Dynamic Platform Competition: Optimal Pricing and Piggybacking under Network Effects

Yifan Dou School of Management, Fudan University, China

joint-work with D.J. Wu - IT Management, Scheller College of Business, Georgia Tech, USA

 4^{th} Annual BU Platform Symposium, July 13th, 2017

< □ > < @ > < 注 > < 注 > ... 注

Platform Competition Getting Heated

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Yifan Dou, D. J. Wu Piggybacking strategy in platform competition

イロト イポト イヨト イヨト

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Platform Strategies – Non-Pricing Controls: Piggybacking

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

"Piggybacking Strategy is ... connecting with

an existing user base from a different platform

and stage the creation of value unit in order to

recruit those users to participate."

-- Platform Revolution by Parker, Van Alstyne, and Choudary (2016)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

"Piggybacking Strategy is ... connecting with

an existing user base from a different platform

and stage the creation of value unit in order to

recruit those users to participate."

-- Platform Revolution by Parker, Van Alstyne, and Choudary (2016)

Piggybacking - Importing Adopters from A Different Platform

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

イロト イポト イヨト イヨト

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

イロト イポト イヨト イヨト

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?

- How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?

- How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?
- What are the platform's optimal piggybacking strategies (i.e., piggybacking is endogenous)?

/₽ ▶ < ∃ ▶ <

- How should platforms adjust pricing strategies over time when piggybacking is possible (i.e., piggybacking is exogenous)?
 - Is the pricing competition intensified or alleviated?
- What are the platform's optimal piggybacking strategies (i.e., piggybacking is endogenous)?
 - Complementary or substitutable between offering lower discount and importing external traffic?

/₽ ▶ < ∃ ▶ <

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

ヘロト 人間 とく ヨト く ヨト

2

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

<ロト < 四ト < 回ト < 回ト < 回ト <</p>

3

イロト 不得 トイヨト イヨト

イロト 不得 トイヨト イヨト

イロト イポト イヨト イヨト

• Vast literature on two-sided markets and platform competition

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)

A ∰ ▶ A ∃ ▶ A

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)

/₽ ▶ < ∃ ▶ <

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)

A ∰ ▶ A ∃ ▶ A

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - integrating user base with a complementary platform (Li and Agarwal 2016)

• • • • • • • • • • • •

- Vast literature on two-sided markets and platform competition
 - Wright (2004), Bhargava and Choudhary (2004), Parker and Van Alstyne (2005), Hagiu (2007, 2009), Weyl (2009)
 - Competitive bottleneck: Rochet and Tirole (2003), Armstrong (2006), Hagiu and Halaburda (2014)
- Non-pricing controls similar to piggyback strategies
 - Tipping strategy by building market momentum (Gawer and Cusumano 2008)
 - Adding initial developers to the software platform (Boudreau 2012)
 - Attracting early users with single-side functionalities (Hagiu and Eisenmann 2007) or advertising (Tucker and Zhang 2010)
 - integrating user base with a complementary platform (Li and Agarwal 2016)
- This paper is the first attempt to explore piggyback strategy

 $_{\mbox{Geodesical}}$ analytically under a multi-period and competitive setting $_{\mbox{Tech} \underline{\|}}$ College of Business

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

ヘロト 人間 とく ヨト く ヨト

2

• Two competing platforms: A and B

< □ > < 同 > < 回 > < 回 > < 回

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods

/₽ ▶ < ∃ ▶ <

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1, 2\}$, platform $k \in \{A, B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1, 2\}$, platform $k \in \{A, B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers
- π_{ki} : platform k 's single-period profit in period i

- Two competing platforms: A and B
- Platforms connect consumers (c) and providers (d)
- The lifecycle of the platform technology lasts for two periods
- In period $i \in \{1,2\}$, platform $k \in \{A,B\}$ charges access single-period access fee p_{ki}^c to consumers, and p_{ki}^d to the providers
- π_{ki} : platform k 's single-period profit in period i
- Π_k : platform k 's two-period overall profit

 In each period *i* ∈ {1,2}, an identical mass of new consumers enter the market

• • • • • • • • • • • •

- In each period *i* ∈ {1,2}, an identical mass of new consumers enter the market
- Consumers intends to join one of the platforms (i.e., single-homing)

