# ASSESSING AND QUANTIFYING NETWORK EFFECTS IN AN ONLINE DATING MARKET

**Gordon Burtch**, Assistant Professor, Carlson School of Management, University of Minnesota

Jui Ramaprasad, Associate Professor, Desautels Faculty of Management, McGill University

#### **Two-sided platforms**



#### Our context: online dating

#### MAPLE 💠 MATCH

## Make dating great again.

Maple Match makes it easy for Americans to find the ideal Canadian partner to save them from the unfathomable horror of a Trump presidency.

Tweet your friends about @MapleMatch here!

Want to learn more? Reach out at info@maplematch.com.

Terms of Use/Privacy Policy

GET ME ON THE WAITLIST

#### **Research Questions**

- To what degree does seeding new users stimulate network effects in online dating markets?
- What is the impact of this seeding strategy on enrollment of new users? An on exits of existing users?
- How does this impact vary based on heterogeneity in the characteristics of existing users and the seeded users?

#### Background

- <u>Two-sided markets</u>: platforms that enable transactions and interactions amongst end-users of different types (Parker and Van Alstyne, 2005; Rochet and Tirole, 2006)
- <u>Cross-side network effects</u>: Greater utility when there are more potential transaction partners
- <u>Same side effects</u>:
  - Positive: greater utility when there are more people on your side of the market (e.g. Facebook)
  - Negative: congestion lower utility when competition is higher
- Key challenge: Cold start problem





**Pirated Content** 

Fake users who posted content

Made many eBay purchases through a bot and insisted on using Paypal

#### Background: Dating markets

- Traditionally:
  - Ladies night!
  - Stimulate demand from men by offering free entry for ladies (for heterosexual pairs)
- No direct visibility into the levels of competition or congestion
- Social transaction: subject to significant heterogeneity in personal preferences
- Local network effects: individuals do not treat participation by all others equally

#### Online dating: local network effects



Home About

Join for free

Press

#### Dating for the #Remain crowd

We made Better Together Dating to bring those who want to go far away, closer together.

Better Together Dating is a unique dating service for the 48%; for those who know that Britain is stronger within Europe, for those who celebrate the diversity, joy, and love that our great continent provides, and for those with Bregret.

Join for free

#### **Objectives**

- Provide an empirical study of local network effects
  - extend the literature on two-sided markets and network effects
  - to the highly personalized, social context of online dating
- Quantify the impact of a novel seeding strategy
  - a platform's acquisition of a competitor and rapid injection of new users into the market
  - on enrollment and attrition

#### Data

- Ashley Madison data from leak of 2015
- Aggregated and anonymized
- Other papers using this data (Griffin, Kruger, & Maturana, 2016; Grieser, Kapadia, Li, & Simonov, 2016)

#### Data and Methodology

- Natural Experiment
  - Ashley Madison Brazil purchased Ohhtel
  - Automatically transferred 150,000 new user accounts to Ashley Madison's servers
  - April 9 11, 2012

#### **Exogenous Shock**



#### Data and Methodology

#### Sample

- 2 month window around exogenous shock (March May 2012)
- 120 largest markets in Brazil



#### Methodology

- Identification
  - Ohhtel hosted only heterosexual users; Ashley Madison hosts both heterosexual and homosexual users
  - Strength of the exogenous shock varied in alignment between new and existing users: location preferences, age preferences, body type preferences

#### **Summary Statistics**

Table 1: Average Daily Enrollment & Exit Over 4-Weeks Prior to Treatment

|            | Heterosexual |        |        |        |        |       | Homo   | sexual |       |        |        |       |
|------------|--------------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|
|            |              | Male   |        |        | Female |       |        | Male   |       |        | Female |       |
| Variable   | Max          | Mean   | STDev  | Max    | Mean   | STDev | Max    | Mean   | STDev | Max    | Mean   | STDev |
| Enrollment | 302.071      | 13.476 | 31.886 | 36.893 | 1.463  | 3,830 | 14.893 | 0.674  | 1.550 | 13.393 | 0.583  | 1,423 |
| Exit       | 7.750        | 0.493  | 0.821  | 34.929 | 1.375  | 3.600 | 14.393 | 0.645  | 1.500 | 12.964 | 0.556  | 1.368 |
| Cities     | 120          | 120    | 120    | 120    | 120    | 120   | 120    | 120    | 120   | 120    | 120    | 120   |

