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Abstract. Using both economic theory and Artificial Intelligence (AI) pricing

algorithms, we investigate the ability of a platform to design its marketplace to pro-

mote competition, improve consumer surplus, and even raise its own profits. We

allow sellers to use Q-learning algorithms (a common reinforcement-learning tech-

nique from the computer-science literature) to devise pricing strategies in a setting

with repeated interactions, and consider the effect of platform rules that reward

firms that cut prices with additional exposure to consumers. Overall, the evidence

from our experiments suggests that platform design decisions can meaningfully ben-

efit consumers even when algorithmic collusion might otherwise emerge but that

achieving these gains may require more than the simplest steering policies when

algorithms value the future highly. We also find that policies that raise consumer

surplus can raise the profits of the platform, depending on the platform’s revenue

model. Finally, we document several learning challenges faced by the algorithms.

Many products and services are sold through online platforms such as Amazon, Booking, and

eBay. Sellers on these platforms are increasingly using algorithms to decide what prices they

should charge.1 This trend towards algorithmic pricing has generated significant debate. On

the one hand algorithms might be procompetitive, enhancing efficiency by enabling sellers

to react more quickly to changes in demand and supply conditions. On the other hand, pol-

icymakers and legal scholars have raised the concern that algorithms might be used to foster

and sustain collusion.2 Indeed, several legal cases involving algorithms facilitating collusion

have already been tried in court.3 Furthermore, recent experimental work by economists
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1According to the OECD (2017a) “the use of pricing algorithms by professional sellers is becoming increasingly
common, if not ubiquitous.” Meanwhile Chen, Mislove, and Wilson (2016) estimated that, even in 2015, algorithms
were involved in the pricing of around one-third of the roughly 1600 best-selling products on the Amazon marketplace.
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3See the Topkins case, pursued by the U.S. Department of Justice, and the Eturas case in the European Union.
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has shown that Artificial Intelligence (AI) algorithms may learn to play collusive strategies,

while empirical work suggests that adopting AI algorithms may lead to higher prices.4

At the same time, policymakers are increasingly highlighting the importance of platform

design—namely the rules that govern interactions between users on a platform.5 One lead-

ing example is the rules that govern how different products are ranked or displayed to con-

sumers. Platforms can use these rules to actively shape the nature of competition on their

marketplaces. This has prompted some scholars to argue that dominant platforms should

have a responsibility to design rules which promote competition on their marketplaces.6

In this article we use both economic theory and extensive experiments on artificial intelligence

pricing algorithms to demonstrate that platforms may indeed be able to design rules that

increase competition on their marketplaces. Relatively simple rules may suffice when sellers

(or their algorithms) behave competitively, but more subtle ones—which condition on past

behavior and treat sellers asymmetrically—may be required when there is a risk of collusion.

Of course we do not claim that platforms should be compelled by policymakers to actively

promote competition. But even if platforms were not compelled to do so, platforms might

wish to implement such policies: sometimes the rules we suggest simultaneously benefit

consumers and raise platform profits.

In more detail, we consider a setting with multiple firms whose products are differentiated

according to the standard logit model. These firms compete over an infinite horizon on a

monopoly retail platform. We consider two platform design rules, both of which involve

steering consumer demand towards a subset of the sellers. The simpler of these policies,

price-directed prominence (PDP), involves the marketplace simply steering demand towards

sellers that are charging lower prices within a given category. Relatively high-priced sellers

are shown to fewer consumers, reducing their profits. The more subtle of our two policies,

dynamic price-directed prominence (Dynamic PDP), also conditions on past prices. These

two policies capture a platform’s ability to rank and display products, and thereby restrict

a consumer’s attention to a subset of the available products.7

Section 1 of our article examines the theoretical impact of the two design policies. Theory

predicts that prices fall, and so PDP introduces a tradeoff for consumers between lower prices

and less product variety. Whether consumers on balance benefit hinges on whether sellers

are cartelized or not. When sellers do not collude, PDP raises consumer surplus so long

4See Calvano, Calzolari, Denicolò, and Pastorello (2020) and Klein (2020), also discussed further below, for the
experimental evidence, and Assad, Clark, Ershov, and Xu (2020) for the empirical evidence.
5See ec.europa.eu/digital-single-market/en/digital-services-act-package and Furman et al. (2019).
6For example Crémer, de Montjoye, and Schweitzer (2019) write that “Dominant platforms have ‘regulatory power’
and have a responsibility to use that power in a pro-competitive manner.”
7A related policy is the Amazon “buy box,” which shows consumers one seller among those offering a given homoge-
nous product (in contrast our analysis considers differentiated products). Current price substantially determines
which firm “wins” the buy box, but past performance also matters. See Gómez-Losada and Duch-Brown (2019).
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as no more than about two-thirds of products are obscured, but when sellers collude PDP

lowers consumer surplus irrespective of the number of products that are obscured.

Because PDP is not predicted to work well when sellers are colluding, our second technique,

Dynamic PDP, attacks the foundations of collusion more directly. It does so by steering

additional demand to a firm not just in the period in which it cuts prices but also in later

periods, subject to the firm not raising prices and not being undercut by more than a small

“cushion” set by the platform. The net effect is that it is more difficult to punish a firm that

has cut prices, and therefore incentives to deviate are amplified, reducing cartel stability.

Dynamic PDP has excellent theoretical properties: collusion becomes unsustainable even

as firms become nearly infinitely patient, and consumers often benefit. This is important

because in principle algorithms might operate in real time, which is theoretically equivalent

(in terms of cartel stability) to being very patient.

Starting in Section 2, we use experiments to assess the impact of the two design rules when

prices are set by simple AI algorithms. Our focus on AI algorithms is motivated by the

growing use of AI in a range of business applications. It seems likely that such techniques

will soon be widely employed to set prices, and indeed many providers of repricing software

already market their products as using artificial intelligence.8 We use a particular type of

AI algorithm called Q-learning, which is popular among computer scientists. As we describe

more fully in Section 2, Q-learning is a reinforcement-learning algorithm which attempts

to find an optimal solution to a potentially complex problem based on its own historical

experience with the environment.

In our algorithmic experiments we find, as a preliminary result, that absent PDP the al-

gorithms typically set prices that exceed the predicted static Bertrand-Nash prices. This

confirms a key contribution of Calvano, Calzolari, Denicolò, and Pastorello (2020), who

study interactions between algorithms in a setting closely related to ours.

Our experiments with these AI algorithms reveal that PDP lowers prices, but that the

price declines need not be large enough to compensate consumers for the loss of variety.