- In each period *i* ∈ {1,2}, an identical mass of new consumers enter the market
- Consumers intends to join one of the platforms (i.e., single-homing)
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1

- In each period *i* ∈ {1,2}, an identical mass of new consumers enter the market
- Consumers intends to join one of the platforms (i.e., single-homing)
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1
- q_{ki}^c : New consumer demand for platform k in period i,

- In each period *i* ∈ {1,2}, an identical mass of new consumers enter the market
- Consumers intends to join one of the platforms (i.e., single-homing)
- A fraction (denoted by δ) of consumers will lose their interests and leave the platform market after period 1
- q_{ki}^c : New consumer demand for platform k in period i,
- Q_{ki}^c : The cumulative consumer demand for platform k in period i, i.e., $Q_{k2}^c=\delta q_{k1}^c+q_{k2}^c$

周 トイ ヨト イヨト

$$q_{Ai}^c = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^c - p_{Bi}^c}{t} \right)$$

・ 同 ト ・ ヨ ト ・ ヨ

$$q_{Ai}^{c} = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^{c} - p_{Bi}^{c}}{t} + \frac{\beta(Q_{Ai}^{d} - Q_{Bi}^{d})}{t} \right)$$

$$q_{Ai}^{c} = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^{c} - p_{Bi}^{c}}{t} + \frac{\beta(Q_{Ai}^{d} - Q_{Bi}^{d})}{t} \right)$$

伺下 イヨト イヨ

$$q_{Ai}^{c} = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^{c} - p_{Bi}^{c}}{t} + \frac{\beta(Q_{Ai}^{d} - Q_{Bi}^{d})}{t} \right)$$

• ρ : total number of new arrivals in each period

$$q_{Ai}^{c} = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^{c} - p_{Bi}^{c}}{t} + \frac{\beta(Q_{Ai}^{d} - Q_{Bi}^{d})}{t} \right)$$

- ρ: total number of new arrivals in each period
- β: the surplus derived by a consumer from the participation of each provider (i.e., consumer-side network effects)

$$q_{Ai}^{c} = \frac{\rho}{2} \left(1 - \frac{p_{Ai}^{c} - p_{Bi}^{c}}{t} + \frac{\beta(Q_{Ai}^{d} - Q_{Bi}^{d})}{t} \right)$$

- ρ: total number of new arrivals in each period
- β: the surplus derived by a consumer from the participation of each provider (i.e., consumer-side network effects)
- "Transportation" cost: t

• Providers believe that both platforms are identical

< □ > < 同 > < 回 > < 回 > < 回

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)

< □ > < 同 > < 回 > < 回 > < 回

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)
- Providers can join both platforms simultaneously

伺下 イヨト イヨ

- Providers believe that both platforms are identical
- Providers have full flexibility to access each platform in each period (i.e., multi-homing)
- Providers can join both platforms simultaneously
- Q_{ki}^d : The platform demand on the provider side for platform k in period i

/₽ ▶ < ∃ ▶ <

Multi-homing Provider: The Competitive Bottleneck

Yifan Dou, D. J. Wu Piggybacking strategy in platform competition

イロト イポト イヨト イヨト

э

SAC

• Provider demand in period $i \in \{1, 2\}$ for platform k is given by

$$Q_{ki}^d = \alpha Q_{ki}^c - p_{ki}^d$$

< □ > < 同 > < 回 > < 回 > < 回

• Provider demand in period $i \in \{1,2\}$ for platform k is given by

$$Q_{ki}^d = \frac{\alpha Q_{ki}^c}{\rho_{ki}^d} - p_{ki}^d$$

α: the profit made by a provider on every consumer (i.e., provider-side network effects)

$$(\alpha + \beta)^2 < 4t,$$

 which ensures the platform owner's optimization problem is well-behaved

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$(\alpha + \beta)^2 < 4t,$$

- which ensures the platform owner's optimization problem is well-behaved
- Standard in literature: e.g., Armstrong (2006) imposes $(\alpha_1 + \alpha_2)^2 < 4t_1t_2$, Hagiu and Halaburda (2014) impose $\alpha + \beta < 2$, etc.

