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Abstract

A major result in the two-sided platform literature identifies interdependence be-

tween the two sides served by the same platform; the policy implication is that a

platform may maximize total profits by subsidizing one side.

In this paper we develop a model for platform competition in a differentiated set-

ting (a Hoteling line), which is similar to other models in the literature. However we

focus on the case where at least some agents on each side multihome, and we show that

in that case the strategic interdependence between the two sides of the same platform

may be of lesser importance, or even not be present at all, compared to models that

assume single-homing on at least one side of the market. The implication is that when

multihoming may be present on both sides of the market, the benefit of subsidizing

one side (typically the one with higher price elasticity) is diminished or may not be

present at all.

Keywords: network effects. two-sided markets, platforms, platform subsidies, multi-

homing

∗Views presented here are that of the authors and do not represent the position of Bank of Canada
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1 Introduction

The literature on competition between two-sided platforms, going back to Armstrong (2006),

mostly ignores the case of multihoming agents on both sides. Most analyses either consider

single homing by participants on both sides of a platform, or allow multihoming by partici-

pants on one side of the platform while they impose single homing on the other side. These

models also typically assume full coverage on both sides, i.e. that all agents participate on

at least one platform. The few analyses allowing for multihoming on both sides tend to

apply in specialized settings, like Caillaud and Jullien (2003) who consider multihoming in

a matching setting, where multihoming agents get additional chances at being matched.

The argument in favor of not considering multihoming on both sides of the market is

that if one side of the market fully multihomes, there is no benefit to allowing the other side

of the market to also multihome; as all possible pairs of agents could already connect with

each other. This assumption is limiting, however, if each side of the market only partially

multihomes, in which case multihoming on the other side does generate new potential inter-

actions between agents on the two sides of the market. It is also limiting if the platforms

are differentiated, in which case two agents meeting on one platform would create different

surplus than the same agents meeting on a different platform.

A major result in the two-sided platform literature is that there is interdependence be-

tween the two sides served by the same platform; meaning that lowering the price on one side

can make the platform more competitive on the other side (without lowering its price there).

The policy implication is that a platform may maximize its total profits by subsidizing one

side, a typical example being that it may be optimal for Adobe to offer Acrobat Reader to

consumers at a zero, or even a negative, price, in order to maximize its profits from the sale

of the corresponding authoring tools.

In this paper we develop a model for platform competition in a differentiated setting (a

Hoteling line), which is similar to other models in the literature. However we focus on the

case where at least some agents on each side multihome, and we show that in that case

the strategic interdependence between the two sides of the same platform may be of lesser

importance, or even not be present at all, compared to models that assume single-homing on

at least one side of the market. The implication is that when multihoming may be present

on both sides of the market, the benefit of subsidizing one side (typically the one with higher

price elasticity) is diminished or may not be present at all.
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2 Model

We are analyzing following model:

• two-sided Hoteling competition

• side X, x ∼ U [0, 1]

• side Y , y ∼ U [0, Y ], Y T 1

• two platforms, A and B, located at 0 and 1 (Y )

• platforms charge pi, i = A,B on side X and ri on side Y

• user located at x on side X (resp. y on Y ) receives following utility from joining

platform i = A,B

u(x;A) =Ax + αyA − pA − zx (1)

u(x;B) =Bx + α(Y − yB)− pB − z(1− x)

u(y;A) =Ay + βxA − rA − qy

u(y;B) =By + β(1− xB)− rBq(Y − y)

where yA etc is the number of agents on side Y that participate in platform A.

• Ax, Ay — stand-alone values of platform A for X and Y users

• α, β — “network effect” of the other side on side X and Y

• z, q — “transportation cost”: loss of utility due to preference mis-match, or set-up

costs

The setup of this model is shown in Figure 1.

3 Single-homing benchmark

We begin by analyzing as a benchmark the case with full coverage and single-homing, as is

typical in most of the literature on platform competition.
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Figure 1: Setup

• imposing single-homing and full coverage: xA = xB = x̃ s.t. u(x̃;A) = u(x̃;B) and

yA = yB = ỹ

x̃ =
z + Ax −Bx + 2αỹ − αY − pA + pB

2z

ỹ =
qY + Ay −By + 2βx̃− β − rA + rB

2q

• x̃ depends on pA, pB and rA, rB

• interdependence for each platform between its prices on the two sides

4 Allowing for multihoming on both sides

We now allow for multihoming on both sides of a platform.

Utility when multihoming. We first characterize the utilities agents get when multi-

homing, u(x;A&B) and u(y;A&B).

The market coverage of platform A is given by xA, and 1 − xB is the market coverage

of platform B. Multihoming on side X occurs when xA > xB. Multihoming on both sides
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occurs when xA > xB and yA > yB. In such a case, an x agent who is multihoming may

meet the same y agents on both platforms, as y agents are multihoming as well; and vice

versa.