In this sense, sometimes algorithms behave more like competitive firms (with PDP helping

consumers) but other times behave more like a cartel (with PDP harming consumers). PDP

is less likely to benefit consumers when the algorithms value future profits highly, that is

when they operate with high discount factors, which is intuitive given that economic theory

predicts cartels are easier to support when this is so. But even when firms are patient,

consumers sometimes benefit even though theory suggests they should not; this is more

likely when product differentiation (as measured by the scale parameter in the standard

logit model) is lower. When consumers do benefit, the consumer-surplus gains can be large,

sometimes exceeding 35%.

8See goaura.com, sunpricer.com, feedvisor.com/amazon-repricer, kalibrate.com, and a2isystems.com.
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Our experiments with our second rule, Dynamic PDP, reveal that the algorithms respond

very strongly to it, even when the discount factor is high. Prices drop substantially both

compared to (regular) PDP and compared to no PDP. And there are also large increases in

consumer surplus—we sometimes observe gains higher than 75%. Thus, our results suggest

that Dynamic PDP may be a more effective tool than PDP to fight algorithmic collusion.

Overall, the evidence from our experiments suggests that platform design decisions can

meaningfully benefit consumers even when algorithmic collusion might otherwise emerge.

However, achieving these gains may require more subtle steering policies such as Dynamic

PDP. We also find that rules that raise consumer surplus can raise the profits of the platform,

depending on the platform’s revenue model.

Our work is part of a broader literature on collusion and algorithms that spans multiple

disciplines, including computer science, economics, and law. Mehra (2015) and Ezrachi and

Stucke (2017) raise the concern that algorithms may facilitate collusion. They identify several

ways this might occur, including AI algorithms learning to collude without explicit human

direction. Harrington (2018) discusses policy issues, such as whether the proper definition

of collusion ought to require an explicit agreement among conspirators or whether collusion

is better defined as elevated prices supported by a reward-and-punishment scheme.

The prospect of AI algorithms learning to cooperate in prisoner’s dilemma games has been

studied by Sandholm and Crites (1995), Tesauro and Kephart (2002), and Waltman and

Kaymak (2008). Recent work goes further. Calvano, Calzolari, Denicolò, and Pastorello

(2020) study collusion by AI algorithms in a logit model of differentiated products. In

addition to finding prices that are elevated compared to theoretical predictions of non-

collusive behavior, they identify that algorithms may learn to support collusive outcomes

using reward-and-punishment schemes. Klein (2020) also studies the strategies algorithms

utilize in a setting where firms selling homogeneous products take turns changing prices,

and finds Edgeworth price cycles supporting supranormal profits. These articles use the

same type of reinforcement-learning algorithms that we do.9 They are part of a broader

investigation into cooperation in games dating back to Axelrod and Hamilton (1981).10

In terms of structural market changes to fight collusion, Kovacic, Marshall, Marx, and Raiff

(2006) detail methods that may apply in procurement auctions. The study of buyer groups

by Dana (2012) is closer in spirit to our steering proposals, although he does not consider

a collusive framework or the role of algorithmic pricing. Like Dana and us, Dinerstein,

9Other papers use economic theory but not actual algorithms. Miklós-Thal and Tucker (2019) and O’Connor and
Wilson (2019) assume that algorithms improve the quality of information available and ask how that changes the
structure of collusion. Salcedo (2015) and Brown and MacKay (2019) explore the effect on prices when sellers commit
to particular pricing algorithms.
10There is also a large literature specifically on whether and how humans learn to collude; Dal Bó and Fréchette
(2018) provide an extensive summary and review of this literature. Deck and Wilson (2003) examine the use of
pricing algorithms in an experimental setting in which humans choose which types of (non-AI) algorithms to use.
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Einav, Levin, and Sundaresan (2018) recognize the tradeoff between prices and variety in

their empirical study of platform design. Teh (2020) examines how trade-offs associated

with platform design are affected by the platform’s fee structure. Also related are studies

of intermediaries that bias recommendations or otherwise steer demand to raise their own

static monopoly profits (Hagiu and Jullien, 2011; Inderst and Ottaviani, 2012; De Corniere

and Taylor, 2019; Teh and Wright, 2020). Our approach differs in a number of ways but

particularly in that we allow for (algorithmic) collusion and focus on how an intermediary

can raise consumer surplus.

1. Model

Here we lay out a theoretical model of how platform design affects prices and other outcomes.

There are n firms, each of which sells one differentiated product on a monopoly retail plat-

form. The firms have the same constant marginal cost c > 0, which is inclusive of any fees

paid to the platform. Firms interact repeatedly over time. In each period t = 0, 1, ..., each

firm i observes all past prices and other outcomes and simultaneously sets a price pti ≥ 0

(negative prices are not allowed). The firms have a common discount factor δ ∈ (0, 1).

In each period t there is also a unit mass of consumers, each of whom wishes to buy at most

one product. Consumers spend one period in the market and then exit and are replaced by

a new cohort. A representative consumer who buys product i in period t obtains utility

uti = a− pti + ζi.

If a consumer buys no product then she obtains the outside option utility

ut0 = a0 + ζ0.

We assume that ζ0 and each ζi are independent random variables with a type I extreme value

distribution that has common scale parameter µ > 0.

In each period t the platform displays a subset Nt of the products to consumers. Consumers

can only buy a displayed product. Therefore given our assumptions, each firm not in Nt
receives zero demand, whereas a firm i ∈ Nt receives (standard logit) demand

Di(p
t) =

exp
(
a−pti
µ

)
∑

j∈Nt
exp

(
a−ptj
µ

)
+ exp

(
a0
µ

) , (1)

where pt is the vector of prices of the n firms at time t. Consumer surplus in period t is

U t(pt) = µ log

[∑
j∈Nt

exp

(
a− ptj
µ

)
+ exp

(
a0

µ

)]
, (2)

while total industry output is
∑

j∈Nt
Dj(p

t) and total industry revenue is
∑

j∈Nt
ptjDj(p

t).
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Below we consider two ways in which the set of displayed firms Nt could be generated.

1.1. Price-Directed Prominence. The first platform intervention that we consider is

price-directed prominence (PDP), which is formally defined as follows.

Definition 1 (Price-Directed Prominence). In any given period t each consumer only

observes k firms with the lowest prices, for some fixed integer k ∈ {1, 2, ..., n− 1}.

In case two or more firms are tied for the kth lowest price, then a subset of the firms with

the kth lowest price is randomly chosen so as to ensure that exactly k firms are displayed.

We now evaluate the theoretical effectiveness of price-directed prominence. Its predicted

performance depends on several factors, including whether firms behave like a cartel or not.

First we assess predicted outcomes when the market is competitive.

1.1.1. PDP in a Competitive Market. Suppose that in each period the n firms choose prices

as if this is the only period in which they compete, that is, firms play a one-shot Bertrand-

Nash pricing game. If PDP is not in effect—and so all firms are displayed—there is a unique

equilibrium where each firm charges p∗BN > c. In contrast, under PDP prices are driven

down to marginal cost as firms compete for the right to be displayed to consumers.

