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Abstract

Digital platforms provide a variety of technology-enabled tools that enhance market transparency,

such as real-time monitoring, ratings of buyers and sellers, and low-cost complaint channels. How do

these innovations affect moral hazard and service quality? We investigate this problem by comparing

driver routing choices and efficiency on a large digital platform, Uber, with traditional taxis. The identi-

fication is enabled by matching taxi and Uber trips at the origin-destination-time level so they are subject

to the same underlying optimal route, by exploiting characteristics of the pricing schemes that differen-

tially affect the incentives of taxi and Uber drivers in various circumstances, and by examining changes

in behavior when drivers switch from taxis to Uber. We find that (1) taxi drivers route longer in distance

than matched Uber drivers on metered airport routes by an average of 8%, with non-local passengers on

airport routes experiencing even longer routing; (2) no such long routing is found for short trips in dense

markets (e.g., within-Manhattan trips) or airport trips with a fixed fare; and (3) long routing in general

leads to longer travel time, instead of saving passengers time. These findings are consistent with the plat-

form tools reducing driver moral hazard, but not with competing explanations such as driver selection or

differences in driver navigation technologies.

∗We thank Keith Chen, Dean Eckles, Andrey Fradkin, Xiang Hui, John Horton, and Erina Ytsma, as well as seminar participants
at MIT, Uber, AEA, Marketing Science, SICS, and NBER Summer Institute Industrial Organization Workshop and the NBER
Digitization Workshop, CIST, FCC, and WISE for their valuable comments and suggestions. The MIT Initiative on the Digital
Economy provided generous research support, and Uber provided essential data. Dowlatabadi is a current employee at Uber. The
views expressed here are those of the authors and do not necessarily reflect those of Uber Technologies, Inc. All errors are ours.

†mengl@wustl.edu
‡erikb@mit.edu
§jasond@uber.com

mengl@wustl.edu
erikb@mit.edu
jasond@uber.com


1 Introduction

Digital platforms are growing rapidly, and so are their economic effects. Examples include large platforms

such as Uber for ride-hailing and Airbnb for accommodations, as well as a growing number of smaller

platforms such as ClassPass for fitness studios and Rover for dog-walking. Digital platforms are often

designed to mitigate information asymmetry problems through the use of new technologies and incentive

systems, such as ratings of buyers and sellers, real-time monitoring, and low-cost complaint channels. For

example, 73.5% of New York City (NYC) UberX trips are rated by passengers and Uber fare adjustments

are made for 1 in every 170 trips. In contrast, NYC taxi complaints are much more difficult to lodge and

occur only 1 in every 6,356 trips.

One of the biggest barriers to market efficiency is asymmetric information, particularly moral hazard.

Do digital platforms reduce moral hazard and improve service quality, compared to traditional settings? In

this paper, we study this question by comparing a particularly successful and pervasive digital platform,

Uber, with traditional taxis. Our findings will be of broad interest to economists because we document a

significant effect of this digital platform in reducing moral hazard. This is essential for a better understanding

of the nature of online-offline competition, welfare in the digital economy, and ultimately the potential for

using technology and platform design to improve many other markets where moral hazard and asymmetric

information is significant.

Specifically, we investigate driver detour, defined as the extra distance a driver adds to the fastest route.

This is a measure of driver moral hazard in our context, and this type of strategic behavior is found prevalent

among taxi drivers (Balafoutas et al. (2013), Rajgopal and White (2015), Balafoutas et al. (2017), and Liu

et al. (2017)). In a hypothetical situation where a taxi driver and an Uber driver drive between the same two

points at the same time, the difference in their routing decisions should reflect factors that affect the benefits

and costs of detouring. To the extent that features such as shared GPS navigation, tech-aided monitoring,

ratings, and digital feedback increase market transparency for passengers and therefore increase penalty of

driver moral hazard, the Uber driver’s routing is likely more efficient than that of the comparable taxi driver

in situations with high moral hazard payoffs for both drivers.

A key challenge exists in identifying the effects of driver moral hazard — driver moral hazard is not

directly observed. The inability to directly observe driver moral hazard is due to the lack of optimal routing

benchmark at the time of the trip. For example, using a long-run average trip distance queried from routing

engines such as Google Maps may underestimate the true real-time optimal route and overestimate the detour

if there was a temporary road closure that required a longer route than indicated by the long-run average.
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Therefore, one needs to construct valid comparison groups to infer opportunistic behavior by using detailed

trip-level data of both taxis and Uber. We overcome this challenge by leveraging public taxi trip records and

proprietary UberX data in NYC and matching taxi and Uber trips at a strict origin-destination-time level —

both the pick-ups and drop-offs of a taxi trip and its matched Uber trip have to be from the same small area

centered at a street intersection, on the same street, following in the same traffic direction, and less than or

equal to 15 minutes apart. As a result, the drivers of the matched trips are subject to the same real-time

optimal routes, even if these optimal routes are not directly observed.

These matched pairs of taxi and Uber trips then become our units of analysis. We explore the variation

in the within-match taxi-Uber routing difference, across route types that represent different moral hazard

incentives. We find that taxi drivers and Uber drivers share essentially the same driving distances when

completing short trips that start and end in Manhattan; in fact, their routing behavior on this type of trips

appears to be quite efficient when compared to a routing engine benchmark. However, when on airport

trips where both taxi and Uber fares are metered in trip distance, taxi drivers on average route longer in

distance relative to Uber drivers by 8%. Taxi drivers appear to route even longer in distance when the airport

passenger is from outside the New York City area. However, for trips between Manhattan and JFK airport

where taxi fare is a fixed amount while Uber fare is metered, no such taxi long routing is observed.

These empirical findings are consistent with our stylized model of driver moral hazard, where the driver

decides whether and how much to detour and the speed of travel in order to maximize payoff. The key

tension is a trade-off between the costs and benefits of the opportunistic behavior — detour increases driver

earning from the current trip, but at the same time it increases penalty cost in terms of expected monetary

and reputation cost of cheating behavior, as well as opportunity cost, in terms of expected forgone earn-

ings (detouring usually prolongs travel time, reducing opportunities for additional trips). It then follows

that drivers lack detour incentives when driving short trips in dense markets (e.g., within-Manhattan trips),

because of low return due to short distance and high opportunity cost due to high demand at the drop-off

location. Similarly, the detour incentive is essentially “shut down” when the airport fare is fixed. However,

the detour incentive is greater on metered airport trips where the long distance rewards detour more, and

drivers can exploit the information asymmetry further in the case of non-local passengers on these routes.

We explore several competing explanations and find that the data are not compatible with them. First,

the observed moral hazard could be an artifact of increased GPS usage among Uber drivers, which may have

improved their routing compared to taxi drivers. However, if GPS accounts for the 8% increase in taxi-Uber

distance ratio for metered airport trips, the GPS effect1 should be at least as salient for JFK trips, because
1By “GPS effect”, we mean the effect due to technology-enhanced navigation. Note that this is different from the effect of GPS
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JFK trips are significantly longer in distance than metered airport trips. Given that the taxi-Uber distance

ratio is not significantly different from the Manhattan “no detour” benchmark, the GPS-enhanced navigation

cannot convincingly explain the empirical patterns.

The second competing hypothesis we explore is whether taxi drivers possess superior routing informa-

tion than GPS so that they route longer but save passengers time. We focus on a popular route between

Midtown Manhattan and LaGuardia airport where we can identify the particular route drivers take, using

information on bridge/tunnel tolls. We find that taxi drivers frequently choose the bridge that leads to the

longest distance, these long routes on average result in longer travel times when compared to shorter routes

taken by drivers completing similar trips at the same time, and this long-routing strategy is more seen in

taxi drivers with more route-specific experience. Therefore, the findings are not consistent this competing

hypothesis, but rather they lend more nuanced support to our main hypothesis of driver moral hazard.

Another competing explanation is driver selection, instead of moral hazard. On the intensive margin,

it may be that strategic driver types select into profitable routes. We rule this out by controlling for driver

fixed effects and finding no material changes in our results. On the extensive margin, taxi and Uber may

represent different distributions of driver types. While we cannot directly observe and compare types, we

indeed observe significant routing efficiency improvement after taxi drivers became Uber drivers, which

indicates that drivers adapt to new market arrangements via behavioral updating.

Our findings shed light on the incentive devices and pricing schemes as the underlying mechanisms for

the reduced strategic behavior at Uber. As such, our findings have implications for regulators and industry

participants. For taxi regulatory agencies, our results provide support for the development and implemen-

tation of smart phone applications that handle functions such as taxi dispatching and matching with pas-

sengers, digital payment, and passenger monitoring. Also, it is important for taxi regulatory agencies to

re-evaluate the current pricing scheme that rewards taxi cab speeding as well as the impacts of alternative

pricing structures. For digital platforms such as Uber, our findings suggest an opportunity for machine-

learning-based techniques to detect various types of driver opportunistic behavior, which may further en-

hance market transparency and trust building.

The rise of digital platforms has led to an enormous increase in transactions of services that were tradi-

tionally provided offline only, and it also presents new challenges and opportunities for technology-enabled

market designs to improve market efficiency. The taxi industry offers a clean laboratory to study the re-

lationship between technology and incentive design for two main reasons: on one hand, this is a highly

competitive marketplace of a homogeneous, well-defined service (namely, transporting a passenger from

as a monitoring device for passengers.
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one point to another); on the other hand, the rich spatial data allow us to make precise and valid compar-

isons between taxis and Uber, while such counterfactual groups can be difficult to form in other industries.

As a result, evidence from this industry makes a strong and clear inference about the effect of digital plat-

forms on moral hazard and service quality, which can help us better understand similar challenges in other

industries and markets as well.

1.1 Literature and Contribution

Our paper is closely related to several strands of the literature. The first is on how technology, particularly

information technology (IT), mitigates the agency problem in various settings (Tabarrok and Cowen (2015)).