There are many possibilities for the functional form of u(x;A&B) and u(y;A&B). When

two agents meet on two different platforms, they could receive the network benefit twice

(once on each platform). We call that case “double-counting” of the network effects from

the overlapping agents. At the other extreme, the agents may get the benefit only from

meeting once, and no additional benefit from meeting again — “no double counting.” In

the intermediate case, meeting for the second time may yield partial additional network

advantage — “partial double counting.” Similarly we need to consider the benefit from

intrinsic values of the two platforms when an agent is multihoming.

For the base case of our analysis, we assume double counting of intrinsic values, but no

double counting of the network effect from overlapping agents. Even though X side users

may meet some Y side users on both platforms, they only get the network benefit once.

Therefore, joining both platforms when yA ≥ yB yields

u(x;A&B) = Ax +Bx + αY − pA − pB − z

Utility of an agent joining A only, without having joined the other platform, is given by

u(x;A). Note that

u(x;A&B) < u(x;A) + u(x;B) if yA > yB

Similarly for u(y;A&B).

Decision to participate in both platforms. An agent will multihome when multihom-

ing yields higher utility than joining only platform A, only platform B, or not joining either

of the platforms.

Utility of an agent joining A without having joined the other platform is given by u(x;A)

as in (1). Therefore, the agent indifferent between joining platform A only and not joining

any platform at all, x̄A, is characterized by u(x̄A;A) = 0, i.e.,

x̄A =
Ax + α yA − pA

z
(2)

Users x < x̄A would prefer to join A while users x > x̄A would prefer not to join at all (see

Figure 2a). I.e., x̄A would be the market captured by platform A if it was the only platform.
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Similarly, given only the choice of platform B or no platform, all users x > x̄B would

prefer to join B, while x < x̄B would not join (see Figure 2b), where

x̄B = 1− Bx + α (Y − yB)− pB
z

(a) (b)

Figure 2

With multihoming, agents will consider joining A while they already participate in B.

In such a case, user x’s utility from joining A in addition to B is given by

u(x;A|B) = u(x;A&B)− u(x;B) . (3)

Note that if there is multihoming on side Y , this incremental utility u(x;A|B) must be

less than u(x;A).1 That means that some agents who might have joined A if no other

platform was available, would not have joined A as the second platform. I.e., for some x,

u(x;A|B) < 0 < u(x;A). Thus, the actual market captured by platform A in the case of

multihoming on both sides is smaller than x̄A.

To characterize the size of the market captured by platform A in the case of multihoming

on both sides, we need to identify the agent who is indifferent between joining A in addition to

B, and just staying with B only. This agent, denoted by x̂A, is characterized by u(x̂A;A|B) =

0 ⇐⇒ u(x̂A;A&B) = u(x̂A;B).

x̂A =
Ax + α yB − pA

z
(4)

1Another thing to note is that (3) is valid no matter what we take for u(x;A&B), i.e., whether we double

count intrinsic values and the network effect from overlapping platform members.
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In the case of multihoming on both sides, platform A captures market of size x̂A on side X.

It is straightforward to note that since yA > yB, then x̂A < x̄A.

Figure 3: Market coverage of platform A when multihoming on both sides occurs, x̂A

Notice the difference between formulas (2) and (4). The threshold x̄A depends on the

number of opposite-side agents available on the same platform, yA. That is, it depends on

pricing decision of the same platform A. But x̂A depends on yB, which depends on the

pricing decision of the other platform.

Interestingly, platform A cannot make itself more appealing to agents on side X by

increasing the number of Y agents it attracts. In fact, the attractiveness of platform A to

agents on side X depends on side Y agents attracted by the other platform; this is because

yB represents the number of side Y agents that are exclusive to platform A. As platform B

becomes more attractive to side Y agents, the number of such agents joining A exclusively

decreases—even if A can increase its overall coverage of side Y . This lowers the attractiveness

of joining A for the marginal side X agent, because the marginal side X agent is deciding

whether to join A in addition to B, not whether to join either A or no platform at all; and

the marginal side X agent already has access to these side Y agents on platform B.
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More formally, the profit maximizing x̄∗A depends on pA and rA, the two prices set by

platform A. The profit maximizing x̂∗A, however, depends on pA and rB, but not on rA. Thus

x̂∗A, which is the relevant profit maximizing price on side X, does not depend on the price

set by platform A on the Y side.

5 Equilibria with multihoming on both sides

The focus of our analysis in this section is to characterize equilibria where agents on both

sides multihome, and especially equilibria where only some agents on both sides multihome,

while others singlehome. We call it partial multi-homing.

(a) (b)

Figure 4: Participation decision with multihoming on both sides

Partial multihoming on both sides occurs in equilibrium when x̂A > x̂B and ŷA > ŷB.