Lemma 1. In a competitive market in which PDP is in effect, at least k + 1 firms price at

marginal cost in equilibrium.

PDP therefore presents a tradeoff for consumers between lower prices but less variety.

Proposition 1. In a competitive market, compared to when all n firms are displayed:

(1) If k/n > e−1 ≈ 0.368 then PDP increases consumer surplus and total output. It

increases revenue if, in addition, a− c < a0 and µ is sufficiently small.

(2) If k/n < e−
n

n−1 then PDP decreases consumer surplus, total output, and revenue.

The first part of Proposition 1 says that PDP raises consumer surplus and total output

whenever the proportion k/n of firms displayed is large enough. Indeed, even if as many as

63% of products are not shown, the resulting gains from intensified price competition are

enough to benefit consumers.11 (Of course, it is better to show consumers more products

conditional on them being priced at marginal cost.) Unfortunately it is hard to provide

general conditions under which PDP increases revenue. However, revenue does increase

when, for example, the outside option a0 is high and the level of differentiation µ is low.

11This 63% threshold is certainly met if only one firm is not shown, that is if k = n− 1.
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On the other hand, the second part of Proposition 1 says that PDP reduces consumer surplus

and total output if too few firms are displayed, because the loss of variety then dominates.12

Since PDP reduces prices, whenever it reduces output it also reduces revenue.

Overall, our results show that when markets are competitive PDP may benefit consumers

and increase both the volume and value of transactions on the platform. However some

markets may not be well characterized by our assumption of Bertrand-Nash competition.

We next consider the possibility that the market is instead cartelized.

1.1.2. PDP in a Cartelized Market. We focus on the theoretical performance of PDP under

full collusion—whereby in each period the n firms set prices to maximize their joint profits.

Fully collusive prices therefore maximize the profit of an n-product monopolist. The following

simple lemma characterizes monopoly prices.

Lemma 2. An n-product monopolist would charge the same price pm(k) on k of the products,

and charge weakly more than pm(k) on the remaining n− k products.

We first look at how PDP affects the sustainability of full collusion as an equilibrium outcome.

Full collusion is sustainable if and only if, in each period, each firm’s net present value of

colluding exceeds its discounted payoff from deviating. As is typical in models of collusion,

for a given k full collusion is easier to maintain when δ is larger. It turns out that full

collusion is sustainable for the broadest range of discount factors when (i) all firms charge

pm(k) in each period until there is a deviation, and (ii) after a deviation firms play the one-

shot Bertrand-Nash equilibrium in Lemma 1 forevermore. Part (i) implies that in each period

the platform randomly selects which firms to display, and so in each period in expectation

every firm gets an equal share of the monopoly profit. (Alternative schemes, where firms

alter their prices over time so as to control how demand is rotated between cartel members,

can be shown to sustain collusion for a narrower range of δ.) Meanwhile part (ii) ensures

that a firm earns zero in each period after it deviates, despite intrinsic differentiation.

Denote by δ̂k the critical discount factor above which full collusion satisfying parts (i) and

(ii) in the previous paragraph can be sustained when k firms are shown. A natural question

is how δ̂k varies with k. There are two effects. First, as k decreases the value of being in the

cartel also decreases because the monopoly profit is lower. Second, as k decreases the value

of deviating from full collusion by undercutting pm(k) increases. Roughly speaking, this is

because the deviating firm is shown alongside fewer (that is, k − 1) other firms and so gets

higher demand. Both of these effects decrease the stability of a cartel.

12The condition k/n < e−
n

n−1 is satisfied if, for example, k = 1 and n ≥ 4. We also note that as n → ∞ the two
thresholds in the proposition coincide, and so PDP increases consumer surplus and output if and only if k/n > e−1.
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Proposition 2. Under PDP, showing fewer products to consumers makes it harder to fully

collude, in the sense that the critical discount factor δ̂k increases as k become smaller:

δ̂1 ≡ 1− 1/n > δ̂2 > · · · > δ̂n−1.

This proposition says that—presuming some PDP is in effect—showing fewer firms makes

full collusion less stable. Numerical simulations also suggest that δ̂1 > δ̂n, which means that

PDP can also make collusion harder compared to the case where all n firms are displayed.

Consequently for moderate δ our results support the idea that PDP can destabilize full

collusion, thereby forcing the cartel to lower its prices to the potential benefit of consumers.13

On the other hand, if δ is sufficiently large then full collusion is sustainable whether PDP is

used or not. For example, Proposition 2 implies that under PDP full collusion is sustainable

whenever δ > 1 − 1/n. This may not be a very stringent condition because a high degree

of patience is similar to being able to rapidly observe and adjust prices—which in principle

algorithms might excel at doing.

We therefore now look at the effect of PDP when full collusion remains sustainable.

Proposition 3. Suppose δ is large enough that full collusion is sustainable (with or without

PDP). Fully collusive prices are lower when fewer firms are displayed to consumers:

pm(1) < pm(2) < · · · < pm(n).

However, consumer surplus and total output are also lower: as fewer firms are displayed, the

decline in prices is too small to offset the loss of variety. Revenue is lower as well.

Fully collusive prices fall as PDP is implemented more aggressively, that is, as fewer firms

are shown to consumers. Intuitively, recall that fully collusive prices are the same as those

optimally chosen by a multi-product monopolist. And a monopolist with fewer products

optimally sets lower prices because it is less concerned about cannibalizing existing sales.

Consumers are harmed by any implementation of PDP, according to Proposition 3, because

under full collusion the decline in prices is too small to offset the decrease in variety. Output

falls for the same reason, and since prices are also lower so is revenue. Therefore, depending

on what fees it charges the platform may also be harmed by PDP. This differs from what

happens in competitive markets, where a modest loss of variety intensifies price competition

so much that consumer surplus, output and revenue may all increase (Proposition 1).

In light of Proposition 3 we now turn to another platform intervention which is capable of

destabilizing collusion and benefiting consumers even for very high discount factors.

13For example, if k = 1, it is straightforward to prove that when δ < δ̂1 the firm that is displayed to consumers
charges marginal cost in any (pure-strategy) subgame-perfect Nash equilibrium.
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1.2. Dynamic PDP: A Stronger Tool for Breaking Collusion. The second platform

intervention that we consider is Dynamic Price-Directed Prominence (DPDP or Dynamic

PDP). The idea is to reward firms that set low prices not only with additional demand today

but also with an enhanced opportunity to gain future demand.

Definition 2 (Dynamic PDP). In period t = 0 firms set prices and one firm with the

lowest price is the only firm shown to consumers, and is given an “advantage” in period 1.

