
�

N1
t0(N�2 )

�
t0(N�

2 )+

�
v1
v22
N�
2�
�
v1
v2
�1
�
N�
2

�
N1t

00(N�2 )
t0(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

=

v1
v2
((N�

2�N�
2)t

0(N�
2 )�v2N1)+v2N1

�
1�
�
v1
v2
(N�

2�N�
2)�N�

2

�
t00(N�2 )
t0(N�2 )

�
v2

�
2+

v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

�

=

v1
v2
(N�

2�N�
2)
�
t0(N�

2 )�
t(N�2 )�t(N

�
2)

N�2�N
�
2

�
+v2N1

�
1� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

�
v2

�
2+

v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� (by (25) and (26))

= N1

1+
v1
v2

0B@ t0(N�2 )
t(N�2 )�t(N

�
2)

N�2�N
�
2

�1

1CA� t(N�2)t
00(N�2 )

(t0(N�2 ))
2

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

(by (25))

�
N1

�
1� t(N�2)

t(N�2 )

�
2+

v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� 0. (t is convex and log-concave)

As shown in (9), N�
2 can be expressed as a function of p

�
2. Hence, its comparative statics

is based on that of p�2 in [16]�[18]:

[19] @N�
2

@N1
= 1

t0(N�
2 )

�
v2 � @p�2

@N1

�
� 0.

43As shown in Appendix A.2, the denominator 2 + v1
v2

�
t0(N�

2 )
t0(N�

2)
� 1
�
� t(N�

2)t
00(N�

2 )

(t0(N�
2 ))

2 is positive.
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[20] @N�
2

@v1
= � 1

t0(N�
2 )

@p�2
@v1
� 0.

[21] @N�
2

@v2
= 1

t0(N�
2 )

�
N1 � @p�2

@v2

�

= N1
t0(N�

2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2 �

0B@1+ v1
v2

0B@ t0(N�2 )
t(N�2 )�t(N

�
2)

N�2�N
�
2

�1

1CA� t(N�2)t
00(N�2 )

(t0(N�2 ))
2

1CA
2+

v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

= N1
t0(N�

2 )

1+
v1
v2
t0(N�

2 )

0B@ 1
t0(N�2)

� 1
t(N�2 )�t(N

�
2)

N�2�N
�
2

1CA
2+

v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� 0.

The comparative statics of p�2N
�
2 is based on those of p

�
2 and N

�
2 in [16]�[21]:

[22] @p�2N
�
2

@N1
=

@p�2
@N1
N�
2 + p

�
2
@N�

2

@N1
� 0.

[23] @p�2N
�
2

@v1
=

@p�2
@v1
N�
2 + p

�
2
@N�

2

@v1
� 0.

[24] @p�2N
�
2

@v2
=
�
N�
2 �

p�2
t0(N�

2 )

�
@p�2
@v2
+

p�2N1
t0(N�

2 )

=
�
t(N�

2)+N
�
2 t
0(N�

2 )

t0(N�
2 )

�
N1

1+
v1
v2

0B@ t0(N�2 )
t(N�2 )�t(N

�
2)

N�2�N
�
2

�1

1CA� t(N�2)t
00(N�2 )

(t0(N�2 ))
2

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� t(N�
2)N1

t0(N�
2 )
(by (10))

=
N1t(N

�
2)

t0(N�
2 )

�1+ v1
v2
t0(N�

2 )

0B@�1+N�2 t
0(N�2 )

t(N�2)

�
1

t(N�2 )�t(N
�
2)

N�2�N
�
2

� 1
t0(N�2)

1CA�N�2 t
00(N�2 )

t0(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� N1t(N
�
2)

t0(N�
2 )

�1+ v1
v2
t0(N�

2 )

�
1

t0(N�2 )
+

N�2
t(N�2)

� N�2
t(N�2)

�
�N�2 t

0(N�2 )
t(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

(t is convex)

� N1t(N
�
2)

t0(N�
2 )

t(N�2)+N
�
2 t
0(N�2 )

(N�2�N
�
2)t

0(N�2 )
t0(N�2 )
t(N�2)

(N�
2�N�

2)�
N�2 t

0(N�2 )
t(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

(by (26) and v1 � v2)

=
N1t(N

�
2)

t0(N�
2 )

1+
N�2 t

0(N�2 )
t(N�2)

�N�2 t
0(N�2 )

t(N�2 )

2+
v1
v2

�
t0(N�2 )
t0(N�2)

�1
�
� t(N�2)t

00(N�2 )
(t0(N�2 ))

2

� 0. (t is increasing)

As shown in Proposition 1, p�1 is a function of N
�
2 . Hence, its comparative statics is based

on that of N�
2 in [19]�[21]:
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[25] @p�1
@N1

= v1
@N�

2

@N1
� v1

v2N1
(t(N�

2 )� t(N�
2))

@N�
2

@N1

+ v1
v2N1

(N�
2 �N�

2)t
0(N�

2 )
@N�

2

@N1
� v1

v2N2
1

R N�
2

N�
2
(t(N�

2 )� t(k))dk

= v1
v2N1

(N�
2 �N�

2)
�
v2 � @p�2

@N1

�
� v1

v2N2
1

R N�
2

N�
2
(t(N�

2 )� t(k))dk (by (25))

� v1
v2N2

1

�
(t(N�

2 )� t(N�
2))(N

�
2 �N�

2)�
R N�

2

N�
2
(t(N�

2 )� t(k))dk
�
(by (25) and @p�2

@N1
� 0)

= v1
v2N1

R N�
2

N�
2
(t(k)� t(N�

2))dk � 0.

[26] @p�1
@v1
= N�

2 + v1
@N�

2

@v1
+ 1

v2N1

R N�
2

N�
2
(t(N�

2 )� t(k))dk

� v1
v2N1

(t(N�
2 )� t(N�

2))
@N�

2

@v1
+ v1

v2N1
(N�

2 �N�
2)t

0(N�
2 )
@N�

2

@v1

= N�
2 +

1
v2N1

R N�
2

N�
2
(t(N�

2 )� t(k))dk + v1
v2N1

(N�
2 �N�

2)t
0(N�

2 )
@N�

2

@v1
� 0.

[27] @p�1
@v2

can be positive as shown in Figures 2 and 3 of Appendix E. I now show with an

example that @p
�
1

@v2
can also be negative. Suppose N1 = v1 = 1 and de�ne

bt(k) =
8>>><>>>:
2k � 1

2

k

if 1
2
� k � N2;

if 0 � k � 1
2
:

The stand-alone cost function bt does not satisfy all the imposed assumptions in Section
3.1 because it is not twice-di¤erentiable. Yet, we can �perturb�bt a bit to a smooth function
t, such that t satis�es all the imposed assumptions in Section 3.1, and t(k) = bt(k) for all
k 2 [0; N2] except for those that are arbitrarily close to 1

2
. Given this stand-alone cost

function t, by (15), we have

p�2 =
v2
2
� 1
2
; N�

2 =
1

2
+
v2
4
; N�

2 =
1

2
� v2
2
:

Hence, by Proposition 1, the platform�s optimal group-1 price is p�1 =
1
2
� v2

16
, which is

decreasing in v2.

The comparative statics of p�1N1 is based on that of p
�
1 in [25]�[27]:

[28] @p�1N1
@N1

=
@p�1
@N1

+ p�1 � 0.

