Forking, Fragmentation, and Splintering

Tim Simcoe & Jeremy Watson

Boston University

Platform Strategy Research Symposium 2017

July 13, 2017

Four Paths to Compatibility (Farrell & Simcoe, 2012)

- Follow the Leader
 - Platform Leader, Gov't, Customer
- Standards Wars
- Standard Setting Organizations
- Converters & Multi-homing

Should we also classify persistent incompatibility?

Incompatibility

- Despite compatibility avenues, persistent incompatibility common
- Often come in familiar flavors
 - Uber/Lyft, Spotify/Apple Music/Google Play
 - Electrical sockets/plugs
 - Cryptocurrencies
- Fragmented terminology in literature on platform forking, fragmentation, and splintering

This paper: Forking, fragmentation, and splintering

What are the key modes of incompatibility?

- Forking
- Fragmentation
- Splintering

	Differ on	Game	# Players	Equilibrium
Splintering	Standard	B.o.S.	Many	Pure strategy
Fragmentation	Standard	B.o.S.	Few	Mixed Strategy
Forking	Interoperability	P.L.B.	Few	Mixed Strategy

- Many players, choosing discrete technologies
- Payoffs
 - Player i receives \$2 × # number of players that choose technology j, plus \$3 if j is preferred technology of i
- Strategies
 - \blacktriangleright Coordination on one technology \Rightarrow Nash equilibrium
 - ► Non-coalition proof pure-strategy equilibrium ⇒ Splintering Pareto dominated equilibrium
- Key features:
 - Decentralized adoption
 - $\blacktriangleright \ \ \mathsf{Design-specific investment} \Rightarrow \mathsf{switching \ costs} \Rightarrow \mathsf{lock-in}$

Splintering: railroads (Gross, 2016)

Southern Rail and Steamship Association: May 31, 1886

Splintering: early automobiles (Thompson, 1954)

- Splintering the result of...
 - Decentralized decision making
 - Technical uncertainty
- Resolved via...
 - Endogenous problem solving
 - SSO (SAE), or monopoly leadership (Railroads)
 - But, slow path to compatibility

Fragmentation: a model

- Strategies
 - ► Pure strategy equilibria ⇒ Coordination
 - ► Mixed strategies → Fragmentation (pareto dominated)
 - Players choose preferred technology with $p = \frac{10+x}{20+x}$
 - Pr(fragmentation) $\stackrel{p}{\rightarrow} 1$ as x grows
- Key features
 - Small # key players
 - Strong vested interest (x), e.g., patents/IPR

Fragmentation: examples

- ▶ 56K Modems (Greenstein & Rysman, 2007)
 - US Robotics Vs. Rockwell
 - Patents \Rightarrow Deadlock
 - Two standards: X2 vs. Flex (1997)
 - ISPs divide, AOL waits
 - ITU compromise: V.90 (1998)

- ► Blu-ray vs. HD-DVD
 - Two consortia
 - Patent licensing incentives
 - Importance of content/studios
 - Sony Playstation

Tim Simcoe & Jeremy Watson Boston University Questrom School of Business

- Characterized by
 - Often at point of technical upgrade
 - Few key players, differing over small set of options
- Uncertainty over standard \Rightarrow market hesitation
 - Urgency to resolve fragmentation
 - Standard setting committee, standards war

- Strategies
 - No pure strategy equilibrium
 - Mixed strategies \Rightarrow players play both technologies with p = 0.5
- Key Features
 - Cat/Mouse
 - Disagree over interoperability
 - Need change in payoffs for stable compatibility
 - Preventing proprietary networks/emergence of competing networks

Forking: examples

- MS and Java
 - "Embrace, extend, & extinguish"
 - Importance of market power
 - Fighting for what? Developers.
 - Private case \Rightarrow \$2B settlement

- Instant Messaging
 - ICQ, PowWow, AIM
 - Killer App = "Buddy List"
 - AOL-Time Warner Merger (FCC)
 - Names & Presence Directory (NPD)

- Forking characteristics
 - Fundamental disagreement on interoperability
 - Cat and Mouse game
- Resolution?
 - Payoff structure changes
 - Gov't intervention, antitrust
- Open source (e.g., GPL)
- Distinguishing exclusion from platform vs. disagreement over technical direction

Policy Implications?

- Preference for compatibility, recognizing that "good forks" can occur under certain conditions:
 - High demand for variety
 - Added functionality without degrading rivals
 - Lots of uncertainty
 - Cheap converters or multi-homing
- Complex trade-offs
 - Variety vs. Compatibility, Innovation vs. Competition
- Recent examples
 - Android anti-forking provisions
 - API copyrightability (e.g., Oracle v Google)

Thank you! tsimcoe@bu.edu, jwats@bu.edu