In any period t > 0 in which firm i has the advantage, firm i is the only firm shown to

consumers, and also receives the advantage in period t+ 1, so long as

(1) firm i has not raised its price compared to the previous period, and

(2) no rival in period t+1 undercuts firm i by strictly more than a fixed value ADV > 0.

If either of these two conditions is violated, then in period t a firm with the lowest price is

given all demand in that period, and that firm also receives the advantage in period t+ 1.

Under Dynamic PDP the firm that is shown today gets a “pricing advantage” ADV , making

it easier for that firm to be shown to consumers tomorrow, so long as it does not raise price.

In competitive markets Dynamic PDP works the same as regular PDP (for k = 1). In

particular, at least two firms charge marginal cost in each period, and so for example Dynamic

PDP benefits consumers for low n but otherwise makes them worse off (Proposition 1).

However in cartelized markets Dynamic PDP is much more effective than regular PDP in

reducing prices. To illustrate this we require some additional notation. Let π̃(p) denote

per-period profit of a firm that charges p and is the only firm shown to consumers. Note

that π̃(p) is strictly increasing in p up to pm(1).

Proposition 4. Consider Dynamic PDP with an advantage 0 < ADV ≤ pm(1).

(1) There exists a δ̂ ≥ δ̂1 such that if δ < δ̂, then in any pure-strategy subgame-perfect

Nash equilibrium the equilibrium transaction price equals marginal cost in all periods.

(2) Moreover δ̂ = 1, and so the transaction price is marginal cost for all values of δ, if

π̃(ADV ) ≥ π̃(pm(1))

n
. (3)

Proposition 4 says that for 0 < ADV ≤ pm(1) collusion is harder to sustain when the

platform implements dynamic rather than regular PDP. Indeed, when ADV is sufficiently

large, firms are unable to collude at any price above marginal cost even as they become

arbitrarily patient, that is, as δ → 1.

We now sketch an intuition for why collusion is infeasible for high values of ADV ≤ pm(1).

Suppose that firms try to fully collude. At time zero a firm could deviate by charging

pm(1) − ψ for ψ > 0 small, be the only firm shown to consumers, and win the advantage.
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This firm could then charge min{pm(1) − ψ,ADV } in each future period and keep the

advantage forever, because no firm could undercut it by strictly more than ADV . Given

equation (3), and for ψ > 0 small, the firm’s payoff from this deviation would strictly exceed

π̃(pm(1))/n(1 − δ).14 However any of the n firms could so deviate. Therefore a necessary

condition for full collusion to be an equilibrium is that the joint discounted profit from

collusion strictly exceeds π̃(pm(1))/(1− δ)—which is impossible. A similar argument can be

used to rule out any collusive scheme which tries to sustain prices above marginal cost.

In principle Dynamic PDP could be simplified further. For example, consider a rule where

one firm with the lowest price at time zero gets all future demand provided it never raises

its price. In theory this rule is very effective in pushing down prices—it can be shown that

for any δ < 1 the equilibrium transaction price in each period is marginal cost. In practice,

however, this rule might perform poorly if in the future an incumbent experienced a cost

reduction or a more efficient firm entered the market. We discuss this more in Section 5.

Finally, Dynamic PDP may again introduce a trade-off between lower prices but less variety.

Proposition 5. Suppose δ is sufficiently high that, absent platform intervention, firms would

fully collude. Suppose also that ADV satisfies equation (3). Compared to the case where all

n firms are shown to consumers, Dynamic PDP increases consumer surplus and total output

if and only if

n < ñ = exp

(
1 + exp

(
a− c− a0

µ

))
.

Dynamic PDP can benefit consumers and increase output in a wide variety of circum-

stances when firms are patient and markets are cartelized. (Note that n < ñ holds for

many parameterizations—including those used in our later experiments—even for very large

n.) Although it is again hard to provide general conditions under which revenue increases,

this happens for example when n = 2, a − c < a0, and µ is small. This contrasts with

Proposition 3 which showed that regular PDP performs badly in cartelized markets.

2. A Multi-Agent Reinforcement Learning Approach

In the remainder of this article we investigate how reinforcement-learning algorithms respond

to PDP and Dynamic PDP. Reinforcement learning represents a class of techniques from

computer science whereby algorithms learn about their environment based on their own past

experiences with it. When multiple reinforcement-learning agents interact this is referred to

as Multi-Agent Reinforcement Learning (MARL) (see Buşoniu, Babuška, and De Schutter

(2010) and Bloembergen, Tuyls, Hennes, and Kaisers (2015) for surveys).

14In particular, the firm’s profit strictly exceeds πm(1)/n at time zero and weakly exceeds it in all later periods.
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We use a common technique called (tabular) Q-learning which itself is part of a subclass of

reinforcement learning called temporal-difference learning (Watkins, 1989; Sutton and Barto,

2018). The details of Q-learning specifically and temporal-difference learning in general are

motivated by the theory of dynamic programming applied to Markov Decision Environments.

A powerful feature of Q-learning is that it requires little knowledge of the underlying environ-

ment. In particular, it assumes that the algorithm can recognize which state an underlying

system is in and knows which actions are available in each state, but does not assume any

prior knowledge about the payoff functions or the state transition probabilities (or even of

the prior distribution of such probabilities). Thus, Q-learning is a robust technique that has

been applied to diverse applications.

Before turning to the details of our MARL approach, we first review the basics of Q-learning

in stationary single-player environments. We follow the standard modern reference on this

topic (Sutton and Barto, 2018) for Q-learning in which the state space is fairly small.

Cutting-edge techniques for larger state spaces involve approximating the state space. Much

recent progress on “deep reinforcement learning” has been made. See Mnih et al. (2015)

and Silver et al. (2016), which develop and apply both novel and existing techniques such

as “experience replay” (introduced by Lin (1992) but see also the discussion in de Bruin,

Kober, Tuyls, and Babuška (2015)) to confront the various convergence issues that such

state-space approximation induces. Li (2017) provides a recent overview of the topic. Deep

reinforcement learning can be powerful but it involves many customization decisions by the

designer of the algorithm; our approach grants less discretion to the researcher.

2.1. Q-learning with a Single Agent. To understand how Q-learning works, consider a

single algorithm facing an unknown stationary Markov Decision Environment with a finite

set of states indexed by s ∈ S, a finite set of actions indexed by x ∈ X , and with transition

probabilities between states that depend on the current action and state. Given action x in

state s the agent receives a payoff π(s, x) that could be random.

Let x∗(s) represent an optimal policy. That is, denoting by st the state at time t and the

initial state by s0, x∗(s) maximizes the future expected discounted profits

E
∞∑
t=0

δtπ(st, x
∗(st)).