#### Model

- Difference-in-Difference
  - Treatment Group: Heterosexual Users
  - Control Group: Homosexual Users
  - Collapsed panel (one pre-treatment period; one post-treatment period)
- Dependent variables
  - Enrollment: total number of new users
  - Exit: total number of users who exited (measure: last day of account activity)

 $\log(Y_{ijt}) = \alpha_i + \beta_1 \cdot Orientation_j + \beta_2 \cdot Post_t + \beta_3 \cdot Orientation_j * Post_t + \varepsilon_{ijt}$ 

#### Difference-in-Difference

• Are there pre-treatment differences?

# Poisson Relative Time Estimates (Enrollments)



#### Poisson Relative Time Estimates (Exits)



#### Results: Enrollments (Poisson)

Table 2: Enrollments: Poisson FE

|                  | Μ                      | ale               | Female            |                       |  |
|------------------|------------------------|-------------------|-------------------|-----------------------|--|
| DV = Enrolls     | 4-Week                 | 2-Week            | 4-Week            | 2-Week                |  |
| Post             | $-0.799^{***}$ (0.035) | -0.970*** (0.043) | -0.697*** (0.042) | -0.795*** (0.050)     |  |
| Orientation      | 2.995***(0.032)        | 2.970***(0.034)   | 0.920***(0.034)   | $0.805^{***}$ (0.054) |  |
| Post*Orientation | 0.288*** (0.041)       | 0.467*** (0.048)  | 0.211*** (0.051)  | 0.309*** (0.050)      |  |
| Observations     | 480                    | 476               | 476               | 476                   |  |
| Cities           | 120                    | 119               | 119               | 119                   |  |
| Wald $\chi^2$    | 10,923.64 (3)          | 14,645.41 (3)     | 1,272.02 (3)      | 1,461.96(3)           |  |

Notes: Robust standard errors in brackets; \*\*\* p<0.001

Some cities dropped because no variation was observed in the DV within the group

#### Results: Enrollments (Log OLS)

Table 3: Enrollments: Log-OLS FE

|                   | M                     | ale                 | Female                |                   |  |
|-------------------|-----------------------|---------------------|-----------------------|-------------------|--|
| DV = Log(Enrolls) | 4-Week                | 2-Week              | 4-Week                | 2-Week            |  |
| Post              | $-0.759^{***}(0.059)$ | -0.804*** (0.064)   | $-0.738^{***}(0.062)$ | -0.806*** (0.069) |  |
| Orientation       | 3.032*** (0.040)      | 3.018*** (0.051)    | 0.926*** (0.043)      | 0.834*** (0.057)  |  |
| Post*Orientation  | 0.207*** (0.062)      | 0.238*** (0.067)    | 0.169*** (0.075)      | 0.211*** (0.086)  |  |
| Observations      | 469                   | 454                 | 463                   | 445               |  |
| Cities            | 120                   | 119                 | 119                   | 119               |  |
| $R^2$             | 0.967                 | 0.960               | 0.735                 | 0.664             |  |
| $F \ statistic$   | 3,042.41 (3, 119)     | 2,103.36 $(3, 118)$ | 359.25 (3, 118)       | 239.78(3, 118)    |  |

Notes: Robust standard errors in brackets; \*\*\* p<0.001

Some observations dropped when no enrollments are observed, i.e., Log of 0 is undefined

#### Results

- Enrollments:
  - Female enrollments increased by 21.1% in the two weeks after treatment
  - Male enrollments increased by 23.8% in the two weeks after treatment