In the typical workplace, IT-enabled monitoring has been found to be productivity-enhancing through com-

plementing performance pay (Aral et al. (2012), Bresnahan et al. (2002)), reducing employee shirking (Na-

gin et al. (2002)) or misconduct (Pierce et al. (2015)), and increasing standard process compliance (Staats

et al. (2016)). In the context of trucking, Hubbard (2000) has found that on-board computers which facilitate

monitoring of drivers increase productivity by improving both drivers’ incentives and managers’ resource

allocation decisions. Duflo et al. (2012) have shown that incentive pay enabled by tech-aided monitoring can

raise teachers’ attendance rate and consequently student performance. Reimers et al. (2018) have found that

insurance companies’ monitoring technologies reduce driver moral hazard and fatal accidents. Sudhir and

Talukdar (2015) have illustrated the role of IT in inducing business transparency by showing more corrupt

businesses resist IT adoption more.

Besides the traditional settings, there are also studies on digital market designs that improve productivity

by regulating agent incentives. Hui et al. (2016) have identified efficiency gains from eBay’s buyer protection

program as a result of reduced seller moral hazard and seller adverse selection. Klein et al. (2016) have

shown that a change in eBay’s policies that led to less biased buyer ratings of sellers also improved seller

effort and quality without inducing sellers to exit the market. Gans et al. (2017) have evaluated the role of

Twitter as a mechanism of consumer voice in disciplining firms for low quality. Liang et al. (2016) have

found that IT-enabled monitoring mitigates moral hazard on an online labor platform.

While these aforementioned studies focus on technological improvements either within the offline or

online setting, we are among the first to provide a direct online-offline comparison to study the relationship

between technology, agent incentives, and quality provision. As many sectors are being digitized, empirical

studies of how incentives and quality provision differ between online and offline markets become crucial for

a better understanding of the nature of online-offline competition.

The second strand of literature our paper is related to is the literature on digital disruption and online-
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offline competition (Bakos (1997), Brown and Goolsbee (2002), Brynjolfsson et al. (2003), Brynjolfsson

and Smith (2000), Forman et al. (2009), Overby and Forman (2014), among many others. See Goldfarb

and Tucker (2017) for a review). In particular, this paper contributes to the studies of emerging tech-aided

ride-hailing platforms. These platforms may reduce matching frictions between drivers and passengers

(Buchholz (2015), Frechette et al. (2016)) with real-time technologies and dynamic pricing (Castillo et al.

(2017), Hall et al. (2015)), as reflected in greater capacity utilization (Cramer and Krueger (2016)), as well

as quick adjustments to market equilibrium (Hall et al. (2017)). Specifically, efficiency induced by dynamic

pricing critically depends on consumer preferences and the tradeoff between wait time and price (Lam

and Liu (2017)), and driver labor supply that responds to wage fluctuations (Chen and Sheldon (2016)).

Consumers benefit from ride-hailing platforms extensively, because of surge pricing (Cohen et al. (2016)),

reduced drunk driving (Greenwood and Wattal (2017)), and improved service quality due to safer driving

(Athey and Knoepfle (2018)). Drivers also benefit from these platforms due to flexible work arrangement

(Chen et al. (2017), Hall and Krueger (2015)) and commission schemes that allow for driving without a

lease (Angrist et al. (2017)). We find that these technological and organizational features have important

implications on driver incentives and quality provision, and thus add an important layer in the analysis of

efficiency.

Finally, our findings resonate with empirical work on taxi driver opportunistic behavior. Balafoutas et al.

(2013) have found that taxi drivers detour when passengers are less informed about the optimal routes or the

local taxi fare structure. Liu et al. (2017) have identified non-local passengers from local passengers based

on the destinations of trips originating at New York City’s airports and have found that taxi drivers defraud

non-locals more on LaGuardia trips that are metered, but not so on JFK flat-fare trips. Balafoutas et al.

(2017) have shown that drivers may also defraud more when passengers explicitly state that their expenses

will be reimbursed. Rajgopal and White (2015) point out the importance of regulatory restrictions on driver

fraud, as they have found greater likelihood of driver fraud when dropping passengers off in areas where

taxis are not allowed to pick up subsequent passengers. We contribute to this literature by examining how

moral hazard can be mitigated by tech-aided ride-hailing platforms.

2 NYC Taxis vs. Uber: Market Design and Pricing

2.1 Taxi and Uber Market Design

The market design for the Uber platform differs significantly from that of taxis. First, GPS navigation is

widely adopted and used by Uber drivers, while taxi drivers mainly navigate without GPS. The Uber app is

designed in a way that GPS navigation is integral to both driver and passenger: When the driver picks up a
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passenger and starts the trip, Uber’s built-in GPS automatically initiates, or the app switches to the preferred

GPS that the driver has set up (e.g., Google Maps and Waze). Therefore, driver routing on Uber is more

transparent for passengers relative to taxis.

Second, Uber implements a set of institutional design choices that aim at aligning driver incentives

and facilitate monitoring by the passengers. These are absent or costly with taxis. With the Uber app,

passengers can readily monitor driver routing in real time; passengers can either monitor the route on their

own smartphone app, or look at the driver’s app, since the driver’s phone is usually mounted in a way that

it is visible to passengers. This way, passengers can easily tell whether or not the driver is taking the route

that is given by the GPS.

Uber uses a highly-visible rating system that is easy for users to update. After each ride, passengers are

prompted to select a star rating, and therefore most passengers rate their drivers (73.5% for NYC UberX,

January to June, 2016). Similar to other reputation systems that are subject to rating inflation (Filippas et al.

(2018)), Uber driver ratings are highly concentrated with a mean of 4.74 out of 5 (see Figure 1a). Drivers

with low ratings are constantly warned by Uber. Uber starts to consider deactivating a driver when the driver

rating falls below a threshold (4.5 in NYC). Drivers appear to be very concerned about their ratings2, and

perhaps as a result, the actual deactivation risk is relatively low (about 3%).

Figure 1: Distance and Duration Ratios of Matched Taxi and Uber Trips

(a) NYC UberX Driver Rating Distribution (b) Top UberX Fare Adjustment Reasons

Notes. Both plots are based on NYC UberX trip data, January to June, 2016. Figure (b) plots UberX fare adjustment reasons, conditional on a fare
adjustment being made, for adjustments that account for 1% or more of the total.

In addition to monitoring and rating, verification and complaints can be made with little friction on

Uber, thanks to electronic trip records. Passengers can revisit the historical trip summaries on their app to

verify certain details. In the case of negative riding experiences, Uber passengers can easily file a complaint
2The qualitative study by Lee et al. (2015) states that “Drivers took their ratings seriously. High ratings such as 4.98 became a

source of pride whereas a rating below 4.7 became a source of disappointment, frustration, and fear of losing their jobs.”
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through the app, and Uber handles the conflict resolution by evaluating the trip records. By contrast, taxi

passengers in these situations can either call the Taxi and Limousine Commission (TLC) hotline or visit the

TLC website, but the process is usually long and may require legal procedures. In 2016, taxi complaints

were 1 in every 6,356 trips, whereas Uber fare adjustments were 1 in every 170 trips. Figure 1b lists the

main reasons of fare adjustments, with the number one reason being “inefficient route”.

2.2 Taxi and Uber Pricing

Pricing also differs between taxis and Uber. NYC taxi fares are set by the TLC3. Most routes are metered

with a base fare of $2.50 upon entry and $0.50 for every 1
5 miles traveled, plus taxes, fees, and tolls. A $0.50

per-minute charge is applied in place of the per-mile charge when the traffic is slow (less than 12 miles per

hour). The exception is that routes between Manhattan and JFK Airport are not metered; instead, a flat rate

of $52 applies. Some taxi drivers are medallion-owners who essentially run the business as an entrepreneur.

Other drivers lease the medallions on a daily, weekly, or monthly basis, and they collect all the revenues

minus gasoline and some vehicle maintenance costs. In both cases, drivers are residual claimants who are

incentivized to maximize earnings.

Unlike the pricing of taxis, Uber’s pricing schedule is consistent in both fast and slow traffic. The

UberX base fare includes a fixed component of $2.55, $0.35 per minute of travel, and $1.75 per mile of

travel, plus taxes, fees, and tolls. On top of the base fare, passengers also need to pay the surge multiplier

in effect at the time of request. For a 2-mile, 10-minute trip with a surge multiplier of 2, UberX costs

2×($2.55+$0.35×10+$1.75×2) = $19.10, plus taxes, fees, and tolls. Unlike taxis’ fixed fare on certain

routes, all Uber routes in NYC are metered according to the same pricing formula. Uber drivers keep all trip

earnings minus Uber’s commission, which usually runs between 20% and 30%. Uber drivers who operate

using their own cars are responsible for all operation-related expenses, such as insurance, maintenance, and

gasoline. Many NYC Uber drivers instead rent a vehicle from fleet owners due to heavy TLC requirements

such as commercial insurance.

3 Taxi-Uber Routing Difference Is Consistent with Moral hazard

3.1 A Simple Framework of Driver Routing Decisions

In this section, we describe a simple, stylized model of driver routing decisions and moral hazard, where

the framework builds on Liu et al. (2017). The purpose of the model is to paint drivers’ trade-offs and

characterize situations of driver moral hazard, which will motivate the empirical analysis.
3Refer to the official language on the pricing rule: http://www.nyc.gov/html/tlc/html/passenger/taxicab_

rate.shtml
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A risk-neutral driver maximizes her payoff by choosing among alternative routes, where essentially the

driver decides on the amount of detour (from the optimal passenger route) as well as driving speed. For

a given route at a given time, let d0 denote the distance of the optimal route given by a generic GPS that

optimizes trip time. That is, any other route with a different distance than d0 expects a longer travel time.

Then the realized trip distance, d, is given by:

d = d0(a+ x+ ε), (1)

where a represents the driver’s ability, e.g., driver’s knowledge of the streets and navigation skills, and

a ∈ [1,+∞). Let x denote the amount of detour, where x ∈ [0,+∞). Let ε denote the random driver-route

shock that affects routing efficiency, which is normally distributed with a mean 0 4. For simplicity, let the

realized travel time, denoted by t, be linear in trip distance:

t = γd0(a+ x+ ε) + y, (2)

where γ measures how trip distance maps into trip time, and γ ∈ (0,+∞). Let y represent the extra travel

time incurred when the driver drives at a different speed than the ongoing traffic: y > 0 when the driver

drives relatively slow, and y < 0 when the driver drives relatively fast.