Q-learning is motivated by the theory of dynamic programming. Let V (s) denote the value

of being in state s. Rather than working with V (s) directly, Q-learning involves iteratively

estimating the “action-value function” Q∗(s, x) where Q∗(s, x) gives the expected discounted

payoffs of taking action x at state s today and then using the optimal policy function x∗(s)
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in all future periods. Thus

Q∗(s, x) = Eπ(s, x) + δEV (s′|s, x).

If Q∗(s, x) were known then the optimal policy x∗(s) would also be known,

x∗(s) = arg max
x∈X

Q∗(s, x).

Because the state and action spaces are finite, Q∗(s, x) is simply a matrix and so x∗(s)

is determined by looking at the row (say) corresponding to state s and then choosing the

column with the largest element in that row, which corresponds to the optimal action x∗(s).

Because Q∗(s, x) is not known it must be estimated as follows. Beginning from a given

matrix Q, at time t in state s the algorithm decides which action to take. With probability

1 − εt it chooses the action that is optimal according to the current Q-matrix. However,

with probability εt it experiments by uniformly randomizing over all available actions. Such

experimentation ensures that Q-learning sufficiently explores all states and actions.

After choosing the action x, the realized payoff π(s, x) is observed, as is the new state s′.

The one element of the Q-matrix corresponding to (s, x) is then updated as follows.

Q(s, x)← (1− α)Q(s, x) + α

[
π(s, x) + δmax

x̃∈X
Q(s′, x̃)

]
,

for some α ∈ (0, 1). This notation is from the computer science literature: the quantity to

the left of the arrow refers to the new update of Q(s, x) and all quantities to the right of the

arrow refer to the previous “un-updated” Q-matrix.

Updating is characterized by the learning rate α by which old information is replaced with

new information and by the probability of experimentation εt. We parameterize εt as follows,

εt = e−βt

for some experimentation parameter β > 0. A higher β means that experimentation tapers

off more quickly. An algorithm’s learning is therefore characterized by the couple (α, β).

In stationary single-player environments such as the one considered above, Q-learning is

guaranteed to converge to the true action-value function Q∗(s, x) under fairly weak conditions

and hence to uncover the true optimal policy x∗(s) (see Watkins and Dayan (1992), Jaakkola,

Jordan, and Singh (1994), and Tsitsiklis (1994)). However, we will consider interactions

among multiple algorithms. As is well known, in MARL settings there is no theoretical

guarantee of convergence. The reason is simply that each agent is changing the strategy that

it uses over time as it updates its own Q-matrix, and so from the standpoint of other agents

the environment is no longer stationary. Nevertheless, as in some other studies (Waltman

and Kaymak, 2008; Calvano, Calzolari, Denicolò, and Pastorello, 2020), we nearly always

obtain convergence (defined precisely below).
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2.2. Our MARL Approach. Our specification substantially follows that in Calvano, Cal-

zolari, Denicolò, and Pastorello (2020) (although those authors do not examine PDP). We

simulate interactions among multiple agents (algorithms), with our default specification hav-

ing n = 2 and δ = 0.95. In extensions we vary n and δ. On the cost side, each agent has

marginal cost c = 1. Demand is given by equation (1) with each firm having the same

quality component a = 2 and the outside good having a0 = 0. For product differentiation µ

we consider two values, µ = 1/4 and µ = 1/20.

To implement MARL we make the following choices. In each period the action space is the

set of prices that agents can set. We discretize this set of prices to contain fifteen elements in

the set [1, 2.1]. The lower bound of this set is marginal cost and the upper bound is slightly

above the fully collusive prices in the absence of PDP (and also above the corresponding

prices with PDP). The state space is the set of possible prices charged by agents in the

previous period, with 15n elements. Thus, each agent conditions its prices at time t on the

prices set by all agents at time t− 1.

We generalize the theoretical model of PDP from Section 1 by introducing a parameter γ.

This parameter measures the extent to which the platform implements PDP, and we vary

it in increments of 0.01 over the region [0, 1]. Specifically, in each period a representative

proportion 1 − γ of consumers is shown all n goods whereas a proportion γ is shown only

one good (k = 1). To handle ties we slightly smooth the process that determines which firm

is shown to the mass γ of consumers. We introduce a smoothing parameter σ > 0 such that,

given prices {pi} in a period, the probability that i is shown to the γ consumers is

exp
(−pi

σ

)∑n
j=1 exp

(−pj
σ

) , (4)

where σ = 0.01. For Dynamic PDP there are additional details which we defer to Section 4.

Each algorithm maintains its own Q-matrix and updates it over time in the manner described

in Section 2.1. Implementing Q-learning requires an initial “time zero” Q-matrix, which we

build as follows. Fixing an agent and state, for each action available to that agent we derive

the within-period payoff that would be expected if all other agents uniformly randomized

their actions. We then divide this value by 1 − δ so that the Q-matrix indeed contains an

initial estimate of the total future payoffs of taking different actions today.

Unless stated otherwise, our default specification is α = 0.15 and β = 10−5. We will vary

the learning parameters (α, β) across a range to assess the robustness of our results.

We run these algorithms until the induced strategy of each agent does not change for 100,000

periods.15 In other words, for each agent in each period we take that agent’s Q-matrix and

15We stop the algorithms if they do not converge after 1 billion periods, as in Calvano, Calzolari, Denicolò, and
Pastorello (2020).
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determine, for each possible state, which action is associated with the highest payoff in terms

of the Q-matrix. This procedure induces a policy function for each agent in each period.

If, for any 100,000 period horizon, this policy function is stable for each agent then we say

that the algorithms have converged. We then compute payoffs and other relevant metrics by

averaging over this 100,000 period horizon.

For each set of parameters we consider, we repeat this procedure 1000 times, in each instance

restarting the algorithms from their initial time-zero Q-matrices, resetting experimentation

levels to those at time zero, and running them until they again converge. Finally, we average

across these 1000 iterations for all values that we report.

3. Price-Directed Prominence: Experimental Results

Here we present the results of our MARL experiments on the effects of PDP when n = 2

and δ = 0.95 (Sections 4, 6 and 7 consider Dynamic PDP, lower values of δ, and n = 3,

respectively). We first consider higher product differentiation (µ = 1/4), then lower product

differentiation (µ = 1/20), using our default learning parameters α = 0.15, and β = 10−5.

Then we explore the robustness of our results to changes in these learning parameters.

3.1. Higher Product Differentiation. To set a baseline for µ = 1/4, Table 1 reports

results for when price-directed prominence is not in effect (γ = 0). The Bertrand-Nash price

is what theory predicts both firms would charge in the absence of collusion, and is given by

1.473. The collusive price maximizes the joint profits of the firms, with both firms charging

the same price 1.925 (Lemma 2).16 Table 1 also reports the (share-weighted) AI prices that

the algorithms actually charge, given by 1.682. Thus, our algorithms typically converge to a

price exceeding the Bertrand-Nash price, in line with what we would expect from Calvano,

Calzolari, Denicolò, and Pastorello (2020).