#### Results: Exit (Poisson)

Table 4: Exits: Poisson FE

|                    | Μ                     | ale               | Fen               | nale              |
|--------------------|-----------------------|-------------------|-------------------|-------------------|
| DV = Exits         | 4-Week                | 2-Week            | 4-Week            | 2-Week            |
| Post               | $-0.721^{***}(0.039)$ | -0.570*** (0.040) | -0.606*** (0.043) | -0.333*** (0.048) |
| Orientation        | -0.268*** (0.093)     | -0.238*(0.092)    | 0.906*** (0.033)  | 0.838*** (0.051)  |
| Post * Orientation | 0.688*** (0.051)      | 0.880*** (0.069)  | 0.212*** (0.046)  | 0.199*** (0.051)  |
| Observations       | 476                   | 476               | 476               | 476               |
| Cities             | 119                   | 119               | 119               | 119               |
| Wald $\chi^2$      | 395.76(3)             | 251.87(3)         | 994.72(3)         | 695.95(3)         |

Notes: Robust standard errors in brackets; \*\*\* p < 0.001, \* p < 0.05Some cities dropped because no variation was observed in the DV within the group

#### Results: Exit (Log OLS)

Table 5: Exits: Log-OLS FE

|                  | М                      | ale               | Female            |                   |  |
|------------------|------------------------|-------------------|-------------------|-------------------|--|
| DV = Log(Exits)  | 4-Week                 | 2-Week            | 4-Week            | 2-Week            |  |
| Post             | $-0.608^{***}$ (0.059) | -0.649*** (0.066) | -0.619*** (0.068) | -0.715*** (0.071) |  |
| Orientation      | -0 183*** (0 089)      | -0.001 (0.093)    | 0 929*** (0 044)  | 0.838*** (0.060)  |  |
| Post*Orientation | 0.679*** (0.084)       | 0.563*** (0.103)  | 0.148* (0.074)    | 0.248*** (0.079)  |  |
| Observations     | 459                    | 434               | 461               | 445               |  |
| Cities           | 119                    | 119               | 119               | 119               |  |
| $R^2$            | 0.178                  | 0.214             | 0.700             | 0.642             |  |
| $F \ statistic$  | 39.21 (3, 118)         | 38.11 (3, 118)    | 306.79 (3, 118)   | 171.79(3, 118)    |  |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \* p<0.05 Some observations dropped when no enrollments are observed, i.e., Log of 0 is undefined

#### Results

- Enrollments:
  - Female enrollments increased by 21.1% in the two weeks after treatment
  - Male enrollments increased by 23.8% in the two weeks after treatment
- Exits:
  - Female exits increased by 24.8% in the two weeks after treatment
  - Male exits increased by 56.3% in the two weeks after treatment

#### Local Network Effects

- Shared characteristics between existing users in a city and the set of purchased users who enter the market in the same city
  - Geographical Location
  - Age

#### **Geographic Location**

- For each city:
  - Average geographic coordinates for existing heterosexual users
  - Average geographic coordinates for newly entered heterosexual users
  - Geo = diff in Euclidean distance

 $\log(Y_{ijt}) = \alpha_i + \beta_1 \cdot Orientation_j + \beta_2 \cdot Post_t + \beta_3 \cdot Geo_i +$ 

 $\beta_4 \cdot Orientation_j * Geo_i + \beta_5 \cdot Post_t * Geo_i + \beta_6 \cdot Orientation_j * Post_t +$ 

 $\beta_7 \cdot Orientation_j * Post_t * Geo_i + \varepsilon_{ijt}$ 

# Moderation: Geographic Location (Enrollments)

Table 6: Geographic Distance Moderation of Enrollment: Poisson FE

| DV = Enrolls         | Male                   | Female                 |
|----------------------|------------------------|------------------------|
| Post                 | $-0.980^{***}$ (0.045) | $-0.832^{***}$ (0.054) |
| Orientation          | $2.973^{***}$ (0.035)  | $0.887^{***}(0.056)$   |
| Post * Geo           | $0.019^{**}(0.007)$    | $0.060^{***}(0.017)$   |
| Orientation * Geo    | 0.001(0.014)           | 0.027 (0.020)          |
| Post * Orientation   | $0.479^{***}$ (0.049)  | $0.350^{***}(0.049)$   |
| Post*Orientation*Geo | -0.018* (0.008)        | -0.060* (0.025)        |
| Observations         | 456                    | 456                    |
| Cities               | 114                    | 114                    |
| Wald $\chi^2$        | 23,172.01 (6)          | 1,400.89 (6)           |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \*\* p<0.01, \* p<0.05 Some cities dropped because no variation was observed in the DV within the group or because no geographic data was available for users