[29] @p�1N1
@v1

= N1
@p�1
@v1
� 0.
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[30] @p�1N1
@v2

= N1
@p�1
@v2
; the sign is ambiguous.

�� is given by Proposition 1, and its comparative statics can be obtained by applying the

envelope theorem:

[31] @��

@N1
= v1N

�
2 +

v2p�2
t0(N�

2 )
= v1N

�
2 + v2N

�
2 � 0.

[32] @��

@v1
= N1N

�
2 +

1
v2

R N�
2

N�
2
(t(N�

2 )� t(k)) dk � 0.

To show @��

@v2
� 0, I �rst prove that p�2 � �v1N1

2
when v2 ! 0. As shown in (15),

v2p
�
2 =

�
v1t

�1(�p�2)� (v1 � v2) t�1(v2N1 � p�2)
�
t0(t�1(v2N1 � p�2)):

Given that both sides converge to zero when v2 ! 0, by L�Hospital�s rule, we can di¤erentiate

both sides of the above equation with respect to v2 and obtain

p�2 =

�
N�
2 �

(v1 � v2)
t0(N�

2 )
N1

�
t0(N�

2 ) + (v1N
�
2 � (v1 � v2)N2)

N1t
00(N�

2 )

t0(N�
2 )

:

As v2 ! 0, both N�
2 and N

�
2 converge to t

�1(�p�2). The above equation becomes

v1N1 = t(N
�
2 ) +N

�
2 t
0(N�

2 ) � 2t(N�
2 ) = �2p�2: (t is convex)

Therefore, we have p�2 � �v1N1
2
as v2 ! 0. By [18] (i.e., @p

�
2

@v2
� 0 when v1 � v2), we have

p�2 � �v1N1
2
for all v1 � v2. I now show that @�

�

@v2
� 0.

[33] @��

@v2
= v1

v22

R N�
2

N�
2
(t(k)� t(N�

2)) dk +
p�2N1
t0(N�

2 )

� v1
v22

�R N�
2

N�
2
(t(k)� t(N�

2)) dk +
(t(N�

2 )�t(N�
2))

2

2t0(N�
2 )

�
(by (25))

� v1
v22

�
(t(N�

2 )�t(N�
2))

2

2t0(N�
2 )

� (t(N�
2 )�t(N�

2))
2

2t0(N�
2 )

�
= 0. (t is convex)

A.4 Corollary 1

I �rst prove that @�
�

@v1
� @��

@v2
when 2v1 � v2. When v1 � v2, @�

�

@v1
and @��

@v2
are given by [14] and

[15] in Appendix A.3 respectively, i.e.,

@��

@v2
� @�

�

@v1
=

N�
2

v2

�
1� v1

v2

�
(t(N�

2 ) +N
�
2 t
0(N�

2 )) +
v1
v22

Z N�
2

0

t(k)dk � 1

v2

Z N�
2

0

(t(N�
2 )� t(k)) dk

=
1

v2

�
N�
2 t
0(N�

2 ) +
1

N�
2

Z N�
2

0

t(k)dk � v1
v2

�
t(N�

2 ) +N
�
2 t
0(N�

2 )�
1

N�
2

Z N�
2

0

t(k)dk

��
:
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Hence,

@��

@v1
� @��

@v2
if and only if

v1
v2
� 1�

t(N�
2 )� 2

N�
2

R N�
2

0
t(k)dk

N�
2 t
0(N�

2 ) + t(N
�
2 )� 1

N�
2

R N�
2

0
t(k)dk

:

Note that

t(N�
2 )� 2

N�
2

R N�
2

0
t(k)dk

N�
2 t
0(N�

2 ) + t(N
�
2 )� 1

N�
2

R N�
2

0
t(k)dk

�
t(N�

2 )� 1
2N�

2

R N�
2

0
t(k)dk

2t(N�
2 )� 1

N�
2

R N�
2

0
t(k)dk

(t is convex)

� 1

2
:

Therefore, @�
�

@v1
� @��

@v2
when 2v1 � v2. I now prove that @��

@v1
� @��

@v2
when v1 � v2. When

v1 � v2, @�
�

@v1
and @��

@v2
are given by [32] and [33] in Appendix A.3 respectively, i.e.,

@��

@v1
� @�

�

@v2
= N1N

�
2 +

1

v2

Z N�
2

N�
2

(t(N�
2 )� t(k)) dk �

v1
v22

Z N�
2

N�
2

(t(k)� t(N�
2)) dk +

p�2N1
t0(N�

2 )

=
1

v2

0BBB@ v2N1

�
t(N�

2)+N
�
2t
0(N�

2 )

t0(N�
2 )

�
+
R N�

2

N�
2
(t(N�

2 )� t(k)) dk � v1
v2

R N�
2

N�
2
(t(k)� t(N�

2)) dk

1CCCA (by (14))

=
1

v2

0BBB@ (t(N�
2 )� t(N�

2))
�
t(N�

2)+N
�
2 t
0(N�

2 )

t0(N�
2 )

� (N�
2 �N�

2)
�

+
R N�

2

N�
2
(t(N�

2 )� t(k)) dk � v1
v2

R N�
2

N�
2
(t(k)� t(N�

2)) dk

1CCCA (by (25))

=
1

v2

0BBB@
�
v1
v2
� 1
�
(N�

2 �N�
2)(t(N

�
2 )� t(N�

2))

+
R N�

2

N�
2
(t(N�

2 )� t(k)) dk � v1
v2

R N�
2

N�
2
(t(k)� t(N�

2)) dk

1CCCA (by (26))

=
1

v2

 
v1
v2

Z N�
2

N�
2

(t(N�
2 )� t(k)) dk �

Z N�
2

N�
2

(t(k)� t(N�
2)) dk

!

� 1

v2

 Z N�
2

N�
2

(t(N�
2 )� t(k)) dk �

Z N�
2

N�
2

(t(k)� t(N�
2)) dk

!
� 0: (t is convex)
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A.5 Lemma 5

For a group-1 agent, if there are nA1 group-1 agents (excluding himself) and n
A
2 group-2

agents joining platform A, his payo¤ di¤erence between joining platform A or B is

uA1 (n
A
2 ; p

A
1 )� uB1 (nB2 ; pB1 ) = vA1 n

A
2 � pA1 � vB1 nB2 + pB1 (by (16))

= (vA1 + v
B
1 )n

A
2 � vB1 N2 ��p1:

The corresponding di¤erence in P is

P (nA1 + 1; n
A
2 j�p1;�p2)� P (nA1 ; nA2 j�p1;�p2) = nA2 �

vB1 N2 +�p1
vA1 + v

B
1

: (by (18))

Clearly, the change in the group-1 agent�s payo¤ from unilaterally switching actions is pro-

portional (with proportion vA1 + v
B
1 ) to the change in P . The same logic applies to a group-2

agent (with proportion vA2 + v
B
2 for him). Therefore, every subgame is a weighted potential

game with the potential function given by (18).