Bertrand-Nash Price Collusive Price AI Price

1.473 1.925 1.682

Table 1. Benchmark assessment of AI pricing relative to Bertrand-Nash and col-
lusive pricing, for µ = 1/4, when there is no price-directed prominence.

Figure 1 lays out the effects of price-directed prominence. The left panel shows how both

the algorithmic “PDP price” and the collusive price vary with the mass γ shown only one

product, while the right panel shows the corresponding consumer surplus changes. The PDP

price slightly increases for low values of γ but thereafter mostly decreases. Over the entire

16We compute Bertrand-Nash and collusive outcomes for continuous prices. The optimal collusive prices when
γ ∈ (0, 1) may be asymmetric, which our later computations accommodate. For this reason, and also because some
firms may have very small sales when PDP is in effect, we always report share-weighted prices.
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range of γ, prices decline by 7% under AI pricing. This is quite similar to the decline in the

fully collusive price over this range, which is 6.4%. The fact that prices decline is consistent

with our cartel analysis in Proposition 3, which seems relevant given that δ = 0.95.
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Figure 1. The effect of price-directed prominence on prices (left panel) and
consumer surplus (right panel), with differentiation µ = 1/4.

However, the lower prices come at a cost to consumers in the form of lower variety, where

the loss of variety becomes larger as γ increases. Taking both price decreases and variety

loss into account, it is clear that PDP harms consumers. Indeed, any positive value of γ

(other than γ = 0.02) leads to lower consumer surplus than γ = 0, and moving from γ = 0

to γ = 1 lowers consumer surplus by about 7% under AI pricing. This decline in consumer

surplus is also in line with our theoretical predictions from Proposition 3.

Although the algorithms do not achieve the fully collusive prices even in the absence of PDP,

nonetheless the effect of PDP is consistent with what theory predicts for a fully collusive

cartel: prices fall but not enough to benefit consumers (Proposition 3).

3.2. Lower Product Differentiation. We now report the same results as above except

with µ = 1/20, corresponding to the case with lower product differentiation. Table 2 sum-

marizes for the situation with no PDP (γ = 0). Bertrand-Nash competition exhibits prices

of 1.100. Full collusion generates prices of about 1.893, and AI prices are 1.737.

Bertrand-Nash Price Collusive Price AI Price

1.100 1.893 1.737

Table 2. Benchmark assessment of AI pricing relative to Bertrand-Nash and col-
lusive pricing, for µ = 1/20, when there is no price-directed prominence.
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Figure 2 presents the effects of PDP on prices (left panel) and consumer surplus (right panel).

AI prices initially increase with γ but then at γ = 0.33 tend to decrease for the remaining

range of γ. Compared to AI prices at γ = 0, prices are lower at γ = 1. Specifically, there is

an 8% decline in prices across this range. This PDP price decrease is substantial compared

to the 2% decline in the fully collusive price over this range.
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Figure 2. The effect of price-directed prominence on prices (left panel) and
consumer surplus (right panel), with differentiation µ = 1/20.

The effect of PDP on consumer surplus is large and positive. Moving from γ = 0 to γ = 1

increases consumer surplus by 35%. Hence, the AI price decrease more than compensates

the variety loss, benefiting consumers. Even at moderate values of γ, such as γ = 0.6, there

is a 15% increase in consumer surplus.

As when µ = 1/4, the algorithms do not achieve the fully collusive prices even in the absence

of PDP. In contrast, here the effect of PDP is inconsistent with what theory predicts for a

fully collusive cartel: prices fall enough that consumers benefit.

3.3. Learning-Parameter Robustness. The results reported above suggest that PDP

may either increase or decrease consumer surplus, depending on product differentiation. To

explore the robustness of this conclusion under our MARL specification, here we vary the

learning parameters α and β.

As explained in Section 2.1, the parameter α ∈ (0, 1) measures the extent to which new

information is incorporated, whereas β > 0 measures how quickly experimentation tapers

off over time. In applications α is often set to values such as 0.1 and 0.15 and indeed, even

in single-agent settings, theoretically guaranteeing convergence requires that α eventually

becomes small (although convergence often occurs despite a lack of theoretical guarantee
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(a) PDP, µ = 1/4
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(b) PDP, µ = 1/20

Figure 3. Heatmaps of the effects of PDP on consumer surplus. Consumer
surplus increases in 13.43% of the cases in (a) and 82.52% of the cases in (b).

even if α is fixed as in our analysis). In light of this, and also in line with Calvano, Calzolari,

Denicolò, and Pastorello (2020), we consider α in [0.025, 0.2725].

In selecting a range for β, it is important to allow the algorithms a sufficient opportunity

to explore the state space. We restrict attention to β in the range [4 × 10−7, 2.02 × 10−5],

which is similar to that chosen by Calvano, Calzolari, Denicolò, and Pastorello (2020). We

note that our default specification of (α, β) = (0.15, 10−5) is the midpoint of this region.

The overall grid encompasses (α, β) ∈ [0.025, 0.2725]× [4×10−7, 2.02×10−5]. To implement,

we discretize this grid into 10,000 separate (α, β) pairs and run our algorithms 1000 times

for each pair. To focus on whether consumer surplus increases following the implementation

of PDP, for each pair (α, β) we compare consumer surplus with γ = 0 to consumer surplus

with γ = 0.7. We choose γ = 0.7 as the point of comparison because our initial exploratory

simulations as reported above for the case of µ = 1/20 suggest that this is a value where

the algorithms are responding strongly to PDP in a way that benefits consumers. Setting

γ = 0.7 typically leads to conservative predictions compared to larger γ.

We present the resulting assessment in two heatmaps contained in Figure 3, with µ = 1/4

in the left panel and µ = 1/20 in the right panel. More red colors indicate a more positive

effect of PDP on consumer surplus and more blue colors indicate a more negative effect.

From these heatmaps two facts are apparent. First, changes in the learning parameters can

have significant effects on the outcome even for fixed µ. Second, over a broad range of learning

parameters, PDP appears more effective at raising consumer surplus when differentiation is
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low. Precisely, for µ = 1/20 consumer surplus increases in 82.52% of the considered learning-

parameter pairs, versus 13.43% of the pairs when µ = 1/4. Similarly, when PDP has a

positive effect, the magnitude of the effect appears larger when µ is smaller.