< □ > < □ > < □ > < □ > < □ > < □ >

Platform Profit Functions

Using backward induction, we solve period-2 competition pricing equilibrium first

$$\max_{p_{k2}^c, p_{k2}^d} \quad \pi_{k2}(p_{k2}^c, p_{k2}^d | Q_{k1}^c) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Platform Profit Functions

Using backward induction, we solve period-2 competition pricing equilibrium first

$$\max_{p_{k2}^c, p_{k2}^d} \quad \pi_{k2}(p_{k2}^c, p_{k2}^d | Q_{k1}^c) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d$$

Then solve for the period-1 pricing equilibrium

 $\max_{p_{k1}^c, p_{k1}^d} \quad \pi_{k1} + \lambda \pi_{k2} = p_{k1}^c Q_{k1}^c + p_{k1}^d Q_{k1}^d + \lambda \pi_{k2}((p_{k2}^c)^*, (p_{k2}^d)^*)$

Platform Profit Functions

 Using backward induction, we solve period-2 competition pricing equilibrium first

$$\max_{p_{k2}^c, p_{k2}^d} \quad \pi_{k2}(p_{k2}^c, p_{k2}^d | Q_{k1}^c) = p_{k2}^c Q_{k2}^c + p_{k2}^d Q_{k2}^d$$

Then solve for the period-1 pricing equilibrium

 $\max_{p_{k1}^c, p_{k1}^d} \quad \pi_{k1} + \lambda \pi_{k2} = p_{k1}^c Q_{k1}^c + p_{k1}^d Q_{k1}^d + \lambda \pi_{k2}((p_{k2}^c)^*, (p_{k2}^d)^*)$

• $\lambda \in [0,1]$: The discount factor

Platforms are identical

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

SAC

- Platforms are identical
- $\lambda > 0$ in period-1 profit maximization

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Platforms are identical
- $\lambda > 0$ in period-1 profit maximization

Proposition 1

Under two-period symmetric duopoly, the optimal pricing strategies of platform $k \in \{A, B\}$ are given by

$$(p_{k1}^{c})^{*} = t - \frac{\alpha(3\beta + \alpha)}{8} - \frac{t\delta(1 + \delta)(16t - \alpha^{2} - 6\alpha\beta - \beta^{2})\lambda}{12t - \alpha^{2} - 4\alpha\beta - \beta^{2}},$$

$$(p_{k1}^{d})^{*} = \frac{\alpha - \beta}{8};$$

$$(p_{k2}^{c})^{*} = (1 + \delta) \left[t - \frac{\alpha(3\beta + \alpha)}{8} \right], \ (p_{k2}^{d})^{*} = \frac{(\alpha - \beta)(1 + \delta)}{8}.$$

(日) (同) (三) (三)

Corollary 1

Under symmetric duopoly, the following statements hold true:

< □ > < 同 > < 回 > < 回 > < 回

Corollary 1

Under symmetric duopoly, the following statements hold true:

There exists a threshold λ̂ such that subsidizing consumers with a negative price becomes optimal when λ > λ̂. The subsidizing strategy is not affected by λ in period 2;

Corollary 1

Under symmetric duopoly, the following statements hold true:

- There exists a threshold λ̂ such that subsidizing consumers with a negative price becomes optimal when λ > λ̂. The subsidizing strategy is not affected by λ in period 2;
- 2 It is optimal to subsidize providers if and only if $\alpha < \beta$.

	Consumer (Single-homing)	Provider (Multi-homing)	
Period 1	Subsidize	Not Subsidize	

ς

Armstrong (2006) the competitive bottleneck

	Consumer (Single-homing)	Provider (Multi-homing)	Armstrong (2006)
Period 1	Subsidize	Not Subsidize	the competitive bottleneck

Hagiu and Halaburda (2014)

Considering α and β in single-period model

ς

	Consumer (Single-homing)	Provider (Multi-homing)	
Period 1	$\alpha \text{ or } \beta$	$\beta > \alpha$	

	Consumer (Single-homing)	Provider (Multi-homing)	Armstrong (2006)
Period 1	Subsidize	Not Subsidize	the competitive bottleneck

Hagiu and Halaburda (2014)		Consumer (Single-homing)	Provider (Multi-homing)
in single-period model	Period 1	$\alpha \text{ or } \beta$	$\beta > \alpha$

	Consumer (Single-homing)	Provider (Multi-homing)
Period 1	<i>α, β, λ</i>	$\beta > \alpha$
Period 2	α,β	$\beta > \alpha$