Note also that in such a case: xA = x̂A, xB = x̂B, yA = ŷA and yB = ŷB. Using the derivation
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of the previous section, we obtain

x̂A =
Ax + αŷB − pA

z

x̂B = 1− Bx + α(Y − ŷA)− pB
z

ŷA =
Ay + βx̂B − rA

q

ŷB = Y − By + β(1− x̂A)− rB
q

(5)

Note the interaction between x̂A and ŷB (and therefore between pA and rB), but NOT

between x̂A and ŷA. That is, there is no strategic interaction between pricing on the two

sides of the same platform.

Proposition 1 If both sides multihome and there is no double counting of the network ben-

efits from meeting the same other side agent on both platforms, there is no interdependence

of prices on the two sides of the sane platform when maximizing profit. I.e., the profit

maximizing p∗i does not depend on r∗i .

Proof. This follows directly from FOC for profit maximization. Technically, ri does not

enter the FOC for maximizing profit with respect to pi.

Corollary 1 In the environment described in Proposition 1, it is never profitable for a plat-

form to subsidize one side of the market, i.e., charge a negative price.

The strategic interaction between x̂A and ŷB is fueled by the strength of the network

effects). When network effects are strong, i.e., αβ > q z, then no pure strategy equilibrium

with partial multihoming exists. However, there may exist equilibria with multihoming on

both sides where thresholds are outside of the interval, even for strong network effects.

In the rest of the paper we focus on the case where network effects are weaker than

transportation costs, i.e., αβ < q z.

For αβ < q z, equilibrium with partial multihoming on both sides is characterized by
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x̂∗A =
q(Ax(2qz − αβ)− α(Byz − 2qY z + zβ + Y αβ))

(qz − αβ)(4qz − αβ)

ŷ∗A =
z(Ay(2qz − αβ)− β(Bxq − 2qz + qY α + αβ))

(qz − αβ)(4qz − αβ)

x̂∗B =
2q2z(2z − Y α) + α2β2 +Bxq(−2qz + αβ) + qα(Ayz − 4zβ + Y αβ)

(qz − αβ)(4qz − αβ)

ŷ∗B =
4q2Y z2 + qz(Ax − 2z − 4Y α)β + α(z + Y α)β2 +Byz(−2qz + αβ)

(qz − αβ)(4qz − αβ)

And

p∗A = −Ax(−2qz + αβ) + α(Byz − 2qY z + zβ + Y αβ

4qz − αβ

r∗A = −Ay(−2qz + αβ) + β(Bxq − 2qz + qY α + αβ)

4qz − αβ

p∗B =
(Bx(2qz − αβ)− α(Ayz − 2qY z + zβ + Y αβ)

4qz − αβ

r∗B =
By(2qz − αβ)− β(Axq − 2qz + qY α + αβ)

4qz − αβ

Proposition 2 For an appropriate range of parameters, there exists a pure strategy equilib-

rium with multihoming on both sides .

Proof. For now, we prove the existence by providing a set of parameters for which such

an equilibrium exists. We plan to derive soon an analytical formulation for the applicable

range of parameters.

Consider the following parameter values: α = β = 0.1; q = z = 0.2; Ax = Ay =

Bx = By = 0.26; Y = 1. These values result in the following pure strategy equilibrium:

pA = rA = pB = rB = 0.12;xA = yA = 0.8;xB = yB = 0.2 and profits πA = πB = 0.192. �

Note that for other parameter values, different pure strategy equilibria are possible. For

instance, equilibria may arise where the market on one or both sides is not fully covered, or

where singlehoming arises endogenously.
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6 Meeting the same agent on additional platforms yields

incremental network benefit

So far, we have assumed that participants that overlap on multiple networks do not derive

additional benefit from being able to meet on more than one platform; in other words

there is no double counting of overlapping network members and no double counting of

the corresponding network effects. Under this assumption, we have arrived at equilibrium

conditions (5), which indicate that there is no interdependence between pricing decisions on

the two sides by the same platform. It is a striking result, especially when compared with

the single homing benchmark.

As we have noted in Section 4, there are many possibilities for how utility of multihomers

is specified. Different specifications may be more suitable for different markets.

In this section, we generalize the analysis, by allowing partial double counting of the

network effects in the utility of multihomers. That is, meeting the same agent on the second

platform yields some incremental network benefit above the network benefit from meeting

him on the first platform. As we will see, when the partial double counting is allowed, the

interdependence in pricing of two sides by the same platform is present again. However, the

strength of this interaction directly depends on the size of the double-counting. With very

little double-counting, the interdependence is negligibly small.

Our aim in this analysis is to point out that while the interdependence plays primary role

in environments with assumed single-homing, the interdependence is of lesser importance,

and may disappear completely, when the platforms are competing in an environment where

multihoming on both sides is possible.