4. Dynamic PDP: Experimental Results

Although our experiments with price-directed prominence show some success in lowering

prices and benefiting consumers, algorithmic prices remain high and consumers are often

harmed when µ = 1/4. Therefore, we now implement our policy of Dynamic PDP experi-

mentally, recalling that Propositions 4 and 5 predict that this policy can lower prices and

improve consumer welfare especially when firms are very patient and the market is cartelized.

As we did for PDP, we suppose that Dynamic PDP involves showing a 1− γ proportion of

consumers all n products and the remaining γ proportion a single product. In the initial

period, or in any period in which the firm with the advantage has raised its price, equation (4)

determines which firm is shown to consumers and receives the advantage. If the firm with

the advantage has not raised its price then again equation (4) applies, except that the firm

with the advantage has ADV subtracted from its price. For now we set ADV = 0.3, but in

Section 4.2 we assess the performance of a range of ADV values.
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Figure 4. The effect of Dynamic PDP on prices (left panel) and consumer
surplus (right panel), with ADV = 0.3 and differentiation µ = 1/4.

Figure 4 displays the effect of Dynamic PDP when µ = 1/4. The left panel shows the effect

on prices and the right panel shows the effect on consumer surplus. Each panel also displays

the effect of (regular) PDP (these are the same numbers as presented earlier in Figure 1).

Figure 4 shows that Dynamic PDP has a large effect on prices and consumer surplus. The

consumer surplus effects are strongest at γ = 0.96. Comparing that level to γ = 0, prices are
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about 18% lower and consumer surplus is 25% higher. The decline in prices is approximately

three times the decline under regular PDP. The consequent increase in consumer surplus is

particularly notable given that regular PDP lowers consumer surplus for these parameters.

However, there is a sharp decrease in consumer surplus and increase in prices at γ = 1. It

appears that this value presents a learning challenge for the algorithms. To see why this may

be, observe that when γ = 1 one firm will have zero demand. The additional presence of a

pricing advantage means that it may be that this firm’s demand and profits are completely

insensitive to prices across a significant range. In contrast, when γ < 1 each firm has positive

demand and each firm’s profit is always affected by marginal price changes.

Figure 5 presents results for the case of µ = 1/20 (comparison prices and consumer surplus

for regular PDP are the same as in Figure 2). The strongest effects occur at γ = 0.99,

leading to about a 15% price decrease and a 75% increase in consumer surplus compared to

not using PDP at all. We again see that for γ = 1 there is a sharp decrease in consumer

surplus and increase in prices, which we attribute to the learning challenge mentioned above.
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Figure 5. The effect of Dynamic PDP on prices (left panel) and consumer
surplus (right panel), with ADV = 0.3 and differentiation µ = 1/20.

We also performed an analysis of how the learning parameters affect outcomes. Extending

our work from Section 3.3, we assessed consumer surplus both without any price-directed

prominence and also with DPDP, for γ = 0.7. Figure 6 presents the heatmap of the change

in consumer surplus from adopting DPDP across a range of hyperparameters.

Overall, Dynamic PDP appears to perform well in terms of lowering prices and benefiting

consumers, although consumers do not always benefit from it. When µ = 1/4, consumer

surplus increases in 67.75% of the learning-parameter pairs, versus 80.43% of the pairs when

µ = 1/20. For µ = 1/4 this is a significant difference compared to the 13.43% of cases
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(a) Dynamic PDP, µ = 1/4
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Figure 6. Heatmaps of the effects of Dynamic PDP on consumer surplus, for
γ = 0.7 and ADV = 0.3. Consumer surplus increases in 67.75% of the cases
in (a) and 80.43% of the cases in (b).

where consumer surplus increased with regular PDP. For µ = 1/20 the percentage of cases

where consumer surplus increases is about the same as for regular PDP. However, the level

of consumer surplus increases is much higher, so that DPDP still has a larger effect on

consumer surplus compared to PDP when µ = 1/20.

4.1. Smarter AI: Lower Prices and Higher Consumer Surplus. Compared to PDP,

our implementation of Dynamic PDP presents an additional learning challenge.17 Specifi-

cally, a firm’s optimal price in period t may depend on whether it has the advantage or not,

but that information is not included in the state space observed by the algorithms (only

the previous period’s prices are). Thus, as firms update their Q-matrices at time t, they

incorporate their realized profits from period t − 1, but—even fixing prices—these payoffs

may vary substantially based on which firm in fact had the pricing advantage.

It is plausible that real-world algorithms would be designed to incorporate such additional

information. To investigate, we alter our algorithms so that they can track the identity of

the firm that was preferentially displayed to consumers in the previous period (that firm has

the pricing advantage in the current period), in addition to prices from the previous period.

Allowing the AI to be “smarter” in this sense has a substantial effect on prices and consumer

surplus. The case where µ = 1/4 is shown in Figure 7 (similar results emerge for µ = 1/20).

Recall that in this case (for our baseline learning parameters), regular PDP harms consumers.

17We have already discussed one learning challenge of Dynamic PDP, that of reduced performance at γ = 1.
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Figure 7. The effect of a smarter AI that includes in its state space the
identity of the firm with the pricing advantage, on prices (left panel) and
consumer surplus (right panel), with ADV = 0.3 and differentiation µ = 1/4.

With smarter AI, consumer surplus is highest at γ = 0.76, representing a 50% increase in

consumer surplus compared to no PDP, and a 20% increase in consumer surplus compared

to the best performance of Dynamic PDP without the extended algorithm (at γ = 0.96).18

We also note that the smarter AI does not exhibit the sharp decrease in consumer surplus

near γ = 1 that we observe for DPDP.

4.2. Different Levels of the “Pricing Advantage”. Here we explore how the level of

the pricing advantage ADV affects outcomes. We consider values of ADV in the interval

[0, 1], in increments of 0.01. Given that we have restricted our algorithms’ prices to lie in

[1, 2.1] and that c = 1, even moderate values in this range are large enough that our theory

predicts large gains for consumers. Indeed, at ADV = 0.3, theory predicts marginal cost

pricing for µ = 1/4; for µ = 1/20 a value of slightly more than ADV = 0.4 is sufficient.

We will assess changes to ADV when γ = 0.7. Thus, in all of our results here we will compare

the outcome of Dynamic PDP with γ = 0.7 to the case of no PDP at all. Note that when

ADV = 0, Dynamic PDP corresponds to regular PDP in our experimental setting (and so

there may be effects on consumer surplus even when ADV = 0).

Figure 8 shows how consumer surplus is affected for both values of differentiation and also

for the “smarter AI” from Section 4.1. Three main outcomes are apparent. First, consumer

surplus generally increases initially as ADV rises from zero. Second, consumer surplus

typically begins declining as ADV grows larger. Third, the benefits then level off. In all

18We note that when γ = 0 the smarter AI delivers different prices and consumer surplus than PDP or DPDP do.
The reason is that adding an additional element to the state space of the algorithms may influence their learning
even if that element is not payoff relevant.