B Mathematical De�nition of Weighted Potential Games

The de�nition can be found in Monderer and Shapley (1996, p. 127�128). Let I � f1; : : : ; Ng

denote the set of players, Ai denote the set of actions for player i, and ui : A ! R denote

the payo¤ function for player i, where A � A1 � � � � � AN . A game G � (I; A; (ui)i2I) is a

weighted potential game if there is a function P : A ! R and a vector (wi)i2I 2 RN++ such

that, for all i 2 I and a�i 2 A�i,

ui(ai; a�i)� ui(a0i; a�i) = wi(P (ai; a�i)� P (a0i; a�i)); 8ai; a0i 2 Ai:

C The Finite-Agent Model of Section 3.1 and the Proof of Lemma 3

In this appendix, �rst I present a �nite-agent model that converges to the continuum-agent

model in Section 3.1. Then, I show that the �nite-agent model is a weighted potential game

with the potential function converging to (11) in Lemma 3. The subsequent analysis for this

limiting case of the �nite-agent model is identical to that of the continuum-agent model in

Section 3.2 and thus omitted.

49



In the �nite-agent model, there are N1 2 N identical group-1 agents and N2 2 N

heterogeneous group-2 agents (;N1; N2 2 R++). If the platform attracts n1 �
PN1

k=1 a
k
1

group-1 agents and n2 �
PN2

k=1 a
k
2 group-2 agents, the payo¤s of a group-1 agent and agent

k 2 f1; : : : ; N2g from joining the platform are

u1(n2; p1; ) =
v1

n2 � p1; uk2(n1; p2; ) =

v2

n1 � p2 � t

�
k



�
; (27)

where the function t : f 1

; 2

; : : : ; N2g ! R+ speci�es each group-2 agent�s stand-alone cost

from joining the platform.44

In this �nite-agent model, the platform�s pro�t is

�(n1; n2; p1; p2; ) =
1


(p1n1 + p2n2):

The rest of the model setup is the same as that of the baseline model.

Clearly, this �nite-agent model converges to the continuum-agent model in Section 3.1 as

 ! 1. It remains to show that this �nite-agent model is a weighted potential game with

the potential function converging to (11) in Lemma 3 as  ! 1. I now prove that every

subgame in stage 2 is a weighted potential game with the potential function

P (n1; a2jp1; p2; ) =
1

2

0@n1n2 � p1
v1
n1 �

p2
v2
n2 �



v2

N2X
k=1

t

�
k



�
ak2

1A : (28)

Proof. For a group-1 agent, if there are n1 group-1 participants (excluding himself) and

the group-2 agents�action pro�le is a2, his payo¤ di¤erence between joining the platform or

not is

u1(n2; p1; )� 0 =
v1

n2 � p1: (by (27))

The corresponding di¤erence in P is

P (n1 + 1; a2jp1; p2; )� P (n1; a2jp1; p2; ) =
n2
2
� p1
v1

: (by (28))

44Section 3.1 imposes some assumptions on the function t. Yet, these assumptions play no role in this

appendix and thus omitted.
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Clearly, the change in the group-1 agent�s payo¤ from unilaterally switching actions is pro-

portional (with proportion v1) to the change in P .

Similarly, for agent k, if there are n1 group-1 participants and the group-2 agents�action

pro�le (except himself) is a�k2 , his payo¤ di¤erence between joining the platform or not is

uk2(n1; p2; )� 0 =
v2

n1 � p2 � t

�
k



�
: (by (27))

The corresponding di¤erence in P is

P (n1; a
�k
2 ; a

k
2 = 1jp1; p2; )�P (n1; a�k2 ; ak2 = 0jp1; p2; ) =

n1
2
� p2
v2

� 1

v2
t

�
k



�
: (by (28))

Clearly, the change in agent k�s payo¤ from unilaterally switching actions is proportional

(with proportion v2) to the change in P . Therefore, every subgame is a weighted potential

game with the potential function given by (28).

Clearly, (28) converges to (11) in Lemma 3 as  ! 1. This completes the proof of

Lemma 3. The subsequent analysis of this �nite-agent model as  !1 is identical to that

of the continuum-agent model in Section 3.2 and thus omitted.

D Two Benchmarks for the Model in Section 3.1

Appendix D.1 analyzes the model under Pareto-dominance selection while Appendix D.2

analyzes that under Pareto-dominated selection.

D.1 Pareto-Dominance Selection

Under Pareto-dominance selection, all relevant agents always join the platform whenever

there are multiple equilibria. Given that group-1 agents are identical, the platform charges

the highest possible group-1 price so that all group-1 agents will join the platform with zero

surplus in stage 2, i.e., p�1 = v1N2.

It remains to derive the platform�s optimal group-2 price p�2. From (8), the platform�s

pro�t-maximization problem in stage 1 becomes

max
p2�v2N1

v1N2N1 + p2N2: (29)
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Solving the above optimization problem gives us p�2 and N
�
2 :

p�2 = v2N1 � t(N�
2 ) = N

�
2 t
0(N�

2 )� v1N1: (30)

As shown in the above expression, the platform�s optimal group-2 price p�2 is equal to the

standard monopoly markup N�
2 t
0(N�

2 ), adjusted downward by the network e¤ects v1N1 to

group-1 agents. (30) actually appears in Armstrong�s (2006, expression 3) paper.45

After identifying p�2 and N
�
2 , we can derive the platform�s optimal group-1 price and its

equilibrium pro�t from (29):

p�1 = v1N
�
2 ; �� = (v1 + v2)N1N

�
2 �N�

2 t(N
�
2 ):

As compared to Proposition 1, the equilibrium outcome under Pareto-dominance selection

is very di¤erent from that under potential-maximizer selection.

D.2 Pareto-Dominated Selection

The second benchmark analyzes the model under Pareto-dominated selection, in which all

relevant agents always coordinate on the Pareto-dominated equilibrium whenever there are

multiple equilibria. To make a positive pro�t, the platform has to guarantee participation

from one side by subsidizing that side and then monetizes the other side. Therefore, the

platform either subsidizes group 1 and monetizes group 2, or subsidizes group 2 and monetizes

group 1. I discuss these two strategies one by one.

Group-1 subsidy strategy For the �rst strategy, the platform provides free access for

group 1 (i.e., p�1 = 0) so that all group-1 agents will join the platform for sure. The coordina-

tion problem no longer exists among the agents: for any group-2 price p2 � v2N1 set by the

platform in stage 1, the continuum [0; N2] of group-2 agents will join the platform for sure.

As shown in (9), there is a one-to-one correspondence between p2 � v2N1 and N2 2 [0; N2).

45As mentioned in footnote 13, Armstrong imposes Pareto-dominance selection in his analysis. The terms

N�
2 and t

0(N�
2 ) in (30) correspond to �2(u2) and

1
�02(u2)

respectively in his paper.
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Hence, we can assume that the platform chooses N2 2 [0; N2) rather than p2 � v2N1 to

maximize its pro�t:

max
N22[0;N2)

(v2N1 � t(N2))N2: (31)

Solving the above optimization problem gives us p�2 and N
�
2 :

p�2 = v2N1 � t(N�
2 ) = N

�
2 t
0(N�

2 ):

Then, we can derive the platform�s equilibrium pro�t from (31):

�� = (v2N1 � t(N�
2 ))N

�
2 :

Group-2 subsidy strategy If the platform subsidizes group 2 and monetizes group 1, it

strictly subsidizes group-2 participants such that the continuum [0; N2] of group-2 agents,

whose stand-alone costs are really low, will join the platform for sure. All other group-2

agents will not join the platform under Pareto-dominated selection. Therefore, the platform

optimally sets p�1 = v1N2 so that all group-1 agents will join the platform with zero surplus

in stage 2. As shown in (10), there is a one-to-one correspondence between p2 � 0 and

N2 2 [0; N2). Hence, we can assume that the platform chooses N2 2 [0; N2) rather than

p2 � 0 to maximize its pro�t:

max
N22[0;N2)

(v1N1 � t(N2))N2: (32)

Solving the above optimization problem gives us p�2 and N
�
2:

p�2 = �t(N�
2) = N

�
2t
0(N�

2)� v1N1:

Then, we can derive the platform�s optimal group-1 price and its equilibrium pro�t from

(32):

p�1 = v1N
�
2; �� = (v1N1 � t(N�

2))N
�
2:

By comparing the two optimization problems (31) and (32), it is clear that group-1

subsidy strategy yields higher pro�t than group-2 subsidy strategy if and only if v1 � v2,

53



and it is irrespective of the number of group-1 agents N1 and the exact form of group-2

agents�stand-alone cost function t. Thus, the equilibrium outcome under Pareto-dominated

selection is summarized as follows.