Let the metered fare be characterized by the base fare upon entry p0, the per-mile rate pd, and the per-

minute rate pt5. Let s denote the surge multiplier, where s = 1 for taxi trips, and s ≥ 1 for Uber trips. Let

qe represent the probability of getting a subsequent passenger at the drop-off location and time if there was

no detour. Let et denote the per-minute earning of the forgone trip.6 Therefore, qeet(γd0x + y) measures

the earnings from forgone service minutes. Then the driver chooses the amount of detour (x) and the speed

of driving (equivalent to y) to maximize the following expected payoff function:

Max E
x,y

{s[p0 + pdd0(a+ x+ ε) + pt(γd0(a+ x+ ε) + y)]

− f(x; d0,Θ)− g(y; d0,Θ)− qeet(γd0x+ y)},
(3)

where f is the penalty cost of detour, which can be viewed as the probability of getting caught times the
4It is possible for the realized trip distance to be shorter than the GPS-suggested distance d0, when the random shock ε is

sufficiently negative. This occurs, for example, when a road turn that is permitted during a certain time of the day shortens the route
but is not captured by the GPS.

5Note that in NYC normal traffic, pt = 0 for taxis.
6et can be thought of as p0+pdDe+ptTe

Te
, where De and Te are the expected length and duration of the forgone trip, respectively.
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monetary cost and/or reputation cost. The cost may be in the form of fines (taxis), lost tips (taxis)7, low

ratings (Uber), and refund to passengers (taxis and Uber). f is assumed twice differentiable in x, with a

parameter set {d0, Θ}, and f(x = 0) = 0, fx > 0, fxx > 0. In addition, s ∈ Θ, and fxs > 0, meaning

that the marginal detour penalty on Uber is greater when surge is greater8. Defined similarly as f , g is the

expected monetary cost, reputation cost, or both associated with the travel speed: g > 0 for all y, i.e., both

driving unnecessarily slow and unnecessarily fast relative to the traffic tend to be noticed and penalized by

the passenger 9; gy < 0 for y < 0, gy > 0 for y > 0, and gyy > 0.

Taken together, the driver’s problem in Equation 8 is to solve two trade-offs: One trade-off is between

the monetary reward of detour and the opportunity cost of detour, where the opportunity cost consists of the

expected detour penalty and the forgone payoff; the other similar trade-off applies to driving speed. Then,

the first-order conditions and comparative statics lead to the following implications (see the online appendix

for detailed derivations):

Implication 1: Under mild assumptions, drivers tend to detour more on longer routes than on shorter

routes. Driver detour incentive is greater on longer routes because longer distance increases detour payoffs

as a direct outcome of the pricing structure. This regularity holds as long as the demand at the drop-off

location is not sufficiently high and the marginal detour penalty does not increase significantly with trip

distance.

Implication 2: Drivers detour more when the rider is a non-local passenger than when the rider is a local

passenger. This is because non-local passengers are less likely to notice the detour since they lack knowledge

of the local traffic and road networks.

Implication 3: Drivers detour more during high surge prices, under mild assumptions. Driver detour

incentive increases in surge price, provided that the increase in marginal detour payoff due to high surge

dominates the increase in marginal detour penalty due to high surge.

Implication 4: Drivers detour less (respectively, more) when the demand at the drop-off location is higher

(respectively, lower). This is a direct mapping of the payoff function that is strictly decreasing in the drop-off

demand.

Implication 5: Everything else held constant, taxi drivers have greater incentives than Uber drivers to drive

faster than other traffic on the road. This is intuitive because taxi driver time is not paid for according to the

taxi meter rule while Uber driver time is.
7By the end of our sample period, Uber had not implemented the tip feature in the application.
8This is because (1) Uber passengers are more incentivized to monitor driver routing when surge is high, and detour may result

in worse ratings than when surge is not in effect; (2) fare adjustments reflect surge multipliers.
9While it is true in some cases passengers prefer fast driving, speeding and weaving in and out of lanes are among the leading

factors of traffic accidents.
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Let c denote taxis and u denote Uber. Equation (1) requires that for a taxi driver and an Uber driver

completing the same trip, the following equality must hold,

dc − du

d0
= ac − au + xc∗ − xu∗ + εc − εu. (4)

That is, the (normalized) difference in taxi and Uber routing, for the same trip, is a function of driver skills,

strategic detours, and driver-trip random shocks. Given Implications 1-4, the difference in detours is a

function of various route characteristics that affect driver detour incentives. This will motivate our empirical

set-up to test moral hazard, which will be made more clear after we discuss the data and the matching.

3.2 Data and Matching

Our data combine NYC taxi trip records and Uber’s proprietary UberX trip records for two six-month

periods: January to June, 2016, and July to December, 2013. Taxi trip records contain detailed information

such as pick-up and drop-off time and GPS coordinates, trip distance and duration, and various fares and

fees. The 2013 taxi data contain driver ID and medallion numbers, but the identifiers were subsequently

removed by the TLC due to privacy concerns. UberX trip records contain similar information, plus extra

information such as the surge multiplier, driver ID, driver total number of trips on Uber, rider total number of

trips on Uber, driver lifetime rating, and driver and rider rating for each trip. These trip records are massive

data sets: in 2016, average daily taxi ridership is about 350,000 trips and average daily UberX ridership is

about 120,000 trips.

As suggested by Equation 1, inference of detour incentives needs to be built on a valid counterfactual

construction of taxi and Uber. To that end, we conduct granular geographical matching of taxi and Uber

trips such that the matched trips are subject to the same underlying optimal routing. In brief, we match an

Uber trip and a taxi trip if they go from the same Point A to the same Point B, and begin at roughly the same

time (i.e., same day and minutes apart). The matching process is detailed below:

Step 1 (same street intersection): Because of the exceedingly high concentration of pick-ups and drop-

offs around street intersections, we first define locations by dividing NYC into small Voronoi cells10 (see

Figure A1) centered at street intersections, where each street intersection is approximately 100 meters from

its closest neighboring intersections. Using Figure 2 as an illustration, this means that we initially match

Taxi 1, Uber 1, Uber 2, and Uber 3 in the circled area.

Step 2 (same street): We then restrict matched pick-ups to be on the same street,11 because pick-ups on

10Roughly speaking, the Voronoi cell of one of pre-defined points (seeds) on a plane is the associated region that cover all points
closer to that seed than to any other seed.

11The accuracy of GPS coordinates can be adversely affected by tall buildings in an urban area. Indeed, there are more cases
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Figure 2: Pickup-dropoff-time Matching of Taxi and Uber Trips

different streets can be subject to different optimal routes even when they are going to the same destination.

In Figure 2, this means that Taxi 1 will be matched with Uber 1 and Uber 3, but not with Uber 2.

Step 3 (same traffic direction): Following a similar logic as in Step 2, we further filter out matched

pick-ups that follow different traffic directions of the same streets. Therefore, Taxi 1 and Uber 1 of Figure 2

remain in the matched sample.

We then apply the same filters (Steps 1-3) for drop-offs as well. For airport pick-ups and drop-offs, we

match the trips based on the airport terminal.

Step 4 (real time): We further restrict matched trips to the ones that start within a short time window

from each other so that they are subject to the same real-time traffic, road conditions, as well as other

common factors. The time window for the main analysis is set at 15 minutes, and we apply other time

windows (e.g., 5, 10, and 20 minutes) in the robustness checks.

When we use the 2016 taxi and Uber data, the matching process generates a sample of 173,770 pairs of

matched trips. 70% of the matched pairs are airport trips, which is not surprising because the strict matching

criteria make non-airport trips more difficult to match than airport trips. The vast majority (95%) of matched

non-airport trips are trips that start and end in the most dense market of NYC — Manhattan Core, roughly

the part of Manhattan below the north edge of Central Park. For reasons we will explain in the empirical

section, we keep the Manhattan Core matched trips and drop other non-airport trips (e.g. trips between

Brooklyn and Queens) from the sample, which leads to a 1.6% reduction of sample size. In addition, we

drop matched pairs where the distance ratio (taxi distance divided by Uber distance, for the same matched

pair) and the duration ratio (taxi duration divided by Uber duration, for the same matched pair) fall outside

where taxi and Uber pick-up and drop-off GPS pinpoints fall on a building instead of on the street in Midtown Manhattan than in
other areas with less concentration of tall buildings. In these cases, we assign the trip to be on the street closest to its pinpoint.
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of the range [0.5,1.5], in order to prevent extreme cases from affecting our results. This leads to a 2.5% drop

in sample size. Finally, we discover that in the raw TLC taxi trip records, there are two taxi meter vendors

with about equal shares, where Vendor 1 reports trip distance to the first decimal place and Vendor 2 to the

second decimal place. A casual check of dozens of randomly selected short trips in Manhattan from Vendor

1 against their Google Maps shortest distances makes us believe that this meter vendor may have rounded

down the actual trip distance. The rounding down may introduce bias to our estimates12, which we provide

evidence in the robustness section. Given this, we drop all matched pairs that involve Vendor 1 taxi trips.