#### Moderation: Geographic Location (Exits)

|            |          | Table 7:   |          |         |    |
|------------|----------|------------|----------|---------|----|
| Geographic | Distance | Moderation | of Exit: | Poisson | FE |

| DV = Exits           | Male                | Female               |
|----------------------|---------------------|----------------------|
| Post                 | -0.888*** (0.048)   | -0.726*** (0.050)    |
| Orientation          | -0.242* (0.096)     | $0.869^{***}(0.053)$ |
| Post * Geo           | $0.021^{**}(0.008)$ | $0.059^{**}(0.022)$  |
| Orientation * Geo    | -0.013(0.028)       | 0.025(0.021)         |
| Post * Orientation   | 0.875*** (0.067)    | 0.340*** (0.049)     |
| Post*Orientation*Geo | -0.004 (0.010)      | -0.044* (0.019)      |
| Observations         | 456                 | 456                  |
| Cities               | 114                 | 114                  |
| Wald $\chi^2$        | 697.27(6)           | 867.96 (6)           |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \* p<0.05 Some cities dropped because no variation was observed in the DV within the group or because no geographic data was available for users

#### Age

- For each city:
  - Average age for existing heterosexual users
  - Average age for newly entered heterosexual users
  - Age = Age of Existing Age of New

$$\log(Y_{ijt}) = \alpha_i + \beta_1 \cdot Orientation_j + \beta_2 \cdot Post_t + \beta_3 \cdot Age_i +$$

 $\beta_4 \cdot Orientation_j * Age_i + \beta_5 \cdot Post_t * Age_i + \beta_6 \cdot Orientation_j * Post_t +$ 

 $\beta_7 \cdot Orientation_j * Post_t * Age_i + \varepsilon_{ijt}$ 

#### Moderation: Age (Enrollments)

#### Table 8:

Age Differences Moderate Enrollment: Poisson FE

| DV = Enrolls             | Male                  | Female                 |
|--------------------------|-----------------------|------------------------|
| Post                     | $-0.967^{***}(0.043)$ | $-0.794^{***}$ (0.058) |
| Orientation              | $2.975^{***}$ (0.036) | $0.905^{***}$ (0.057)  |
| Post * Age               | $0.024^{*}$ (0.011)   | 0.021 (0.011)          |
| Orientation * Age        | $0.021^{*}$ (0.011)   | -0.003 (0.011)         |
| Post * Orientation       | $0.468^{***}$ (0.048) | $0.310^{***}$ (0.055)  |
| Post * Orientation * Age | -0.023 (0.008)        | -0.025* (0.012)        |
| Observations             | 448                   | 444                    |
| Cities                   | 112                   | 111                    |
| Wald $\chi^2$            | 16,142.19 (6)         | 1,443.63(6)            |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \*\* p<0.01, \* p<0.05 Some cities dropped because no variation was observed in the DV within the group or because no age data was available for users

#### Moderation: Age (Exits)

Table 9: Age Differences Moderate Exit: Poisson FE

| DV = Exits               | Male                     | Female                 |
|--------------------------|--------------------------|------------------------|
| Post                     | $-0.873^{***}(0.047)$    | $-0.710^{***}$ (0.057) |
| Orientation              | $-0.245^{**}(0.093)$     | $0.885^{***}$ (0.053)  |
| Post * Age               | $0.019^{\dagger}(0.012)$ | 0.007(0.011)           |
| Orientation * Age        | 0.014(0.028)             | -0.006(0.012)          |
| Post * Orientation       | $0.863^{***}(0.068)$     | 0.322*** (0.056)       |
| Post * Orientation * Age | -0.002(0.022)            | -0.010 (0.013)         |
| Observations             | 448                      | 444                    |
| Cities                   | 112                      | 111                    |
| Wald $\chi^2$            | 397.46(6)                | 970.67(6)              |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \* p<0.05,  $^{\dagger}p$ <0.10 Some cities dropped because no variation was observed in the DV within the group or because no age data was available for users