Our two-period model Subsidize early, Charge later on the single-homing side

ς

The Logic Flow of the Research

Stage 1: A simple two-sided competition model of symmetric pricing duopoly

Stage 2: Allow one of the platforms to import a given number of adopters

<ロト < 四ト < 回ト < 回ト < 回ト <</p>

3

SAC

Stage 2: Allow One Platform to Import A Given Number of Consumers

• Platform A (called *rider*) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1

$$Q_{A1}^{c} = Q_{0} + q_{A1}^{c} = Q_{0} + \rho \left[\frac{1}{2} + \frac{\beta (Q_{A1}^{d} - Q_{B1}^{d}) - \tilde{p}_{A1}^{c} + \tilde{p}_{B1}^{c}}{2t} \right]$$
$$Q_{B1}^{c} = \rho - q_{A1}^{c}.$$

伺下 イヨト イヨ

Stage 2: Allow One Platform to Import A Given Number of Consumers

- Platform A (called *rider*) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1
- Platform B (called *dummy*) competes with an initial disadvantage on consumer side

$$Q_{A1}^{c} = Q_{0} + q_{A1}^{c} = Q_{0} + \rho \left[\frac{1}{2} + \frac{\beta (Q_{A1}^{d} - Q_{B1}^{d}) - \tilde{p}_{A1}^{c} + \tilde{p}_{B1}^{c}}{2t} \right]$$
$$Q_{B1}^{c} = \rho - q_{A1}^{c}.$$

くぼう くほう くほう
Stage 2: Allow One Platform to Import A Given Number of Consumers

- Platform A (called *rider*) is endowed with an initial installed base Q_0 on consumer side in the beginning of period 1
- Platform B (called *dummy*) competes with an initial disadvantage on consumer side

$$Q_{A1}^{c} = Q_{0} + q_{A1}^{c} = Q_{0} + \rho \left[\frac{1}{2} + \frac{\beta (Q_{A1}^{d} - Q_{B1}^{d}) - \tilde{p}_{A1}^{c} + \tilde{p}_{B1}^{c}}{2t} \right]$$
$$Q_{B1}^{c} = \rho - q_{A1}^{c}.$$

• We are interested in the partial derivatives $\Delta_{ki}^c = \frac{\partial (\tilde{p}_{ki}^c)^*}{\partial Q_0}$ and $\Delta_{ki}^d = \frac{\partial (\tilde{p}_{ki}^d)^*}{\partial Q_0}$ which reflect the impacts of piggybacking on pricing strategies

Georgia Ernest Scheller Jr. Tech College of Busines

イロト 不得 トイヨト イヨト

э

DQC

		Consumer Side	Provider Side
Period 1	Both raise prices	$\alpha >> \beta$	$\alpha < \beta$
	Both reduce prices	$\alpha \ll t, \beta \ll t$	$\alpha > \beta$
	One platform reduces the price	Dummy	Rider

ヘロト 人間 とく ヨト く ヨト

Ξ.

SAC

		Consumer Side	Provider Side
Period 1	Both raise prices	$\alpha >> \beta$	$\alpha < \beta$
	Both reduce prices	$lpha \ll t, eta \ll t$	$\alpha > \beta$
	One platform reduces the price	Dummy	Rider
Period 2	Both raise prices	Never	$\alpha < \beta$
	Both reduces prices	All { <i>α</i> , <i>β</i> }	$\alpha > \beta$

ヘロト 人間 とく ヨト く ヨト

Ξ.

SAC

The Logic Flow of The Research

イロト 不得 トイヨト イヨト

э

 Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects

AP + 4 B + 4 B

- Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects
- It may lead symmetric platforms to concentrate on different sides of the markets

/₽ ▶ < ∃ ▶ <

- Piggybacking in competition might either intensify or alleviate the pricing competition between platforms, depending on the strength of cross-side network effects
- It may lead symmetric platforms to concentrate on different sides of the markets
- In the long run (2nd period), the pricing competition becomes more intensified on the single-homing side

The Logic Flow of The Research

イロト 不得 トイヨト イヨト

э

Stage 3: Endogenous Piggybacking

• When acquiring Q_0 is costly, we modify Rider's period 1 objective function

$$\max_{p_{A1}^c, p_{A1}^d, Q_0} \quad \Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - bQ_0^2 + \lambda \Pi_{A2}^*,$$