Table 1: Summary Statistics (unit: a matched taxi-Uber pair)

Variable Mean Std. Dev. 10th Median 90th

Taxi trip distance (miles) 8.76 5.30 1.13 9.69 16.66

Uber trip distance (miles) 8.56 5.35 1.16 9.21 16.80

Taxi distance / Uber distance 1.03 0.15 0.86 1.01 1.23

Taxi trip duration (minutes) 28.56 16.44 8.02 27.00 50.12

Uber trip duration (minutes) 30.39 17.34 8.93 28.68 53.17

Taxi duration / Uber duration 0.95 0.19 0.71 0.94 1.21

Airport 0.72 0.45 0 1 1

Metered airport 0.62 0.48 0 1 1

JFK (taxi fixed fare; Uber metered fare) 0.10 0.29 0 0 0

Non-local passenger 0.52 0.50 0 1 1

Surge multiplier 1.11 0.27 1 1 1.5

Surge (dummy; =1 if surge multiplier>1) 0.20 0.40 0 0 1

Uber driver total trips 2491.12 2010.00 358 2021 5311

Uber driver lifetime rating 4.75 0.09 4.63 4.76 4.85

Uber rider total trips 115.28 169.97 5 55 294

N 90,431

No. of Uber drivers 23,484

After above-mentioned sample restrictions, our sample contains 90,431 matched pairs, with 23,484

unique Uber drivers (about 54% of all UberX drivers in the same period). Table 1 summarizes the sample,

where the unit of observation is a matched taxi-Uber pair. Non-local passenger takes the value of 1 if
12Consider a pair of matched Uber and taxi trips, where the Uber trip is 1 mile and the taxi trip is 0.95 miles, but the reported

taxi trip length is rounded to 0.9 miles. Then the distance ratio would be 0.9 instead of 0.95, with a downward bias of -0.05. For
a 9.95-mile taxi trip rounded to 9.9 miles with a matched 10-mile Uber trip, the downward bias is only -0.005 (0.99-0.995). Thus,
the same amount of rounding error leads to proportionately greater downward bias on shorter routes.
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the billing zip code of a given Uber passenger is outside of NYC, or if the billing zip code is missing,

the passenger’s city of most Uber trips is not NYC. The Uber surge multiplier is on average 1.11 and the

frequency of surge (as opposed to the base fare) is about 20% in the matched sample. The sample is over-

represented by airport trips, especially metered airport trips, compared to the population of taxi trips and

Uber trips, due to the matching. There are three route types: (1) short, within-Manhattan routes, with

an average route length of 1.67 miles; (2) routes between JFK and Manhattan where taxi fares are fixed

and Uber fares are metered, with an average route length of 18.66 miles; and (3) all other airport routes

where both taxi and Uber fares are metered, with an average route length of 10.10 miles, where 96.7%

are LaGuardia trips, with the rest being Newark trips or trips between JFK and NYC outer boroughs. For

simplicity, from now on we refer to these route types as Manhattan trips, JFK trips, and metered airport

trips.

Figure 3a shows that taxi and Uber trips are similar in trip distance for Manhattan trips and JFK trips,

as illustrated by the high concentration of the distance ratios around 1. However, taxi trips are significantly

longer in distance than matched Uber trips for metered airport trips, as indicated by the second mode of

the distribution around 1.15, as well as the fatter right tail. Figure 3b shows that taxis overall arrive faster

than Uber. These patterns are consistent with our theory implications: (1) compared to Uber drivers, taxi

drivers route longer on airport routes that are anecdotally more lucrative (Implication 1), and (2) taxi drivers

in general drive at a greater average speed than Uber drivers (Implication 5). In the next section, we turn to

formal tests of driver moral hazard.

Figure 3: Distance and Duration Ratios of Matched Taxi and Uber Trips

(a) Distance ratios for matched trips (b) Duration ratios for matched trips
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3.3 Empirical Strategy

Empirical Strategy and Baseline Specification:

As we discussed using Equation 4, the normalized taxi-Uber routing difference within a matched pair is

a function of route characteristics that may deferentially affect taxi and Uber driver detour incentives. Given

this, we combine the features of the matched sample and our theory implications to establish identification

of moral hazard.

When driving short trips within Manhattan, both taxi and Uber drivers should have little or no incentive

to detour, because of the low marginal detour payoff due to the short trip length (Implication 1) and the high

opportunity cost of detouring when finding another ride at drop-off is easy (Implication 4). It is plausibly in

drivers’ best interest to take as many within-Manhattan trips as possible to exploit the proportionately larger

fixed component of the fare, in stead of making individual trips longer. In fact, taxi-Uber distance ratios for

Manhattan trips are on average 0.9813, with a standard deviation of 0.12 and a median of 0.99. To add more

empirical support for this assumption, we show in Figure 4 that both taxi and Uber trip distances closely

concentrate on a measure of long-run average optimal routing given by GURAFU, Uber’s internal routing

engine, for Manhattan trips. Therefore, we consider Manhattan trips as the “no detour” benchmark.

Figure 4: Taxi and Uber Driver Routing Weighted by Uber’s GURAFU

For metered airport trips, both taxi and Uber drivers’ detour benefit increases because long distance

rewards detouring (Implication 1). However, the detour penalty cost is higher for Uber drivers than for taxi

drivers because of Uber market designs, which may reduce Uber drivers’ detour incentives. If this taxi-Uber

difference in penalty cost is non-trivial, it likely leads to a testable difference in routing choices — taxi
13The average is slightly below 1, which is plausibly due to the difference in pick-up and drop-off. Specifically, taxi drivers

mainly cruise on major avenues and streets, while Uber drivers more often pick up and drop off passengers at their doorsteps. We
show in Figure A2 that even after matching, taxi pick-ups (purple) are more concentrated on major avenues and streets, whereas
Uber pick-ups (green) are more from cross-town streets with slower traffic. A similar distribution applies to matched drop-offs as
well.
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drivers may route longer than Uber drivers, producing a positive taxi-Uber distance ratio in these cases,

when compared to the Manhattan “no detour” benchmark.

On the other hand, for JFK routes with fixed taxi fare, taxi driver detour incentive becomes absent,

because detour will only increase cost while not increasing earning. For Uber drivers, the detour decision

depends on the relative strength of detour benefit and cost in these cases. If Uber drivers do not detour, the

taxi-Uber distance ratio for JFK trips will be similar to the “no detour” benchmark; otherwise, the taxi-Uber

distance ratio will be less than the “no detour” benchmark.

Let r denote a given matched taxi-Uber pair. We specify and estimate the following empirical model:

dcr
dur

= α0 + α1M Airportr + α2JFKr + φt(r) + εr. (5)

where dcr
dur

is the taxi-Uber distance ratio for a given matched pair, M Airportr is the dummy for metered

airport trips, JFKr is the dummy for JFK trips, φt(r) represents time fixed effects of route r, and εr is the

random shock. We construct the empirical model in a way that the taxi-Uber distance ratio is benchmarked

at the Manhattan trips, such that if the Uber market designs create a binding penalty cost, we expect the

distance ratio to be greater than the benchmark for metered airport trips (i.e., α1 > 0) and similar to the

benchmark for JFK trips (i.e., α2 = 0).

Driver Fixed Effects and More Controls:

One endogeneity concern of our current empirical model is the possible correlation between route types

and the unobserved random shock, which may produce biased coefficient estimates. For example, if strategic

drivers consistently select into certain route types, then the observed effects can be an artifact of adverse

selection instead of moral hazard. Noting this, we now discuss the institutional features of taxis and Uber

that largely alleviate this endogeneity threat.

On one hand, for taxi drivers, the matching of passengers of certain destinations is close to randomly

assigned, because (1) passengers do not select taxis as taxi cabs are ex ante homogeneous to passengers;

(2) taxi refusal of passengers is heavily penalized by the TLC refusal law.14 However, taxi drivers can in-

deed form expectations of passenger destinations and route profitability and develop their own geographical

search strategies (Haggag et al. (2017), Zhang et al. (2016)), leading to a correlation between route charac-

teristics and driver types. In this case, controlling for taxi-driver fixed effects is a good way to tease out the
14Per the TLC refusal law, “It is against the law to refuse a person based on race, disability, or a destination in New York City.

A taxicab driver is required to drive a passenger to any destination in the five boroughs.” Riders are encouraged to make a refusal
complaint by calling 311. According to Haggag et al. (2017), “In 2009 the refusal punishment was $200-$350 for a first offense,
$350-$500 and a possible 30-day license suspension for a second, and a mandatory license revocation for a third offense. The TLC
received about 2,000 formal complaints per year in 2009 and 2010.” While TLC strictly enforces the refusal law, anecdotal evidence
exists that taxi drivers sometimes refuse passengers in spite of penalties.
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bias. In the absence of taxi driver IDs in 2016, we demonstrate in Section 5 that driver selection appears to

be insignificant when the same estimation is run on 2013 data where taxi-driver fixed effects are controlled

for.

On the other hand, several features of the Uber platform limit the scope of endogeneity: (1) To Uber

drivers, passenger assignment by the platform is virtually random by construction. Uber’s matching of

drivers and passengers is mainly based on spatial proximity and dispatching efficiency, and it gives little

weight to driver and rider characteristics in the matching. (2) Uber drivers have the option to cancel trip

requests, but cancellation of rides is costly. Once assigned a rider, the driver cannot see the rider’s destination

on the application until picking up that rider, which makes it difficult for drivers to “cherry pick” passengers

before accepting a trip request. Moreover, frequent and suspicious ride cancellation is penalized on Uber,

often in the form of warning, “time out”, or even deactivation. In addition, it is difficult for a driver to form

expectations on the next rider’s profitability, making cancellation of the current ride risky and rare. Taken

together, these institutional details suggest that the correlation between route types and unobserved driver-

route shocks is at best limited. Nonetheless, to further reduce the potential bias, we control for Uber driver

fixed effects in some specifications.

Another layer of variation that we can leverage to further provide evidence of moral hazard is whether

the passenger is from the local area or not, as the theory indicates that drivers may be more likely to detour

when driving non-local passengers due to information asymmetry (Implication 2). To the extent that Uber

market designs reduce information asymmetry, the strategic routing inefficiency for non-local passengers

should be more pronounced for taxi drivers than for Uber drivers, in situations where detouring is profitable.

An ideal case to test this is to control for both taxi passenger and Uber passenger “localness”. Yet without

visibility to taxi passengers, we can only proxy for the “localness” of taxi passengers using information of

the Uber passenger of the matched trip. We caution that the scope of measurement error of “non-local”

should be smaller on airport routes than on non-airport routes, because it is more likely that the taxi rider

and the Uber rider are either both locals or both non-locals when they head to/from the airport from/to the

same specific place at the same time (e.g., a hotel).

Leveraging the above-mentioned sources of variation, our enhanced regression equation is the following,

dcr
dur

= α0 + α1M Airportr + α2JFKr + α3NonLocalr

+ α4M Airportr ×NonLocalr + α5JFKr ×NonLocalr +XrΩ + ηi(r) + φt(r) + εr.