Lemma 7 Under Pareto-dominated selection, the platform adopts group-1 subsidy strategy

when v1 � v2 and group-2 subsidy strategy when v1 � v2. Under group-1 subsidy strategy,

the platform�s group-1 price is p�1 = 0, and the optimal group-2 price p
�
2 and the equilibrium

mass of group-2 participants N�
2 are implicitly given by

p�2 = v2N1 � t(N�
2 ) = N

�
2 t
0(N�

2 ):

Under group-2 subsidy strategy, p�1 = v1N
�
2, where p

�
2 and the equilibrium mass of group-2

participants N�
2 are implicitly given by

p�2 = �t(N�
2) = N

�
2t
0(N�

2)� v1N1:

As compared to Proposition 1, the equilibrium outcome under Pareto-dominated selec-

tion di¤ers from that under potential-maximizer selection. Nevertheless, their equilibrium

outcomes share some common features. For example, under both selection criteria, the

platform monetizes group 1 and subsidizes group 2 if and only if v1 � v2. Still, the plat-

form�s optimal pricing strategy under Pareto-dominated selection is discontinuous and takes

a �more extreme�form compared to that under potential-maximizer selection.

E Two Examples of the Model in Section 3.1

Appendix E.1 analyzes the model with linear stand-alone cost t(k) = tk while Appendix E.2

analyzes that with quadratic stand-alone cost t(k) = tk2.

E.1 Linear Stand-Alone Cost

By Proposition 1, the equilibrium outcome when t(k) = tk is
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Figure 2: The equilibrium outcome (left) and the proportion of surplus extracted from group

1 (right) under linear stand-alone cost (with v1 = N1 = t = 1).

1. when v1 � v2:

p�1 =
v1v

3
2N1

2t (2v2 � v1)2
; p�2 =

(v2 � v1)v2N1
2v2 � v1

; N�
2 =

v22N1
t(2v2 � v1)

; �� =
v32N

2
1

2t (2v2 � v1)
; (33)

2. when v1 � v2:

p�1 =
v21N1
2t

; p�2 = �
(v1 � v2)N1

2
; N�

2 =
(v1 + v2)N1

2t
; �� =

(v21 + v
2
2)N

2
1

4t
: (34)

Figure 2 (left) sketches the equilibrium outcome when v1 = N1 = t = 1. The platform�s

optimal group-1 price p�1 is non-monotonic in v2. Nevertheless, the proportion of surplus
p�1
v1N�

2
extracted from group 1 by the platform always decreases with v2 irrespective of values

of v1, N1, and t. To see this, by (33) and (34),

p�1
v1N�

2

=

8>>><>>>:
v2
v1

2
�
2
v2
v1
�1
� if v1 � v2;

1
1+

v2
v1

if v1 � v2:

As shown in the above expression, p�1
v1N�

2
depends only on the ratio v2

v1
as sketched in Figure 2

(right). The dashed line represents the proportion of surplus extracted from group 1 by the

monopoly platform in the baseline model: it extracts all surplus from group 1 when v1 � v2
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Figure 3: The equilibrium outcome (left) and the proportion of surplus extracted from group

1 (right) under quadratic stand-alone cost (with v1 = N1 = t = 1).

and leaves all surplus to group 1 when v1 � v2. By contrast, p�1
v1N�

2
decreases gradually with

v2
v1
in the current framework due to the smooth demand expansion e¤ect on group 2.46

E.2 Quadratic Stand-Alone Cost

By Proposition 1, the equilibrium outcome when t(k) = tk2 is

1. when v1 � v2:

p�1 =
2v1v

2
2

3(3v2 � 2v1)
3
2

r
N1
t
; p�2 =

2(v2 � v1)v2N1
3v2 � 2v1

; N�
2 = v2

s
N1

t(3v2 � 2v1)
; �� =

2v22N
3
2
1

3
p
t(3v2 � 2v1)

;

2. when v1 � v2:

p�2 = �
2N1
3

v1
p
v21 � 2v22 + 2v1v2 + v21 + 3v22 � 5v1v2

4v1 � 3v2
;

and other variables are functions of p�2 as characterized by Proposition 1.

46Compared to the baseline model, group-2 agents incur additional stand-alone costs in the current frame-

work. Therefore, the proportion of surplus extracted from group 2 cannot be compared meaningfully in a

similar fashion.
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Figure 3 (left) sketches the equilibrium outcome when v1 = N1 = t = 1. The equilibrium

mass of group-2 participants N�
2 is non-monotonic in v2. Similar to the previous example, the

proportion of surplus extracted from group 1 p�1
v1N�

2
depends only on the ratio v2

v1
as sketched

in Figure 3 (right). Again, p�1
v1N�

2
decreases gradually with v2

v1
in the current framework due

to the smooth demand expansion e¤ect on group 2.

F Formal Analysis of Armstrong�s Original Model

Appendix F.1 presents Armstrong�s (2006, Section 3) original model. Appendix F.2 analyzes

the model. Appendix F.3 studies a special case of the model and derives further implications.

F.1 Model

In Armstrong�s original model, there are a continuum [0; N1] of heterogeneous group-1 agents

and a continuum [0; N2] of heterogeneous group-2 agents (N1; N2 2 R++). If the platform

attracts n1 �
R N1

0
ak1dk group-1 agents and n2 �

R N2

0
ak2dk group-2 agents, the payo¤ from

joining the platform for agent k 2 [0; N i] from group i = 1; 2 is

uki (nj; pi) = vinj � pi � ti(k);

where the function ti : [0; N i]! R+ speci�es each group-i agent�s stand-alone cost from join-

ing the platform. I permute the agents such that t1 and t2 are increasing. I also assume that

t1 and t2 are strictly convex, twice-di¤erentiable, t1(0) = t2(0) = 0, and t1(N1); t2(N2)!1.

Under these assumptions, agents from each side are su¢ ciently heterogeneous in a smooth

way. The rest of the model setup is the same as that in Section 3.1.