Set up of the generalized problem. The measure of the multihoming agents on side Y

is yA − yB. The utility of a multihoming agent x is

u(x;A&B,ω) = Ax +Bx + α[Y + ω(yA − yB)]− pA − pB − z ,

where ω ∈ [0, 1] is the size of the double-counting. For ω = 0, there is no double counting.

In the special case of ω = 1, u(x;A&B,ω = 1) = u(x,A) + u(x,B). That is, the agent gets

full double benefit from meeting a Y agent twice on the two platforms. In a way, it means

that the two platforms provide different benefits, and there isn’t much competition between

them.
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Now, even with ω, formula (3) is still valid

u(x;A|B,ω) = u(x;A&B,ω)− u(x;B) = Ax + α[ωyA + (1− ω)yB]− pA − z x .

And thus

x̂A(ω) =
Ax + α[ωyA + (1− ω)yB]− pA

z

Based on the discussion at the end of Section 4, ω measures the interdependence between

the price platform A sets on side Y , and how attractive it is to agents on side X. This

interdependence ranges with the value of ω, and for small ω is close to negligible. With

small ω, the price set by the other platform on side Y is much more important to determining

x̂A.

Note also that for ω = 1, x̂A(ω = 1) = x̄A, while for ω < 1, x̂A(ω) < x̄A.

Proposition 3 If there is some incremental network benefit of meeting the same other-side

agent on both networks (”double counting” of common agents), the strength of the interde-

pendence between the prices charged on the two sides by the same platform is determined by

the strength of the above double counting.

7 Empirical testing with data from credit card use by

Canadian consumers and merchants

• Credit cards offer a well known example of two sided platforms, the two sides being

the merchants and the consumers.

• Merchants typically accept several credit cards, thus multihoming is common in the

merchant side of the platform.

• Most consumers also use several credit cards, and thus also multihome (in different

degrees). While there is a clear benefit to a consumer of having a credit card accepted

by a merchant they desire to do business with, there is typically little incremental

benefit in possessing more than one credit card accepted by the merchant; thus the

benefit of a consumer and a merchant “meeting” on multiple platforms is limited after

the ability to transact is established (in our terminology, there is no “double counting”

of the interaction benefit).
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To empirically test the predictions of our analysis, we draw on a unique data set from

a surveys of Canadian consumers and merchants conducted by Bank of Canada in

2014 and 2017. Participants to the consumer survey were asked to report all credit

cards they hold, and to identify all purchases they made over the course of three

days, including which credit card they used for the credit card purchases. This data

will allow us to estimate the extend of multihoming on the users side. The merchant

survey asked participants whether they accept different credit cards and what are the

fees they pay for each credit card they accept. The appendix shows examples of the

information collected from participating consumers, including the diary entry for a

typical transaction, and participating merchants. We are in the process of analyzing

the data to determine whether credit cards that face higher multihoming on both sides

are less likely to offer subsidies, as predicted by our theoretical results.

8 Conclusion

We analyze platform competition when agents multihome on both sides.

• Literature mostly ignores this case – and derives results where the pricing interdepen-

dence between the sides is central

• Once we allow for multihoming on both sides, it is important to specify what is the

utility of the multihoming users, who can also meet multihoming users on the other

side — that is, they meet each other twice on the two platforms. Do they obtain the

benefit of interaction twice, or only once?

• In the base model, we decide we look at the case where they obtain the benefit only

once (no-double counting). For this specification, we show:

– under certain conditions, equilibria exist with multihoming on both sides

– when we have multihoming on both sides, the interdependence between the two

sides plays out differently than under single-homing

– specifically, there is no interdependence between the two sides of the same platform

– optimal pricing for a platform on one side depends on the prices of the other

platform only
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– thus, it is never optimal to subsidize the other side (no divide-and-conquer strat-

egy)

– that is very different from analyses imposing single-homing on one or both sides

While we start with the extreme specification where meeting the same agent for the second

time brings no benefit, we also extend our analysis to more general formulation, where the

agents can gain partial benefit from meeting each other the second time.

• In this case, the interdependence is present again. However, it strongly depends on

the size of the benefit from the second meeting. If the partial benefit is very small, the

interdependence is also negligible. At the same time, pricing of the other platform is

a much more important factor.

In conclusion, we need to be wary of overstating the importance of the interdependence

even when it does exist, or we risk missing the important drivers of the market equilibrium,

and give wrong strategic advice.

Finally, we test the validity of our theoretical predictions by analyzing a large data set

of credit card use by Canadian consumers, with significant multihoming present on both the

merchant and the consumer side of the market.
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Appendix

Selected questions from surveys

In this appendix we show examples of the questions in the consumer and merchant surveys.

While the complete instruments remain the property of the Bank of Canada and Ipsos, we

have been granted access to the questions needed to test our theoretical predictions.
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