(6)

where ηi(r) is the Uber driver fixed effects. We use α3, α4, and α5 to detect additional taxi-Uber routing
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Table 2: Taxi-Uber Routing Difference

D.V. = Taxi dist. / Uber dist. (1) (2) (3) (4)
Baseline Non-local More controls Driver FE

M Airport 0.080*** 0.070*** 0.070*** 0.069***
(0.002) (0.002) (0.002) (0.002)

JFK 0.009*** 0.007*** 0.008*** 0.006*
(0.002) (0.002) (0.002) (0.003)

NonLocal -0.005** -0.005** -0.002
(0.002) (0.002) (0.002)

M Airport × NonLocal 0.019*** 0.019*** 0.016***
(0.003) (0.003) (0.003)

JFK × NonLocal 0.005 0.004 0.002
(0.003) (0.003) (0.004)

Log (Uber driver total trips) 0.000 0.004**
(0.000) (0.002)

Uber driver rating 0.037***
(0.006)

Log (Uber rider total trips) 0.000 0.000
(0.000) (0.000)

Hour of week FE Yes Yes Yes Yes
Uber driver FE No No No Yes
N 90,431 90,431 90,431 90,431
R2 0.069 0.070 0.071 0.371

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level; *** significant at the
1% level; ** significant at the 5% level; * significant at the 10% level.

difference when passengers are non-local, for Manhattan trips, metered airport trips, and JFK trips, respec-

tively. In addition, we control for a set of Uber driver and Uber rider characteristics which may further

explain the variation in the Uber-taxi routing difference (included in Xr with the associated parameters in

Ω): (1) Uber driver experience is measured by the driver’s total trips driven prior to the current trip, and it is

expected to positively correlate with Uber driver routing efficiency if there is a learning-by-doing effect; (2)

Uber driver routing efficiency is expected to positively correlate with Uber driver rating, as routing efficiency

is an important metric in overall driver quality; (3) Uber rider experience on the platform, measured by the

total number of trips completed, may also be relevant as more experienced riders may make the trip more

efficient by better communicating with the driver, choosing a more efficient pick-up or drop-off location,

and so on.

3.4 Results Are Consistent with Moral Hazard

Table 2 reports regression results of Equation 5 and Equation 6. In the baseline specification (1), we find that

the taxi-Uber distance ratio for a metered airport trip is on average 8% larger than for a Manhattan trip, and

this effect is statistically significant. The taxi-Uber distance ratio is about 0.9% larger for JFK trips than for
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Manhattan trips, which is at odds with our conjecture. However, this slightly positive effect becomes smaller

in size and loses statistical significance as more controls and fixed effects are included in the regression.

When we add “non-local” and its interaction with metered airport trips and JFK airport trips, we find that

taxi drivers route additionally longer when the passenger is non-local than when the passenger is local (1.9%)

when driving metered airport trips (Table 2 Specification (2)). In fact, this added variation across passengers

splits the main effect of 8% in Specification (1) into 7% for local passengers and 8.9% (=7%+1.9%) for

non-local passengers of metered airport trips. However, this heterogeneity is absent for JFK trips and only

weak for Manhattan trips, given that the negative effect of the stand-alone NonLocal even loses statistical

significance in the fixed effects model. These findings suggest that taxi drivers appear to be more strategic

when information asymmetry is more severe (the case with non-local passengers) in situations with large

detour benefit (i.e., metered airport trips), and Uber drivers do not exhibit such strategic responses compared

to taxis in situations when taxi detour incentive is “shut down” and Uber detour benefit is large (i.e., JFK

trips). These findings are in line with agency theory and moral hazard.

In Specification (3), we find no material changes to the estimates when adding a set of Uber driver and

rider characteristics in the regression. We observe that Uber driver rating is positively correlated with the

taxi-Uber distance ratio, and this correlation is expected as routing efficiency should be reflected in driver

ratings. The estimated effects hardly change when we control for Uber driver fixed effects, as shown in

Specification (4)15. Interestingly, the effect of Uber driver total trips becomes strong, suggesting a routing

improvement due to accumulating driving experience (Cook et al. (2018) document a similar learning-by-

doing effect among Uber drivers).

Overall, the regression results exhibit high consistence with our main hypothesis that Uber reduces

driver moral hazard incentive, which is reflected in the relative routing efficiency with respect to taxis in

situations where detouring is profitable. However, the results can also be consistent with other competing

explanations, which we explore next.

4 Navigation-related Alternative Explanations

4.1 GPS effect or moral hazard?

One threat to the moral hazard story is that the increased GPS usage among Uber drivers may have improved

their routing behavior compared to taxis drivers. GPS can be most effective in situations where real-time

traffic information is valuable. Although NYC taxi drivers are well-known for their driving experience and

sophistication, routing efficiency can still hurt without such information. For example, taxi drivers may
15Note that because Uber driver rating is driver-specific, it disappears in Specification (4) when Uber driver fixed effects are

controlled for.
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choose a longer route with longer but more certain travel time, as opposed to a shorter route with volatile

traffic, as a practice of mean-variance trade-off in the absence of GPS.

Recall that we estimate an 8% increase in taxi-Uber distance ratio for metered airport trips from that

of Manhattan trips. Thus, if GPS navigation accounts for the 8% increase in taxi-Uber distance ratio for

metered airport trips, it should be at least as salient for JFK trips. This is because JFK trips are significantly

longer in distance than metered airport trips and similar to LaGuardia trips (which are the vast majority of

metered airport trips in our sample), JFK trips also involve bridges or tunnels to cross the river, except that

JFK is further southeast in Queens than LaGuardia. That is, the scope for GPS navigation, if any, should be

as large for JFK trips as for metered airport trips. Given that no such effect is observed on JFK trips, we find

the GPS effect not consistent with the data.

That said, a more subtle threat is that Uber drivers strategically detour on JFK trips and this detour effect

“cancels out” with the GPS effect. To explore whether this is compatible with the data, we introduce to the

main regression analysis a new variation — Uber surge pricing, which affects Uber driver detour incentives

(Implication 3). If the above-stated assumption is true, then we expect more Uber detours on JFK trips when

surge is on than when surge is off. If, however, we do not observe much Uber driver behavioral change on

JFK trips when surge is on, then there was probably not much of Uber detour to begin with (i.e., the penalty

cost is binding), because if Uber drivers would detour with base fare, they would detour more when the

surge is, say, 1.5 of base fare.

Two features of Uber surge multipliers enable an empirically-sound analysis: First, there is a nice vari-

ation in both the incidence of surge and the level of surge — in the 2016 matched sample, 20% of matched

routes have effective surge pricing; conditional on surge, the surge multiplier is on average 1.54, or 54%

increase in earning from the base fare. Second, surge can be considered random to individual Uber drivers,

because surge multipliers are extremely volatile and difficult to predict16, and it is not in the driver’s best

interest to “chase” the surge at the cost of forgone earnings from trip requests missed or declined.17 In

addition, the Uber app no longer shows the surge hot spots after driver’s accepting a ride, which prevents

drivers from canceling the current non-surge ride in order to get a high-surge ride. We propose and estimate
16As shown in Lam and Liu (2017), Uber surge multipliers are volatile and difficult to predict even after accounting for highly

granular location-time fixed effects.
17Uber drivers commonly agree on this view, based on our conversations with Uber drivers in New York City and Boston,

Massachusetts.
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the following equation:

dcr
dur

= β0 + β1M Airportr + β2JFKr + β3Surger

+ β4M Airportr × Surger + β5JFKr × Surger +XrΩ + ηi(r) + φt(r) + εr.

(7)

where β3, β4, and β5 identify surge-induced Uber driver detour for Manhattan trips, metered airport trips,

and JFK trips, respectively. We use surge dummy (i.e., surge incidence) instead of surge multipliers for

easier interpretation of the results. The Uber driver and rider characteristics as well as the effects of non-

local passengers are included in Xr. Note that if surge induces more Uber detour, the coefficient estimate of

surge for all route types should be negative, because Uber distance is in the denominator of the dependent

variable.

Table 3 reports the regression results. The surge effect for Manhattan trip is positive, weak, and close to

zero, suggesting that there is no additional Uber detour due to surge within Manhattan. This adds support

to our earlier assumption that driver routing in Manhattan is the efficiency benchmark — even when surge

is high, the benefit of detour is out-weighted by the penalty cost plus the opportunity cost in light of high

demand. The surge effect for metered airports and JFK airports are negative but small in magnitude, indi-

cating a limited scope for surge to incentivize extra routing. As more controls and fixed effects are added,

the surge effect on JFK trips is absent. This small surge effect on JFK trips does not warrant a sizable GPS

effect, because they have to be equal in size to cancel each other out as we discussed earlier. Therefore, it

appears that there is at best a very limited GPS effect.

4.2 Distance vs. Time: Do Longer Routes Save Passengers Time?

It is possible that taxi drivers in some cases possess superior routing information than the GPS. When this

is the case, taxi drivers can save passengers time by taking a longer route. In this section, we show that the

data are not fully compatible with this alternative explanation, but rather they lend more nuanced support to

our main hypothesis of driver moral hazard. Specifically, we investigate taxi driver routing decisions via a

case study and show that (1) among alternative airport routes, taxi drivers frequently choose the bridge that

leads to the longest distance; (2) these long routes on average result in longer travel times when compared to

shorter routes taken by drivers completing similar trips at the same time; and (3) this long-routing strategy

is more seen in drivers with more route-specific experience.
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Table 3: Taxi-Uber Routing Difference: The Role of Surge

D.V. = Taxi dist. / Uber dist. (1) (2) (3)

M Airport 0.083*** 0.073*** 0.072***
(0.002) (0.002) (0.002)

JFK 0.010*** 0.009*** 0.007**
(0.002) (0.002) (0.003)

Surge 0.003 0.003 0.004
(0.002) (0.002) (0.002)

Surge ×M Airport -0.016*** -0.016*** -0.018***
(0.003) (0.003) (0.003)

Surge × JFK -0.008* -0.008* -0.004
(0.005) (0.005) (0.006)

NonLocal -0.004** -0.002
(0.002) (0.002)

M Airport × NonLocal 0.019*** 0.015***
(0.003) (0.003)

JFK × NonLocal 0.004 0.002
(0.003) (0.004)

Log (Uber driver total trips) 0.000 0.004***
(0.000) (0.002)

Uber driver rating 0.037***
(0.006)

Log (Uber rider total trips) 0.000 0.000
(0.000) (0.000)

Hour of week FE Yes Yes Yes
Uber driver FE No No Yes
N 90,431 90,431 90,431
R2 0.069 0.071 0.371

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level;
*** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

Figure 5: Alternative Routes Between Midtown Manhattan and LaGuardia
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The case study focuses on routes between LaGuardia Airport and an Midtown Manhattan area18 (see

Figure 5), for two reasons: First, this area has a high volume of taxi and Uber activities — approximately

37% of all LaGuardia taxi trips in 2016 either started or ended in this area; Second, the choice set of routes

is relatively small and clear — the route in the middle via Queensboro Bridge is a toll-free route, usually the

shortest and busiest among the three routes (we call this route S), whereas the other two routes have tolls

of the same amount19, with the top route via FDR Drive generally longer in distance (we call this route L)

than the bottom route via the Midtown Tunnel (we call this route M). Taxi and Uber trip distance indeed

exhibits a clear bimodal pattern for these two tolled routes (Figure A3), suggesting that the route choices are

discrete. Therefore, using data on tolls as well as trip distance, we can identify, or at least proxy with good

precision, which route drivers took.