F.2 Analysis

Compared to the model in Section 3.1, demand expansion e¤ects are now present on both

sides. Hence, the equilibrium masses of group-1 and group-2 participants in stage 2 are

simultaneously determined by the prices (p1; p2) set by the platform in stage 1. Similar to

Section 3.2, there are two stable equilibria and an unstable equilibrium in stage 2 when both
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Figure 4: The equilibria of the subgame in stage 2 when p1; p2 � 0 (left) and p2 � 0 � p1
(right).

prices p1 and p2 are positive and su¢ ciently low. As shown in Figure 4 (left), the three

equilibria in stage 2 are

1. Pareto-dominant equilibrium: (a�1; a
�
2) = (1[0;N1];1[0;N2]);

2. unstable equilibrium: (a�1; a
�
2) = (1[0; bN1];1[0; bN2]);

3. Pareto-dominated equilibrium: (a�1; a
�
2) = (0;0),

where (N1; N2) and ( bN1; bN2) are the solutions to the system of equations

p1 = v1n2 � t1(n1); p2 = v2n1 � t2(n2): (35)

As shown in the dashed line of Figure 4 (left), the Pareto-dominated equilibrium is the

unique equilibrium if the platform�s prices are too high.

Similar to Section 3.2, when one of the platform�s price, say, p2, is negative,47 joining

the platform is the (strictly) dominant strategy for agent k 2 [0; N2) from group 2, where

N2 � t�12 (�p2). As shown in Figure 4 (right), there are at most three equilibria in stage 2

when p2 � 0 � p1, and they are
47The analysis for p1 � 0 is analogous to that of p2 � 0 and thus omitted in this appendix. I also omit

the case in which the platform sets negative prices on both sides.
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1. Pareto-dominant equilibrium: (a�1; a
�
2) = (1[0;N1];1[0;N2]);

2. unstable equilibrium: (a�1; a
�
2) = (1[0; bN1];1[0; bN2]);

3. Pareto-dominated equilibrium: (a�1; a
�
2) = (0;1[0;N2]

).

As shown in the solid line of Figure 4 (right), given a �xed value of p2, all three equilibria

are present when p1 is not too high or too low. The unstable equilibrium disappears if p1 is

too low as illustrated by the dashed line.48 The Pareto-dominated equilibrium is the unique

equilibrium if p1 is too high as illustrated by the dotted line.

As explained in footnote 13, Armstrong (2006, Section 3) imposes Pareto-dominance

selection in his analysis. Under Pareto-dominance selection, we can assume that the platform

chooses the masses of participants (N1; N2) 2 [0; N1) � [0; N2) rather than setting prices

(p1; p2) 2 R2 to maximize its pro�t. From (8) and (35), the platform�s pro�t-maximization

problem in stage 1 becomes

max
(N1;N2)2[0;N1)�[0;N2)

(v1N2 � t1(N1))N1 + (v2N1 � t2(N2))N2: (36)

Solving the above optimization problem gives us (p�1; p
�
2) and (N

�
1 ; N

�
2 ):

p�1 = v1N
�
2 � t1(N�

1 ) = N
�
1 t
0
1(N

�
1 )� v2N�

2 ; (37)

p�2 = v2N
�
1 � t2(N�

2 ) = N
�
2 t
0
2(N

�
2 )� v1N�

1 :

As shown in the above expressions, the platform�s optimal prices p�1 and p
�
2 are equal to the

standard monopoly markups N�
1 t
0
1(N

�
1 ) and N

�
2 t
0
2(N

�
2 ), adjusted downward by the network

e¤ects v2N�
2 and v1N

�
1 to the other side. Expressions (37) actually appear in Armstrong�s

(2006, expression 3) paper.49

I now analyze the model under potential-maximizer selection. First, I show that every

subgame in stage 2 is a weighted potential game.

48In this case, the Pareto-dominant equilibrium becomes (N 0
1; N

0
2) in Figure 4 (right), and the Pareto-

dominated equilibrium is still (0; N2).
49The terms N�

i and t
0
i(N

�
i ) in (37) correspond to �i(ui) and

1
�0i(ui)

respectively in his paper.
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Lemma 8 Every subgame in stage 2 is a weighted potential game with the potential function

P (a1; a2jp1; p2) = n1n2 �
p1
v1
n1 �

p2
v2
n2 �

1

v1

Z N1

0

t1(k)a
k
1dk �

1

v2

Z N2

0

t2(k)a
k
2dk:

Proof. The proof is very similar to that of Lemma 3 in Section 3.2 and thus omitted.

Compared to Lemma 3, the extra term 1
v1

R N1

0
t1(k)a

k
1dk captures the total stand-alone

cost incurred by group-1 participants.

After identifying the potential function, the next step is to identify the potential max-

imizer. It can be done so by following the same approach in proving Lemma 4 in Section

3.2 as shown below. Similar to Lemma 4, the unstable equilibrium is never selected under

potential-maximizer selection.

Lemma 9 Under potential-maximizer selection, the unique equilibrium of the subgame in

stage 2 if there are multiple equilibria is

1. when p1; p2 � 0:

(a�1; a
�
2) = (1[0;N1];1[0;N2]) if

1

v1

Z N1

0

(p1 + t1(k))dk +
1

v2

Z N2

0

(p2 + t2(k))dk � N1N2;

(a�1; a
�
2) = (0;0) otherwise. (38)

2. when p2 � 0 � p1:

(a�1; a
�
2) = (1[0;N1];1[0;N2]) if

1

v1

Z N1

0

(p1 + t1(k))dk +
1

v2

Z N2

N2

(p2 + t2(k))dk � N1N2;

(a�1; a
�
2) = (0;1[0;N2]

) otherwise. (39)

Proof. The proof is very similar to Appendix A.1. Here, I only prove the non-trivial

part, i.e., to show that the unstable equilibrium is never the potential maximizer. I prove

for the case p1; p2 � 0; the proof for the case p2 � 0 � p1 is analogous. By Lemma 8, the

potential of the unstable equilibrium is

P (1[0; bN1];1[0; bN2]jp1; p2) = bN1 bN2 � 1

v1

Z bN1
0

(p1 + t1(k))dk �
1

v2

Z bN2
0

(p2 + t2(k))dk:
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Figure 5: The equilibria of the subgame in stage 2 when p1; p2 � 0.

To prove that the unstable equilibrium is never the potential maximizer, it su¢ ces to

show that its potential is always less than that of the Pareto-dominated equilibrium, i.e.,
1
v1

R bN1
0
(p1 + t1(k))dk +

1
v2

R bN2
0
(p2 + t2(k))dk � bN1 bN2. This can be easily seen in Figure 5

which is edited from Figure 4 (left): the area of A + B is 1
v1

R bN1
0
(p1 + t1(k))dk; the area of

B + C is 1
v2

R bN2
0
(p2 + t2(k))dk; the area of A+B + C is bN1 bN2.50

Similar to Lemma 4 in Section 3.2, the platform has to leave enough surplus to the par-

ticipants by setting su¢ ciently low prices (p1; p2) in stage 1, so that all agents will coordinate

on the Pareto-dominant equilibrium in stage 2. In other words, potential-maximizer selec-

tion essentially imposes an additional constraint (i.e., the inequalities in (38) and (39) of

Lemma 9) to the platform�s pro�t-maximization problem in (36). Sometimes this additional

constraint does not bind in the equilibrium. As shown in Lemma 9, this happens when

the platform�s prices (p1; p2) and the participants�total stand-alone costs
R N1
0
t1(k)dk andR N2

0
t2(k)dk are su¢ ciently low.51 If this is the case, the equilibrium outcome under potential-

50By the same token, we can directly identify the potential maximizer in Figure 5. The area of A+B+F is
1
v1

R N1

0
(p1+t1(k))dk; the area of B+C+D is 1

v2

R N2

0
(p2+t2(k))dk; the area of A+B+C+D+E+F is N1N2.