#### Results

- Enrollments:
  - Female enrollments increased by 21.1% in the two weeks after treatment
  - Male enrollments increased by 23.8% in the two weeks after treatment
- Exits:
  - Female exits increased by 24.8% in the two weeks after treatment
  - Male exits increased by 56.3% in the two weeks after treatment
- Local Network Effects
  - Greater the distance between existing and new users, the weaker the treatment effect (except for male exits)
  - The younger the new (male) users are as compared to the existing users, the weaker the treatment effect on enrollments for women

#### What does this mean?

- Impact on enrollment
  - Increased enrollments across cities
  - 1.66 new male users in the average city; 72 new male users in the largest city (Sao Paolo)
  - Offline WOM between existing users and new registrants
  - Stronger increase on enrollments where the existing and new users were co-located
- Impact on exits
  - Increased exits across cities
  - 0.66 additional exits by men in the average city; 8 additional exits by men
  - Due to congestion or to matches?
  - Matches: Immediacy of response + unable to observe competition

# QUESTIONS, COMMENTS, FEEDBACK! ③

## Body Type

- For each city:
  - Average BMI for existing heterosexual users
  - Average BMI for newly entered heterosexual users
  - BMI = BMI of Existing BMI of New

 $\log(Y_{ijt}) = \alpha_i + \beta_1 \cdot Orientation_j + \beta_2 \cdot Post_t + \beta_3 \cdot BMI_i +$ 

 $\beta_4 \cdot Orientation_j * BMI_i + \beta_5 \cdot Post_t * BMI_i + \beta_6 \cdot Orientation_j * Post_t +$ 

 $\beta_7 \cdot Orientation_j * Post_t * BMI_i + \varepsilon_{ijt}$ 

## Moderation: Body Type (Enrollments)

Table 10: Body Type Differences Moderate Enrollment: Poisson FE

| DV = Enrolls             | Male                            | Female                         |
|--------------------------|---------------------------------|--------------------------------|
| Post                     | -1.049*** (0.057)               | -0.832*** (0.072)              |
| Orientation              | $2.975^{***}(0.034)$            | $0.822^{***}$ (0.052)          |
| Post * BMI               | 5e-05 (3e-05)                   | 2.61e-05(3.42e-05)             |
| Orientation * BMI        | -3.94e-06 1.85e-05              | 7.11e-05** (2.55e-05)          |
| Post * Orientation       | $0.561^{***}$ (0.054)           | $0.393^{***}$ (0.084)          |
| Post * Orientation * BMI | $-5.78e-05^{\dagger}(3.13e-05)$ | $-5.97e-05^{\times}(4.02e-05)$ |
| Observations             | 448                             | 444                            |
| Cities                   | 112                             | 111                            |
| Wald $\chi^2$            | 16,177.06(6)                    | 1,797.11 (6)                   |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \*\* p<0.01, \* p<0.05,  $\dagger p<0.10$ , \* p=0.13Some cities dropped because no variation was observed in the DV within the group or because of missing height or weight data for some users

### Moderation: Body Type (Exits)

Table 11: Body Type Differences Moderate Exit: Poisson FE

| DV = Exits           | Male                    | Female                   |
|----------------------|-------------------------|--------------------------|
| Post                 | $-0.990^{***}$ (0.047)  | -0.718*** (0.073)        |
| Orientation          | $-0.409^{**}(0.142)$    | $0.831^{***}$ (0.058)    |
| Post * BMI           | $0.074^{**}$ (0.027)    | 0.004(0.032)             |
| Orientation * BMI    | 0.103(0.068)            | $0.048^{\dagger}(0.028)$ |
| Post * Orientation   | $0.985^{***}(0.104)$    | 0.368*** (0.074)         |
| Post*Orientation*BMI | $-0.078 \times (0.050)$ | -0.034(0.038)            |
| Observations         | 448                     | 444                      |
| Cities               | 112                     | 111                      |
| Wald $\chi^2$        | 615.73(6)               | 1,208.70(6)              |

Notes: Robust standard errors in brackets; \*\*\* p<0.001, \*\* p<0.01, \* p<0.05,  $^{\dagger}p$ <0.10, × p=0.12 Some cities dropped because no variation was observed in the DV within the group or because some height or weight data was not available for some users