A natural exercise here is to study how different routing choices affect trip duration by comparing taxi

and Uber drivers on a matched route. If, say, a taxi driver who takes L finishes the trip later than an Uber

driver who takes M, then that suggests inefficient routing and underlying moral hazard incentive. However,

as we discussed before, taxi drivers generally driver faster than Uber drivers, in all cases, due to the taxi

pricing rule that does not reward travel time. Thus, comparing taxi-Uber duration cannot cleanly infer moral

hazard separately from the pricing effect. Therefore, we need to match taxi drivers with taxi drivers on

the same route, and investigate whether taxis drivers save passengers time by choosing longer routes longer,

where a taxi-taxi comparison can tease out the pricing effect on driving speed. We follow the same matching

approach as we did for taxi and Uber trips. Since we focus on airport routes here, we relax the matching

criteria to be just Step 1 (same street corner) and Step 4 (real time) with a time window of 30 minutes so

that more trips can be matched without hurting precision much.
18This area consists of three NYC Neighborhood Tabulation Areas (NTAs): Midtown-Midtown South, Turtle Bay-East Midtown,

and Murray Hill-Kips Bay.
19In 2016, the cash rate of the tolls was $8 for taxi-like vehicles. Taxi and Uber drivers normally pay the discounted rate of $5.54

by using an E-Z Pass.
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Table 4: The Ratio of Focal Taxi Diver Time and Matched Taxi Driver Time, across Route Choice Combi-
nations

Focal taxi

S M L

Matched taxi

S
1.00

(0.0003)
0.90

(0.001)
0.94

(0.001)

M
1.01

(0.0004)
1.05

(0.0006)

L
1.00

(0.002)
Notes. This table shows how focal taxi drivers’ travel time compares with that of the matched taxi drivers across situations when they take the same
or different routes. The number in each cell is the mean of focal-matched duration ratios for the corresponding route comparison group, and the
associated number in parentheses is the standard error.

Table 4 shows how focal taxi drivers’ travel time compares with that of the matched taxi drivers across

situations when they take the same or different routes. For clean illustration, the cases SM (focal is S and

matched is M), SL, and ML are not reported because they are symmetric to MS, LS, and LM, respectively.

The number in each cell is the mean of focal-matched duration ratios for the corresponding route comparison

group, and the associated number in parentheses is the standard error. The duration ratios in the diagonal

cells are equal to or close to 1, meaning that when the focal taxi driver and the matched taxi driver take the

same route (SS, MM, and LL), they spend about the same amount of time driving. When the focal driver

takes M while the matched driver takes S (i.e., MS), the focal driver indeed performs better in travel time.

In the case of LS, the focal driver still performs better in travel time, yet this advantage decreases from 10%

in the case of MS to 6% (because the duration ratio increases from 0.90 to 0.94). In the case of LM, the

focal driver on average needs 5% more time to complete the trip. Therefore, it appears that M is often the

time-efficient route, which is in line with our casual checks with Google Maps.

In Figure 6, we use taxi and Uber raw trip records to plot the shares of alternative Midtown-LaGuardia

routes taken by taxi and Uber drivers by hour. Clearly, taxi drivers are overall more likely to take L than

Uber drivers and less likely to take M and S. Moreover, taxi drivers’ greater tendency to take L is present

for all hours of the day. Therefore, it appears that taxi drivers on average cost passengers more time, instead

of saving passengers time, by choosing longer routes.

Finally, we provide evidence that the same-route experience is correlated with more detour. Using 2013

data with taxi driver ID, we split drivers into quartiles by their total number of trips between Midtown

and LaGuardia. Figure 7a shows that drivers with more trips completed on this particular route (Midtown-

LaGuardia) tend to detour more, as measured by Detour 1 — the incidence when the focal taxi driver takes
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a longer route than the matched taxi driver (i.e., LM and MS), and the focal taxi driver arrives later than the

matched driver. Figure 7b shows a more pronounced pattern with the definition Detour 2, where the focal

driver both logs more distance and more time. Therefore, this evidence further provides support for moral

hazard, as it shows that inefficient routing generally comes from experienced drivers who knowingly take

the long route rather than from less-experienced drivers.

Figure 6: Shares of Alternative Midtown-LaGuardia Routes by Hour, Taxis vs. Uber

(a) Taxis (b) Uber

Figure 7: Drivers with More Same-route Experience Tend to Detour More

(a) Detour 1 (b) Detour 2

5 Moral Hazard vs. Adverse Selection

5.1 Selection on the Intensive Margin

As discussed in the identification, the unobserved driver types in the error term may correlate with route

types. It is revealing that we see no significant changes in the coefficient estimates when Uber-driver fixed

effects are controlled for in the main analysis. However, we need to explore whether the effects remain when

taxi-driver fixed effects are accounted for.
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Table 5: Taxi-Uber Routing Difference, 2013

D.V. = Taxi dist. / Uber dist. (1) (2) (3)

M Airport 0.124*** 0.118*** 0.114***
(0.002) (0.005) (0.007)

JFK 0.077*** 0.078*** 0.068***
(0.004) (0.008) (0.013)

NonLocal -0.012*** -0.013***
(0.003) (0.004)

M Airport × NonLocal 0.024*** 0.025***
(0.006) (0.008)

JFK × NonLocal 0.017** 0.022
(0.008) (0.015)

Log (Uber driver total trips) -0.003* -0.002
(0.002) (0.001)

Log (Uber rider total trips) 0.000 0.001
(0.001) (0.001)

Hour of week FE No Yes Yes
Taxi driver FE No No Yes
N 23,774 23,774 23,774
R2 0.123 0.258 0.591

Notes. The regression samples consist of matched pairs of taxi and Uber trips using 2013
data. For all specifications, standard errors are cluster-robust at the hour-of-week level;
*** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

We repeat the baseline regression analysis on the 2013 data, which contain taxi driver IDs. In the sample

construction, we relax the matching criteria to only Step 1 (same street intersection) and Step 4 (real time)

with a time window of 30 minutes, because following the original matching procedure would lead to a

sample size too small for identification, due to the small market share of Uber in 2013. The final sample

consists of 23,774 matches with 11,972 unique taxi drivers, 6,527 of which have more than one trip in the

sample. Also because of the relaxed matching criteria, the taxi-Uber distance ratio for the Manhattan “no-

detour” benchmark is on average 0.93, since the taxi distance has a downward measurement bias due to the

taxi-Uber difference in pick-ups and drop-offs (refer to Figure A2). Thus, regressions that follow Equation

5 and Equation 6 should lead to an upward bias in coefficient estimates of M Airport and JFK.

Table 5 reports the estimation results using the 2013 matched sample. We see that variables of interest

remain strong and large, instead of being absorbed by fixed effects. Although the estimates of M Airport and

JFK are greater than their counterparts in the main analysis using 2016 matched sample, as we expected,

their relative sizes are consistent with the moral hazard interpretation. In addition, the effects of NonLocal

and its interactions with M Airport and JFK are also broadly consistent with the estimates in the main

analysis. Therefore, we find little evidence that driver selection into profitable routes is the major explanation

of our results.
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Table 6: Taxi-Uber Routing Difference: The Role of Switchers

Switchers vs. 2013 Uber drivers Switchers vs. 2016 taxi drivers
D.V. = Switcher dist. / Uber dist. D.V. = Taxi dist. / Switcher dist.

(1) (2) (3) (4)

M Airport 0.120*** 0.105*** 0.054*** 0.054***
(0.005) (0.019) (0.002) (0.004)

JFK 0.079*** 0.078*** 0.005 0.010*
(0.011) (0.029) (0.004) (0.006)

NonLocal -0.016 0.001
(0.011) (0.004)

M Airport × NonLocal 0.025 0.003
(0.022) (0.005)

JFK × NonLocal 0.012 -0.005
(0.035) (0.008)

Log (Uber driver total trips) -0.001 0.003
(0.004) (0.003)

Log (Uber rider total trips) 0.000 -0.001
(0.003) (0.001)

Hour of week FE Yes Yes Yes Yes
Switcher FE No Yes No Yes
N 4,030 4,030 16,363 16,363
R2 0.112 0.616 0.036 0.239

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level; *** significant at the 1% level; ** signif-
icant at the 5% level; * significant at the 10% level.

5.2 Selection on the Extensive Margin

Drivers of different types may select differently into being taxi and Uber drivers. If this was the case, then

the observed moral hazard would be an artifact of the driver type distributions of taxis and Uber. Not being

able to directly observe driver types, we cannot completely rule out this possibility. However, we shed light

on the extent of behavioral change of former taxi drivers who switched to Uber between 2013 and 2016.

Recall that we observe drivers’ TLC driver IDs, for taxi drivers in the 2013 data and all Uber drivers. TLC

driver IDs are issued by the TLC for all types of taxi-like services in NYC under the same system. Therefore,

we are able to track the status (taxi or Uber) of a driver across time. Specifically, for a given taxi driver in

the 2013 taxi data, if we observe the same TLC driver ID in the 2016 Uber data, then we identify the driver

as one who switched from being a taxi driver to being an Uber driver at some point between 2013 and 2016.

We refer to these drivers as switchers. Since we have to resort to regression analysis to test moral hazard, we

only focus on 1,999 switchers who appear both in the 2013 matched sample and the 2016 matched sample.