Thus, when p1; p2 � 0, the potential maximizer is the Pareto-dominant (Pareto-dominated) equilibrium when

E � B (E � B).
51If p2 � 0 � p1, only the total stand-alone cost of group-2 participants who do not have a dominant

strategy to join the platform matters, i.e., only
R N2

N2
t2(k)dk but not

R N2

0
t2(k)dk matters.
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maximizer selection coincides with that under Pareto-dominance selection; otherwise, their

equilibrium outcomes di¤er.

F.3 An Example

In what follows, I analyze an example in which the stand-alone cost functions take the form

t1(k) = t1k
�; t2(k) = t2k

�: (� > 1)

Solving the system of equations in (37) gives us the platform�s optimal prices (p�1; p
�
2) and

the equilibrium masses of participants (N�
1 ; N

�
2 ) under Pareto-dominance selection:

N�
1 =

�
1

t�1 t2

� 1
�2�1

�
v1 + v2
�+ 1

� 1
��1

; N�
2 =

�
1

t1t�2

� 1
�2�1

�
v1 + v2
�+ 1

� 1
��1

; (40)

p�1 =
�v1 � v2
�+ 1

�
1

t1t�2

� 1
�2�1

�
v1 + v2
�+ 1

� 1
��1

; p�2 =
�v2 � v1
�+ 1

�
1

t�1 t2

� 1
�2�1

�
v1 + v2
�+ 1

� 1
��1

: (41)

The following lemma states the main result of this example.

Lemma 10 The equilibrium outcome under potential-maximizer selection di¤ers from that

of the Pareto-dominant selection if and only if 1
�
< v1

v2
< �.

Proof. When 1
�
< v1

v2
< �, p�1 and p

�
2 are positive under Pareto-dominance selection

as shown in (41). By substituting (40) and (41) into the inequality in (38) and with some

simpli�cations, we obtain

(�v1 � v2)(v1 � �v2) � 0: (42)

The above inequality is violated if and only if 1
�
< v1

v2
< �. In other words, the Pareto-

dominant equilibrium is not the potential maximizer when 1
�
< v1

v2
< �. This implies

that the equilibrium outcomes under potential-maximizer selection and Pareto-dominance

selection must di¤er.

By contrast, (42) holds when v1
v2
� �. Moreover, the term

R N2
N2
(p2+ t2(k))dk in (39) is less

than the term
R N2
0
(p2 + t2(k))dk in (38) because, v1v2 � � implies p

�
2 � 0 from (41). Hence,
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Figure 6: The equilibrium outcomes under Pareto-dominance selection (left) and potential-

maximizer selection (right) when v1 = t1 = t2 = 1 and � = 2.

the Pareto-dominant equilibrium is the potential maximizer when v1
v2
� �. The same logic

applies to the case v1
v2
� 1

�
.

In what follows, I characterize the equilibrium under potential-maximizer selection when
1
�
< v1

v2
< �. It turns out that the inequality in (38) but not (39) binds under potential-

maximizer selection. Hence, from (36) and with some simpli�cations, the platform�s pro�t-

maximization problem in stage 1 becomes

max
(N1;N2)2[0;N1)�[0;N2)

(v1N2�t1N�
1 )N1+(v2N1�t2N�

2 )N2 s.t.
t1
v1
N�+1
1 +

t2
v2
N�+1
2 =

�+ 1

�
N1N2:

Solving the above optimization problem gives us the equilibrium masses of participants

(N�
1 ; N

�
2 ). There are closed-form solutions. Here, I present the solution when v1 = t1 = t2 = 1

and � = 2:

N�
1 =

0@v2
�
3� 3v2 +

p
7v22 � 13v2 + 7

�
2� v2

1A
1
3

4v2 +
p
7v22 � 13v2 + 7� 5
6(v2 � 1)

;

N�
2 =

0@v2
�
3� 3v2 +

p
7v22 � 13v2 + 7

�
2� v2

1A
2
3

4v2 +
p
7v22 � 13v2 + 7� 5
6(v2 � 1)

;
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and the platform�s optimal prices (p�1; p
�
2) can be computed from (35).

Figure 6 sketches the equilibrium outcomes under both Pareto-dominance selection and

potential-maximizer selection. Their equilibrium outcomes coincide if and only if v2 � 1
2
or

v2 � 2. Under Pareto-dominance selection, the platform always attracts the same mass of

group-1 and group-2 participants in the equilibrium. By contrast, under potential-maximizer

selection, the platform attracts more (fewer) group-2 participants than group-1 participants

when 1
2
< v2 < 1 (1 < v2 < 2). Nevertheless, under both selection criteria, the platform�s

optimal group-1 price p�1 and the equilibrium masses of participants N
�
1 and N

�
2 increase with

v2, while the optimal group-2 price p�2 tends to decrease with v2.

G Alternative Pricing Instruments

Appendix G.1 modi�es the duopoly-platform model in Section 4 so that the competing

platforms charge transaction fees instead of subscription fees. Appendix G.2 analyzes the

model. Appendix G.3 demonstrates how the analysis can be extended to two-part tari¤s.

G.1 Model

The platforms set transaction fees instead of subscription fees to the two groups. If a group-i

agent joins platform m, he pays a transaction fee pmi 2 R per each interaction with group-j

agents who join the same platform. Thus, his payo¤ from joining platform m is

umi (n
m
j ; p

m
i ) = (v

m
i � pmi )nmj : (43)

If platform m attracts nm1 group-1 participants and n
m
2 group-2 participants, there is a total

of nm1 n
m
2 interactions within the platform. Platform m�s pro�t is the total transaction fees

collected from both sides, i.e.,

�m(nm1 ; n
m
2 ; p

m
1 ; p

m
2 ) = (p

m
1 + p

m
2 )n

m
1 n

m
2 : (44)

I assume that both platforms do not use any weakly dominated strategies, i.e., the sum of

transaction fees on both sides pm1 + p
m
2 is non-negative. The rest of the model setup is the

same as that in Section 4.1.
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G.2 Analysis

Pareto-dominance selection and Pareto-dominated selection remain not applicable for the

same reason as in Section 4 while potential-maximizer selection remains valid. Note that the

agent�s payo¤ function (43) in this alternative model can be obtained by replacing vmi and

pmi in the original model (16) with v
m
i � pmi and 0 respectively. Hence, the current model

is a weighted potential game, and its potential function and the potential maximizer can be

obtained by applying the above replacements to Lemmas 5 and 6. Thus, we can immediately

characterize the unique equilibrium in stage 2 under potential-maximizer selection.

Lemma 11 When pmi � vmi for all m 2 fA;Bg and i = 1; 2,52 the unique equilibrium of the

subgame in stage 2 under potential-maximizer selection is

all agents join platform A if (vA1 � pA1 )(vA2 � pA2 ) � (vB1 � pB1 )(vB2 � pB2 );

all agents join platform B otherwise.