伺 ト イ ヨ ト イ ヨ ト

Stage 3: Endogenous Piggybacking

• When acquiring Q_0 is costly, we modify Rider's period 1 objective function

$$\max_{p_{A1}^c, p_{A1}^d, Q_0} \quad \Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - b Q_0^2 + \lambda \Pi_{A2}^*,$$

• bQ_0^2 : the total investment for the acquisition of Q_0

Stage 3: Endogenous Piggybacking

• When acquiring Q_0 is costly, we modify Rider's period 1 objective function

$$\max_{p_{A1}^c, p_{A1}^d, Q_0} \quad \Pi_{A1} = p_{A1}^c Q_{A1}^c + p_{A1}^d Q_{A1}^d - b Q_0^2 + \lambda \Pi_{A2}^*,$$

- bQ_0^2 : the total investment for the acquisition of Q_0
- We are interested in the partial derivatives $\Delta_{ki}^c = \frac{\partial (\tilde{p}_{ki}^c)^*}{\partial b}$ and $\Delta_{ki}^d = \frac{\partial (\tilde{p}_{ki}^d)^*}{\partial b}$ which reflect the complementarity or substitutability between piggybacking and pricing strategies

4 E N 4 E N 4 E N 4 E N

When rider incurs a piggybacking cost of bQ_0^2 , at equilibrium, the following holds when b increases.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

nac

When rider incurs a piggybacking cost of bQ_0^2 , at equilibrium, the following holds when b increases.

) Rider's
$$Q_0^*$$
 decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);

When rider incurs a piggybacking cost of bQ_0^2 , at equilibrium, the following holds when b increases.

- Rider's Q_0^* decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);
- ² On the consumer side, pricing discount and piggybacking is complementary (i.e., $\frac{(\tilde{p}_{A1}^c)^*}{\partial b} > 0$) only when $t < \hat{t}$ and $\frac{\beta}{\alpha} < \hat{u}$, otherwise they are substitutable;

/72 ▶ < ∃ ▶

When rider incurs a piggybacking cost of bQ_0^2 , at equilibrium, the following holds when b increases.

- Rider's Q_0^* decreases (i.e., $\frac{Q_0^*}{\partial b} < 0$);
- ² On the consumer side, pricing discount and piggybacking is complementary (i.e., $\frac{(\tilde{p}_{A1}^c)^*}{\partial b} > 0$) only when $t < \hat{t}$ and $\frac{\beta}{\alpha} < \hat{u}$, otherwise they are substitutable;
- On the provider side, they are always substitutable (i.e., $\frac{\partial (\tilde{p}_{Ai}^{d})^{*}}{\partial b} < 0$) if and only if $\alpha > \beta$.

A (1) > A (2) > A

• Consumer-side strategy (single-homing): Platforms should import either more or fewer consumers in together with a greater price discount, depending on the degree of horizontal differentiation and cross-side network effects

- Consumer-side strategy (single-homing): Platforms should import either more or fewer consumers in together with a greater price discount, depending on the degree of horizontal differentiation and cross-side network effects
- Provider-side strategy (multi-homing): Platform should always offer a smaller discount to providers when more consumers are imported

The Logic Flow of The Research

イロト イポト イヨト イヨト

э

• We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms
 - In the long run, the pricing war gets more heated

< ロ > < 同 > < 回 > < 回 > < 回 >

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms
 - In the long run, the pricing war gets more heated
 - How to optimize pricing and piggybacking strategy in tandem

< ロ > < 同 > < 回 > < 回 > < 回 >

- We develop a formal model that intends to capture the novel piggybacking strategies arise from the sharing economy
- Our model sheds lights to the following questions:
 - How piggybacking affect the dynamic pricing competition between platforms
 - It either intensifies or alleviates the pricing/subsidizing wars between platforms
 - In the long run, the pricing war gets more heated
 - How to optimize pricing and piggybacking strategy in tandem
 - Import more, subsidize more

< ロ > < 同 > < 回 > < 回 > < 回 >

Thank You!

 \mathbf{Q} & \mathbf{A}

Yifan Dou, D. J. Wu Piggybacking strategy in platform competition

イロト イロト イヨト イヨト

2

DQC