We first show that the routing behavior of these switchers, who were taxi drivers in 2013, exhibits detour

patterns when compared to that of Uber drivers in 2013. Table 6 (1) and (2) report the regression results
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using the 2013 matched sample of these 1,999 switchers and Uber drivers. Since this sample is a subset

of the 2013 matched sample, it also suffers from the downward measurement error for Manhattan trips due

to the relaxed matching criteria. As a result, we observe seemingly large point estimates of M Airport and

JFK. However, the rank order of distance ratios for metered airport trips, JFK trips, and Manhattan trips is

preserved and significant, even with a small-sized sample that accounts for driver fixed effects.

In Table 6 (3) and (4) we perform the same regression analyses on the matched sample consisting of

taxi drivers in 2016 and switchers, who were Uber drivers in 2016. The effect of metered airport dummy

is strong and significant, suggesting that taxi drivers in 2016 route longer than switchers mainly on metered

airport routes. Or, former taxi drivers appear to route more efficiently than current taxi drivers on metered

airport routes. When the airport is JFK where taxi driver moral hazard incentive is “shut down”, the taxi-

Uber distance ratio is positive and only marginally different from the Manhattan “no detour” benchmark,

providing little evidence that these switchers continued to detour in 2016. Therefore, evidence in Table 6

is consistent with behavioral updating of switchers, who used to detour as taxi drivers but abandoned the

detour strategy after they joined Uber and adapted to the Uber environment.

We caution the readers that the behavior of the switchers may just reflect a common trend, for example,

drivers may have become more honest over the years due to some unobserved factors. One good way to

rule this out is by tracking taxi drivers who remained taxi drivers from 2013 to 2016; however, the exercise

is not feasible due to missing taxi driver IDs in 2016. Nonetheless, we show in Figure A4 that 234 long-

standing Uber drivers do not appear to have become more honest from 2013 to 2016, as suggested by their

routing compared to taxi routing in the same time periods on JFK taxi flat-fare routes, where taxis are the

“no detour” benchmark.

6 Other Robustness Checks

There are cases when drivers can make passengers better off by choosing longer routes that minimize tolls

(see Figure A5 for an example). However, a necessary condition for this to be true is that taxi drivers

take toll-free routes more often than Uber drivers. Figure A6 shows precisely the opposite: Across major

neighborhoods of Manhattan, taxi drivers are more likely to take toll roads than Uber drivers do on their way

to or from LaGuardia. Therefore, based on the data, we reject toll saving as the main explanation for taxi

drivers’ detouring.

In the main analysis of driver detour, we constrained the matched taxi and Uber trips to be 15 minutes

apart. As a robustness check, we perform the same analysis using alternative time windows, namely 5,

10, 20, and 30 minutes. As shown in Table A1, the estimated effects are stable and consistent across time
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window lengths. To the extent that trips within a narrower time range are more likely to be subject to the

same real-time traffic, and thus better approximate the experimental ideal, significant effects of similar size

even when using a time window as short as 5 minutes greatly enhance our identification.

Recall that our main sample contains only taxi trips reported by Vendor 2, because Vendor 1’s meter

system appears to round down trip distance to the nearest first decimal place. Taxi trips may appear to be

shorter because of the rounding, and the downward bias is greater in taxi-Uber distance ratios of shorter

routes. This implies that the same regression analysis on Vendor 1 sample should yield an upward bias in

the coefficient estimate of airport trips, instead of the opposite. In Table A2, we separately estimate the main

regressions using Vendor 1 only, and then both Vendor 1 and Vendor 2. We compare these with the main

regression results using only Vendor 2, which leads to an upward bias. We find this upward bias, instead of

a downward one, consistent with our main findings.

7 Discussion

7.1 Mechanisms

In this section, we discuss two mechanisms that account for the observed routing difference between taxi

and Uber drivers. The first mechanism is the set of technology-enabled incentive devices implemented by

the Uber platform but not by taxis. These incentive devices include tech-aided monitoring and verification,

tech-enabled rider rating of drivers, and tech-aided conflict resolution. Each of these essentially makes

the cost function of moral hazard “steeper” for Uber than for taxis. Our empirical results imply that these

incentive devices (monitoring, rating, conflict resolution) enhance market transparency in most cases, as

Uber drivers do not appear to detour on JFK airport routes, where the potential gain from detouring is large.

That is, when the pricing rule rewards detouring, little or no evidence of detour points to a working (or even

binding) incentive system.

One necessary condition for a working rating system to penalize strategic behavior is the negative corre-

lation between passengers’ trip ratings to the drivers and driver routing inefficiency. This negative correlation

is robustly present in the data, as shown in Table A3. One interesting nuance is that conditional on the Uber

ride is shorter than the matched taxi ride, the shorter the Uber trip is, the less likely the Uber driver will

get a high rating. One likely reason for this is that passengers dislike off-GPS routing and thus give low

ratings even when Uber drivers found a shorter route. It seems plausible that passengers cannot easily assess

whether a driver’s deviations from the prescribed GPS route are due to superior information used to shorten

the route or an effort to extract a higher fare with a longer route. Therefore, tech-enhanced monitoring deters

driver opportunistic behavior, yet on the other hand it may also create constraint for driver discretion.
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Pricing is another important mechanism that predicts driver routing behavior. This is most clearly re-

flected in taxi driver routing efficiency on flat-fare JFK routes, where taxi drivers optimize routes as residual

claimants. When taxi fares are metered as a two-part tariff, taxi drivers tend to detour on airport routes

mainly because the variable part of the fare can justify the detour. In addition, taxi drivers’ detour payoff

is greater than that of Uber drivers, as the taxi pricing formula puts a larger weight on distance than Uber

pricing does.

Furthermore, perhaps the pricing scheme is of first-order importance in explaining taxi driver travel

speed. We document in the main analysis that taxi drivers, although detouring in some cases, in general

drive at a faster speed than Uber drivers. This is expected because speeding is rewarded more for taxi

drivers than for Uber drivers. In Figure 8, we compute driver marginal minute earnings at various traffic

speeds, separately for taxis and Uber, following their pricing formulas. All the computations are net of the

fixed component of the fare (i.e., $2.5 for taxis and $2.55 for Uber). An interesting divergence appears.

For example, taxi-driver per-minute earning increases by 4 times from 12 miles per hour to 48 miles per

hour (from $0.5/min to $2/min), while Uber-driver per-minute earning only increases by 2.5 times (from

$0.7/min to $1.75/min). This difference stems from the weight given to trip distance in the pricing formula,

where taxi distance is marginally more rewarding than that of Uber. One artifact of the taxi pricing schedule

is that when traffic is flowing at about 12 miles per hour, a NYC taxi driver would earn a slightly higher fare

by alternating between stopping and driving at 24 miles per hour.

Figure 8: Driver Marginal Minute Earning Across Travel Speeds

7.2 Mind vs. Machine

The data show that taxi drivers are more efficient at routing than Uber drivers on short, non-airport routes.

For short routes within Manhattan Core, taxi trip distance is on average 98% that of Uber, and the difference
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is statistically significant at the 1% level. We have shown in A2 that this is largely due to taxi-Uber difference

in exact pick-up and drop-off spots. Nonetheless, this also suggests that human navigation can often perform

at least as well as the technology in dense markets.

One way that drivers can outperform GPS is by having more up-to-date information on the road net-

works and conditions, for example, temporary road closures, upcoming sporting events, or undocumented

shortcuts. Another possibility is that experienced taxi drivers can suggest a better drop-off point than the

exact address given by the passenger, based on the driver’s extensive experience. For example, the driver

might suggest dropping off the passenger on the opposite side of the street in order to avoid unnecessary

travel. This is confirmed by an interview with Loai Yousef 20, an NYC Uber and Lyft driver, who stated,

“Sometimes the Uber GPS map has mistakes. Sometimes it makes the driver do a U-turn to arrive at the ex-

act address even though it would be easy for rider to just cross the street. Taxis drivers often drop passengers

off a short distance from exact address.”

NYC taxi driver expertise in routing should not be surprising, because as residual claimants, they are

strongly motivated to learn the routes, optimize their routing, and take initiative when they can. In contrast,

Uber drivers might not be as motivated to use their discretion, even in cases when they do possess better

information than the GPS. The reason is that off-GPS routing might come across as suspicious behavior to

the riders, which can result in bad ratings and complaints (as we witnessed in Table A3). Loai Yousef told

us that “Uber passengers tend to want driver to go to the exact address even if it’s wasteful.” Therefore, the

use of GPS, coupled with the monitoring and rating systems, can limit the incentives for human knowledge

accumulation, as well as initiative and discretion.

8 Conclusion

In this paper, we study whether digital platforms affect moral hazard and service quality, when compared to

traditional settings. We provide evidence from the taxi and Uber setting in the form of driver routing choices

from identical start and end points. By analyzing trip-level data from NYC, we find that taxi drivers tend

to detour more relative to Uber drivers on metered airport routes, particularly when the airport passenger is

non-local. This long routing is not found for short, within-Manhattan trips or airport trips with a fixed fare.

These findings are consistent with a model of driver moral hazard, where the Uber technology platform and

pricing scheme reduce driver moral hazard behavior in situations where taxi moral hazard return is high. We

have also explored alternative explanations but found none of them compatible with the data. That said, we

also find evidence that the incentives for creating and using driver routing expertise may be reduced by the
20Loai Yousef was interviewed on July 9th, 2018.

30



Uber platform, relative to reliance on technologies such as GPS.

Digital platforms can make markets significantly more efficient by reducing information asymmetry,

which has long been a key barrier to market efficiency. In the case of Uber, this is done in several ways,

including the rating system, the easy complaint channel, and the highly salient GPS that enable both driver

and passenger to see the same route. We identify sizable efficiency gains due to reduced agency problems,

because detouring leads to welfare loss in the form of lost passenger time, which is estimated at 150 passen-

ger hours per day21. In general, once the smart phone infrastructure is in place, these features can be rolled

out at very low marginal cost.