Under potential-maximizer selection, all agents will coordinate on the platform that de-

livers a higher product of net per-interaction bene�ts (vm1 � pm1 )(vm2 � pm2 ) for the two sides

in stage 2. Thus, stage 1 is analogous to the standard Bertrand competition as in Section

4.2. Generically and w.l.o.g., assume that A (B) is the dominant (dominated) platform in

the equilibrium. Standard analysis for Bertrand competition implies that B charges the

minimum prices to maximize (vB1 � pB1 )(vB2 � pB2 ). Under the non-negative pro�t constraint

pB1 + p
B
2 � 0, B�s equilibrium pricing strategy is

pB�1 =
vB1 � vB2
2

; pB�2 =
vB2 � vB1
2

: (45)

As shown in the above expression, B rebalances the net per-interaction bene�ts of the two

sides by monetizing the side with higher per-interaction bene�t and subsidizing the other

side. The resulting net per-interaction bene�t is v
B
1 +v

B
2

2
for both sides. Standard analysis for

52The only interesting subgames are those with pmi � vmi for all m 2 fA;Bg and i = 1; 2 because

both platforms will not charge a transaction fee higher than the respective per-interaction bene�t in the

equilibrium.

65



Bertrand competition also implies that A slightly undercuts B to capture the entire market.

By Lemma 11 and (45), this implies that

(vA1 � pA�1 )(vA2 � pA�2 ) =
�
vB1 + v

B
2

2

�2
: (46)

Under the non-negative pro�t constraint pA1 +p
A
2 � 0, it is easy to see that A can successfully

undercut B if and only if vA1 + v
A
2 > vB1 + v

B
2 . Hence, by assuming v

A
1 + v

A
2 > vB1 + v

B
2 ,

A maximizes its pro�t by optimally allocating the prices to the two sides subject to the

constraint in (46), i.e.,

max
f(pA1 ;pA2 )2(�1;vA1 ]�(�1;vA2 ]:pA1 +pA2 �0g

(pA1 + p
A
2 )N1N2 s.t. (vA1 � pA1 )(vA2 � pA2 ) =

�
vB1 + v

B
2

2

�2
:

Solving the above optimization problem shows that A adjusts the net per-interaction bene�ts

of the two sides with transaction fees, such that the net per-interaction bene�t is also vB1 +v
B
2

2

for both sides, i.e.,

pA�1 = vA1 �
vB1 + v

B
2

2
; pA�2 = vA2 �

vB1 + v
B
2

2
:

Hence, A�s equilibrium pro�t is

�A� =
�
vA1 + v

A
2 � vB1 � vB2

�
N1N2:

The equilibrium outcome under potential-maximizer selection is summarized as follows.

Proposition 3 Generically and w.l.o.g., suppose vA1 + v
A
2 > vB1 + v

B
2 . Under potential-

maximizer selection, there is a unique equilibrium in this model. Stage 1 is a Bertrand

equilibrium with

pA�1 = vA1 �
vB1 + v

B
2

2
; pA�2 = vA2 �

vB1 + v
B
2

2
; pB�1 =

vB1 � vB2
2

; pB�2 =
vB2 � vB1
2

:

All agents join platform A in stage 2, and platform A�s equilibrium pro�t is

�A� =
�
vA1 + v

A
2 � vB1 � vB2

�
N1N2:

Similar to the model in Section 4, the market tips to a dominant platform. However,

the dominant platform is now the one with a higher sum of per-interaction bene�ts vm1 + v
m
2

rather than the product of them vm1 v
m
2 as in the pure-subscription model. Following Section

4.2, I discuss the three key implications under the current framework.
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Divide-and-conquer strategy As shown in Proposition 3, the dominated platform (B)

monetizes the side with higher per-interaction bene�t and subsidizes the other side. By

contrast, the dominant �rm may or may not monetize one side and subsidize the other side

depending on how competitive the two platforms are. If the platforms are very competitive

(say, vA1 + v
A
2 � vB1 + vB2 ), the dominant platform (A) will divide and conquer; if one of the

platforms is inferior (say, vB1 � vB2 � 0), the superior platform will monetize both sides.

Money/subsidy side The money/subsidy side of the dominated platform (B) depends

only on whether its own per-interaction bene�t vB1 or v
B
2 is larger. As explained, the dominant

platform (A) might monetize both sides if its competitor is inferior. Nevertheless, when

A divides and conquers, the money/subsidy side depends only on whether its own per-

interaction bene�t vA1 or v
A
2 is larger.

53 This is di¤erent from that of the model in Section 4,

in which the money/subsidy side of the dominant platform also depends on the competitor�s

per-interaction bene�ts vB1 and v
B
2 .

Optimal design Given that the platforms can rebalance the net per-interaction bene�ts

with transaction fees, the optimal design of the platforms is to maximize the sum of per-

interaction bene�ts vm1 + v
m
2 . This di¤ers from that of the pure-subscription model, in which

the platforms maximize vm1 v
m
2 instead. In other words, given the same set of parameter

values, the dominant platform may di¤er under these two duopoly-platform models. Take

(21) as an example; A is the dominant platform in the pure-subscription model but B is

the dominant platform in the current model. In contrast to the pure-subscription model,

all agents now always coordinate on the platform that delivers the higher social surplus

(vm1 + v
m
2 )N1N2. Moreover, the optimal design of the platforms is to maximize v

m
1 + v

m
2 , and

thus it also maximizes social surplus.

53As shown in Proposition 3, if A subsidizes group 1 (pA�1 < 0) and monetizes group 2 (pA�2 > 0), it implies

that vA1 < v
A
2 , and this is irrespective of the competitor�s per-interaction bene�ts v

B
1 and v

B
2 .
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G.3 Two-Part Tari¤s

The analysis can be easily extended to two-part tari¤s. Suppose the agent�s payo¤ from

joining the platform takes the form

umi (n
m
j ; p

m
i ; r

m
i ) = (v

m
i � rmi )nmj � pmi ; (47)

where pmi 2 R is the subscription fee and rmi 2 R is the transaction fee. Similar to Appendix

G.2, the agent�s payo¤ function in (47) can be obtained by replacing vmi in the original

model (16) with vmi � pmi . Hence, the current model is a weighted potential game, and

we can immediately characterize the potential maximizer. The subsequent analysis is very

similar to those of the previous duopoly-platform models and thus omitted.

H Same-Side Network E¤ects

Appendix H.1 extends the baseline model with negative same-side network e¤ects on one

side and shows that it is equivalent to the model in Section 3.1. By the same token, the

model with negative same-side network e¤ects on both sides is equivalent to Armstrong�s

original model. Appendix H.2 extends the baseline model with positive same-side network

e¤ects on one side. Extending the analysis to positive same-side network e¤ects on both

sides is straightforward and thus omitted. Likewise, the analysis of the model with positive

same-side network e¤ects on one side and negative same-side network e¤ects on the other

side is very similar to that of Appendix H.1, and thus also omitted. This appendix adopts

the continuum-agent framework.