There is growing body of research on the digital disruption and, in particular, the potential for digital

platforms to mitigate moral hazard. The rise of Uber is a case example of the power of digital platforms

and suggests that information asymmetry can be significantly mitigated by this type of technological ad-

vance. Our study provides models that can be applied to other settings facing the emerging challenges and

opportunities created by the interaction of new technologies and incentive design.
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Appendix

A Theory
Recall that the driver chooses the amount of detour (x) and the speed of driving (equivalent to y) to maximize
the following expected payoff function:

Max E
x,y

{s[p0 + pdd0(a+ x+ ε) + pt(γd0(a+ x+ ε) + y)]

− f(x; d0,Θ)− g(y; d0,Θ)− qeet(γd0x+ y)},
(8)

The first-order conditions are,

fx(x; d0,Θ) + qeetγd0 − sd0(pd + ptγ) = 0, (9)

gy(y; d0,Θ) + qeet − spt = 0. (10)

Then, the comparative statics lead to the following testable implications:
Hypothesis 1: Drivers tend to detour more on longer routes than on shorter routes because longer distance
increases detour payoffs unless the demand at the drop-off location is sufficiently high, marginal detour
penalty increases significantly with trip distance, or both.
Proof. ∂x

∗

∂d0
=

s(pd+ptγ)−qeγet−fxd0
fxx

≶ 0, depending on the sign of s(pd + ptγ)− qeγet − fxd0 .
(1) Clearly, when fxd0 >> 0, or marginal detour penalty increases significantly with trip distance,

∂x∗

∂d0
< 0, or drivers detour less on longer routes than shorter routes.

(2) When fxd0 = 0, ∂x
∗

∂d0
> 0 if and only if qe <

s(pd+ptγ)
γet

. In the case of taxis in normal NYC traffic,

s = 1, p0 = 2.50, pd = 2.50, and pt = 0. For simplicity, let et = p0+pdDe+ptTe
Te

, where De and Te are the
expected length and duration of the forgone trip, respectively. Then, γet = γ × 2.50+2.50De

γDe
= 2.50+2.50De

De
,

by having Te = γDe. Therefore, ∂x
∗

∂d0
> 0 requires qe to be less than De

1+De
. For example, for an average

NYC taxi trip of 3 miles, the threshold for qe is 0.75. Therefore, drivers detour more on longer routes than
shorter routes unless the drop-off demand qe is sufficiently high. Similar conditions apply to Uber.
Hypothesis 2: Drivers detour more when the rider is a non-local passenger, and they detour less when the
rider is a local passenger, as non-local passengers are less likely to notice the detour because they lack
knowledge of local geography.
Proof. For a parameter θ ∈ Θ that increases the marginal detour penalty (fxθ > 0), e.g., the passenger is
local, ∂x

∗

∂θ = − fxθ
fxx

< 0.
Hypothesis 3: Drivers detour more (respectively, less) during high surge prices if the increase in marginal
detour payoff due to high surge dominates (respectively, is dominated by) the increase in marginal detour
penalty due to high surge.
Proof. ∂x

∗

∂s = d0(pd+ptγ)−fxs
fxx

≶ 0, depending on the sign of d0(pd + ptγ)− fxs.
Hypothesis 4: Drivers detour less (respectively, more) when the demand at the drop-off location is higher
(respectively, lower).
Proof. ∂x∗∂qe

= − etγd0
fxx

< 0.
Hypothesis 5: Everything else held constant, taxi drivers have greater incentives than Uber drivers to drive
faster than other traffic on the road.
Proof. Let c denote taxis and u denote Uber. According to Equation 10, gy(y∗) = spt− qeet. Given gy < 0
for y < 0, gy > 0 for y > 0, and pt = 0 for taxis, it then follows that yc∗ < 0. The condition pt > 0 for
Uber makes speeding less profitable for Uber drivers than for taxi drivers, especially when the penalty cost
of deviating from the road traffic is greater for Uber than for taxis, i.e., guy < gcy for y < 0 and guy > gcy
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for y > 0. Therefore, as long as other parameters (qe and et) are similar between taxis and Uber, yc∗ < yu∗.

B Figures

Figure A1: Dividing NYC into Voronoi Cells Centered at Street Intersections

Figure A2: Pick-up Locations of Uber and Taxi after Matching Step 1 (taxis in purple; Uber in green)
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Figure A3: Taxi Trip Distance Exhibits a Bimodal Pattern for Tolled Airport Routes

Notes. The plots are based on NYC yellow medallion taxi trips, January to June, 2016. Individual density plots demonstrate bimodal patterns of taxi
distance on tolled trips for all routes between three NTAs in Midtown and four LaGuardia terminals. NTA code “MN17” denotes Midtown-Midtown
South, “MN19” denotes Turtle Bay-East Midtown, and “MN20” denotes Murray Hill-Kips Bay. LaGuardia terminals are denoted by A, B, C, and
D. Similar bimodal patterns are found for UberX trips.

Figure A4: Long-standing Uber Drivers Did Not Become More Honest with Time

(a) 2013 (b) 2016

Notes. These plots show that 234 drivers who remained Uber drivers from 2013 to 2016 do not appear to have become more honest in routing, as
compared to taxi driver routing in the respective time periods, on JFK taxi flat-fare routes (where taxis are considered the “no detour” benchmark).
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Figure A5: An Example Where the Longer, Toll-free Route Can Benefit Passengers

Notes. This is an example where the longer, toll-free route can benefit passengers. The toll-free route of 10.2 miles costs $1.80 more than the
shortest and fastest route of 9.6 miles (0.6 miles × $2.50/mile × 1.20, assuming a tip of 20%), according to the taxi pricing formula. Yet this route
saves the passenger a toll of $5.54. Thus, the longer, toll-free route is preferable by the passenger as long as the cost saving justifies the extra travel
time (i.e., if passengers value their time less than $1.87 per minute (($5.54 - $1.80)/2 minutes).

Figure A6: Taxi and Uber Shares of Tolled Trips between LaGuardia and Manhattan Neighborhoods

Notes. The figure plots the shares of toll roads, separately for taxis and Uber, between major Manhattan neighborhoods and LaGuardia, using 2016
data. These Manhattan neighborhoods are ordered by taxi trip shares.

37



C Tables

Table A1: Robustness: Various Time Windows

D.V. = Taxi dist. / Uber dist. 5 min. 10 min. 15 min. 20 min. 30 min.

M Airport 0.069*** 0.067*** 0.069*** 0.069*** 0.069***
(0.004) (0.003) (0.002) (0.002) (0.002)

JFK -0.003 0.003 0.006* 0.008*** 0.009***
(0.008) (0.005) (0.003) (0.003) (0.002)

NonLocal -0.003 -0.006** -0.002 -0.003 -0.005***
(0.005) (0.003) (0.002) (0.002) (0.002)

M Airport × NonLocal 0.016*** 0.020*** 0.016*** 0.016*** 0.017***
(0.006) (0.004) (0.003) (0.003) (0.002)

JFK × NonLocal 0.011 0.008 0.002 0.003 0.002
(0.009) (0.005) (0.004) (0.003) (0.003)

Log(Uber driver total trips) 0.002 0.004** 0.004** 0.004*** 0.004***
(0.004) (0.002) (0.002) (0.001) (0.001)

Log(Uber rider total trips) -0.000 0.000 0.000 -0.000 -0.000
(0.001) (0.000) (0.000) (0.000) (0.000)

Hour of week FE Yes Yes Yes Yes Yes
Uber driver FE Yes Yes Yes Yes Yes
N 33,830 62,704 90,431 117,220 169,179
R2 0.551 0.432 0.371 0.332 0.286

Notes. The regression samples consist of matched pairs of taxi and Uber trips on metered airport routes and
non-airport routes, for various time windows. For all specifications, standard errors are cluster-robust at the
hour-of-week level; *** significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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Table A2: Robustness: Taxi Meter Vendor 1

D.V. = Taxi dist. / Uber dist. Vendor 2 Vendor 1 Vendor 1 and 2
(Main analysis sample)

M Airport 0.069*** 0.091*** 0.078***
(0.002) (0.003) (0.002)

JFK 0.006* 0.035*** 0.020***
(0.003) (0.004) (0.002)

NonLocal -0.002 0.002 -0.001
(0.002) (0.003) (0.002)

M Airport × NonLocal 0.016*** 0.008** 0.013***
(0.003) (0.003) (0.002)

JFK × NonLocal 0.002 -0.004 -0.001
(0.004) (0.005) (0.003)

Log(Uber driver total trips) 0.004** 0.006*** 0.004***
(0.002) (0.002) (0.001)

Log(Uber rider total trips) 0.000 0.000 0.000
(0.000) (0.000) (0.000)

Hour of week FE Yes Yes Yes
Uber driver FE Yes Yes Yes
N 90,431 74,199 164,630
R2 0.371 0.412 0.298

Notes. The regression samples consist of matched pairs of taxi and Uber trips on metered airport routes
and non-airport routes, for Vendor 1 taxis, Vendor 2 taxis, and both taxi vendors, respectively. For all
specifications, standard errors are cluster-robust at the hour-of-week level; *** significant at the 1% level;
** significant at the 5% level; * significant at the 10% level.

Table A3: Uber Driver Ratings by Passengers Are Correlated with Routing Efficiency

JFK trips with taxi flat fare
Uber dist.
≥ Taxi dist.

Uber dist.
< Taxi dist.

(1) (2) (3) (4) (5)

Uber dist/Taxi dist -0.152** -0.150** -0.132 -0.283** 0.518**
(0.062) (0.061) (0.082) (0.115) (0.218)

Uber dur/Taxi dur -0.253*** -0.204*** -0.206*** -0.269*** -0.123
(0.046) (0.053) (0.077) (0.082)

Uber driver rating 0.862*** 0.880*** 0.904*** 0.765***
(0.096) (0.104) (0.149) (0.154)

Log (Uber driver total trips) 0.013* 0.015* 0.021 0.011
(0.008) (0.009) (0.013) (0.012)

Surge multiplier -0.111** -0.100* -0.121 -0.034
(0.045) (0.053) (0.083) (0.079)

NonLocal 0.019 0.021 0.039 0.007
(0.017) (0.023) (0.031) (0.030)

Log (Uber rider total trips) 0.028*** 0.027*** 0.035*** 0.018**
(0.005) (0.006) (0.009) (0.008)

Hour of week FE No No Yes Yes Yes
N 5,885 5,885 5,885 3,139 2,746
R2 0.007 0.026 0.049 0.080 0.078

Notes. For Specifications (3), (4), and (5), standard errors are cluster-robust at the hour-of-week level; *** significant
at the 1% level; ** significant at the 5% level. * significant at the 10% level.
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