H.1 Negative Same-Side Network E¤ects

The model is identical to the model in Section 3.1 except the payo¤ of a group-2 agent from

joining the platform is now

u2(n1; n2; p2) = v2n1 � p2 � t(n2); (48)

where t : [0; N2] ! R+ is an increasing function that measures the negative same-side

network e¤ects each group-2 participant su¤ers.
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Similar to the model in Section 3.1, there is a demand expansion e¤ect on group 2 because

of the negative same-side network e¤ects. More precisely, for any group-2 price p2 � v2N1
set by the platform in stage 1, there is at most a mass of N2 group-2 participants in the

equilibrium, where N2 is given by (9). Similarly, if p2 is negative, there is at least a mass

of N2 group-2 participants in the equilibrium, where N2 is given by (10). Hence, the set of

equilibria in this model is closely related to that of the model in Section 3.1. More precisely,

there are two sets of stable equilibria and a set of unstable equilibria in stage 2 under Case

1 or Case 2 as de�ned on p. 18. The masses of participants (n�1; n
�
2) for each set of equilibria

are characterized by Figure 1 in Section 3.2. For Case 1, the masses of participants for the

three sets of equilibria are

1. Pareto-dominant equilibrium: (n�1; n
�
2) = (N1; N2);

2. unstable equilibrium: (n�1; n
�
2) = ( bN1; bN2);

3. Pareto-dominated equilibrium: (n�1; n
�
2) = (0; 0).

For Case 2, the masses of participants for the three sets of equilibria are

1. Pareto-dominant equilibrium: (n�1; n
�
2) = (N1; N2);

2. unstable equilibrium: (n�1; n
�
2) = (

bN1; bN2);
3. Pareto-dominated equilibrium: (n�1; n

�
2) = (0; N2).

From the platform�s point of view, the set of equilibria in the current model is equivalent

to that in Section 3.2: ultimately it only cares about the masses of participants but not

the identity of each participant. It remains to show that the potential maximizers of these

two models are also equivalent. First, I show that every subgame in stage 2 is a weighted

potential game.

Lemma 12 Every subgame in stage 2 is a weighted potential game with the potential function

P (n1; n2jp1; p2) = n1n2 �
p1
v1
n1 �

p2
v2
n2 �

1

v2

Z n2

0

t(k)dk: (49)
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Proof. We can follow the same approach in proving Lemma 3 in Section 3.2 to prove

this lemma. Alternatively, we can prove that every subgame in stage 2 is a continuum-

agent weighted potential game as de�ned by Sandholm (2001, p. 85).54 Similar to the

de�nition of a �nite-agent weighted potential game in De�nition 1, a continuum-agent game

is a continuum-agent weighted potential game if there exists a function P de�ned on the

strategy space of the game, such that the change in any player�s payo¤ from unilaterally

switching actions is (positively) proportional to the corresponding di¤erential change in P .

I now show that every subgame in stage 2 is a continuum-agent weighted potential game.

Suppose there are a mass of n1 group-1 participants and a mass of n2 group-2 participants.

The payo¤ di¤erence between joining the platform or not for a group-1 agent is

u1(n2; p1)� 0 = v1n2 � p1: (by (7))

The corresponding di¤erential change in P is

@P (n1; n2jp1; p2)
@n1

= n2 �
p1
v1
: (by (49))

Similarly, the payo¤ di¤erence between joining the platform or not for a group-2 agent is

u2(n1; n2; p2)� 0 = v2n1 � p2 � t(n2): (by (48))

The corresponding di¤erential change in P is

@P (n1; n2jp1; p2)
@n2

= n2 �
p2
v2
� t(n2)

v2
: (by (49))

Clearly, the change in a group-i agent�s payo¤ from unilaterally switching actions is propor-

tional (with proportion vi) to the di¤erential change in P . Therefore, every subgame is a

weighted potential game with the potential function given by (49).

The term 1
v2

R N2

0
t(k)ak2dk in Lemma 3 is now replaced by

1
v2

R n2
0
t(k)dk in Lemma 12.

Nevertheless, we can easily see that the respective potentials of the three sets of equilibria
54Sandholm (2001) only de�nes continuum-agent exact potential games, but the de�nition and the results

can be naturally extended to continuum-agent weighted potential games. As proved by Sandholm (2001,

Theorem 6.1), continuum-agent potential games are the limits of convergent sequences of the �nite-agent

potential games.
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are equal to those of the three equilibria in Section 3.2. Hence, the potential maximizers of

these two models are equivalent from the platform�s point of view, and thus the subsequent

analysis and the results are identical. In other words, there is no distinction between the

agents�stand-alone costs and negative same-side network e¤ects from the platform�s point of

view. Yet, group-2 participants are better o¤ in the former because their total stand-alone

cost is
R N�

2

0
t(k)dk while each of them su¤ers a cost of t(N�

2 ) in the latter.

H.2 Positive Same-Side Network E¤ects

The model is identical to the previous model in Appendix H.1 except the payo¤ of a group-2

agent from joining the platform is now

u2(n1; n2; p2) = v2n1 � p2 + t(n2);

where t : [0; N2]! R+ is an increasing function that measures the positive same-side network

e¤ects each group-2 participant enjoys. Note that the mass of group-2 agents is N2 (but not

N2) in this model, and I do not impose any additional assumptions on the function t.

Unlike the previous model, there is no demand expansion e¤ect on group 2 when the same-

side network e¤ects are positive. Thus, the set of equilibria is similar to that of the baseline

model: there are two stable equilibria in stage 2 when (p1; p2) 2 [0; v1N2]�[0; v2N1+t(N2)]:55

1. all agents join the platform;

2. no one joins the platform.

By Lemma 12 in Appendix H.1 (with the sign of t reversed), every subgame in stage 2 is

a weighted potential game with the potential function

P (n1; n2jp1; p2) = n1n2 �
p1
v1
n1 �

p2
v2
n2 +

1

v2

Z n2

0

t(k)dk:

55Multiple equilibria also exist when (p1; p2) 2 (�1; 0) � [v2N1; v2N1 + t(N2)] [ (v1N2;1) � [0; t(N2)],

but clearly the platform will not set these prices in the equilibrium. There are also unstable equilibria when

(p1; p2) 2 [0; v1N2] � [0; v2N1 + t(N2)], but these equilibria are never the potential maximizer for the same

reason as before and thus ignored.
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Following the same approach in proving Lemma 2 in Section 2.3.2, we can easily identify the

potential maximizer when (p1; p2) 2 [0; v1N2]� [0; v2N1 + t(N2)], and it is

all agents join the platform if
p1
v1N2

+
p2
v2N1

� 1 + 1

v2N1N2

Z N2

0

t(k)dk; (50)

no one joins the platform otherwise.

Hence, the platform�s pro�t-maximization problem in stage 1 becomes

max
(p1;p2)2[0;v1N2]�[0;v2N1+t(N2)]

p1N1 + p2N2 s.t.
p1
v1N2

+
p2
v2N1

� 1 + 1

v2N1N2

Z N2

0

t(k)dk:

Solving the above optimization problem gives us the platform�s optimal pricing strategy:

1. when v1 < v2:

p�1 = 0; p�2 = v2N1 +
1

N2

Z N2

0

t(k)dk;

2. when v1 > v2:

p�1 = v1N2; p�2 =
1

N2

Z N2

0

t(k)dk:

Similar to the baseline model, the platform always divides and conquers. Moreover,

the money/subsidy side is not a¤ected by the additional positive same-side network e¤ects.

The platform now marks up the group-2 price by 1
N2

R N2
0
t(k)dk because of this additional

positive same-side network e¤ects they enjoy. Still, group-2 agents are better o¤ in the

current model because the additional bene�t t(N2) each group-2 agent enjoys is higher than

the price markup 1
N2

R N2
0
t(k)dk.
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