22

cases prices follow a similar (but inverted) pattern, decreasing but then rising again. A

fourth observation that applies only to the smarter AI is that consumer surplus is roughly

a step function for higher ADV values. A closer inspection of the data reveals that these

steps correspond to the underlying pricing grid that we used.
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Figure 8. The effect of ADV on Dynamic PDP performance (consumer sur-
plus), with γ = 0.7, compared to no PDP.

5. Algorithms and Learning Challenges: Implications for Platform Design

Designing a marketplace that benefits consumers must take seriously nuances in how al-

gorithms learn. These nuances may lead to counter-intuitive behavior by the algorithms,

in some cases leading to outcomes that directly contrast with theoretical predictions. An

additional consideration is how non-stationarities in the marketplace might affect the per-

formance of particular platform rules.

Consider, for example, the performance of algorithms when Dynamic PDP is used. Although

large consumer-surplus gains are possible, we identified two learning challenges that mean-

ingfully reduce these gains. The first challenge is that, for some levels of ADV , there is a

sharp decline in consumer surplus at γ = 1. This happens when ADV = 0.3, for example, as

shown in Figure 4. However, for some other values of ADV , including large ones, additional

(unreported) experiments reveal that there may not be such a downward jump in consumer

surplus at γ = 1. For many of those ADV values a second learning challenge manifests.

This second learning challenge is illustrated in Figure 8 for γ = 0.7, but also emerges for

some other γ values. That figure shows that consumer surplus declines substantially in ADV

once it has reached its peak, although theory suggests that consumer surplus should instead
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not change past that point. This outcome is not entirely surprising given that our game

theoretic results lean on backwards induction whereas our algorithms do not learn in that

manner. Larger values of ADV expand the range over which an algorithm’s within-period

reward is insensitive to its own price, leading to higher prices.

An implication for platform design is that rules may perform better if they maintain the

sensitivity of an algorithm’s reward to its actions across a broad interval of possible actions.

Another implication, which follows from our assessment of the smarter AI in Section 4.1, is

that a platform may wish to clearly communicate its rules to the firms that are designing

the algorithms.19 In the present context, we mean that a platform that chooses to adopt

Dynamic PDP may wish to inform sellers of this, which may induce those sellers to increase

the sophistication of their algorithms to properly track the identity of the firm with the

pricing advantage (as discussed earlier).

If platform rules other than the ones we have considered were adopted, other learning chal-

lenges might emerge. For example, if the platform implemented a simpler version of Dynamic

PDP that simply awarded 100% of all future demand to the firm that priced lowest in the

initial period, all competition would be transferred to that period and, according to simple

theory, lead to marginal-cost pricing. However, that version of Dynamic PDP might perform

poorly. It might be very difficult for the algorithms to “discover” a low-price equilibrium

given that they do not learn by backwards induction, similar to challenges discussed above.

It is possible that one firm might price lower than other firms initially but still quite high.

If this occurred then potentially the market would be stuck forever with high prices.

In addition to learning challenges, a platform should also be mindful of non-stationarities,

such as the arrival of new entrants or changes in firms’ costs. Dynamic PDP attempts to

preserve robustness while also encouraging low prices. It preserves robustness by allowing

firms to displace the rival that currently has an advantage by charging ADV less than the

firm that has the advantage.20 In contrast, the alternative platform rule described in the

preceding paragraph would make it impossible for more efficient entrants to compete. The

broader implication for platform design is that platform rules should be resilient to non-

stationarities in the market as well as making sense given how algorithms actually learn.

19We do not assert that a platform should always do this; in some cases (outside of our analysis) it may be that fully
informing sellers about the rules allows some sellers to game the rules, to the disadvantage of the platform.
20At the same time, it must be remembered that the existence of the advantage itself is what ultimately drives lower
prices; getting rid of the advantage would make it even easier for future firms to displace the advantaged firm but
would also weaken the collusion-limiting nature of Dynamic PDP.
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6. Less Patient Firms

So far in our experiments we have considered firms that are fairly patient, with a discount

factor of δ = 0.95. But we know from a theoretical perspective that the performance of PDP

depends on whether the market is cartelized or not, with PDP often increasing consumer

surplus when firms behave competitively but decreasing consumer surplus when firms collude.

To explore this issue we allow δ to vary in increments of 0.01 over the interval [0, 0.99], and

for each value of δ record consumer surplus as γ varies in increments of 0.01 on [0, 0.99]. We

report on the case with µ = 1/4 but obtain similar qualitative results when µ = 1/20.

We present the results of these experiments involving PDP in two different ways. Figure 9a

shows raw consumer surplus. The main message from this figure is that, for any level of γ,

consumer surplus substantially increases as δ becomes smaller. This is an intuitive result

that also suggests our algorithms work in a sensible manner and are not able to maintain

higher prices when δ is lower.
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Figure 9. PDP heatmap of raw (9a) and percentage change in (9b) consumer
surplus for different values of δ and γ, at µ = 1/4. Percentage change is
calculated relative to γ = 0 for each given δ value.

Figure 9b uses the same data but presents it in way that tracks how effective PDP is in

percentage terms, normalizing consumer surplus to its level when γ = 0 for each δ value.

More precisely, for each given (γ, δ) pair, the heatmap displays the difference in consumer

surplus between (γ, δ) and (0, δ), divided by the level of consumer surplus at (0, δ). Thus,

for any δ, reading from left to right shows how consumer surplus changes with PDP.
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Figure 10. Dynamic PDP heatmap of raw (10a) and percentage change in
(10b) consumer surplus for different values of δ and γ, at µ = 1/4 and ADV =
0.3. Percentage change is calculated relative to γ = 0 for each given δ value.

Figure 9b shows that PDP raises consumer surplus across a very broad region of δ. In fact,

only for very high levels of δ does PDP lower consumer surplus for all γ values. For example,

even at δ = 0.9 consumer surplus goes up (slightly) for several high values of γ such as

γ = 0.98, while at δ = 0.85 consumer surplus is up for all γ ≥ 0.73. Thus our finding in

Section 3 that PDP lowers consumer surplus when µ = 1/4 requires that δ be fairly high. For

smaller δ, our experiments yield results closer to our predictions from competitive markets

(Proposition 1).

We also examine the performance of Dynamic PDP as δ changes. Figure 10 presents results

as was done for PDP, with the left panel showing raw consumer surplus and the right panel

showing percentage changes after normalizing to the level of consumer surplus at γ = 0 for

each δ. DPDP continues to work very well across a broad range of δ. In fact, for all δ values

considered except for the highest (δ = 0.99), there exist values of γ such that DPDP raises

consumer surplus at that δ. We note that the percentage increases are not necessarily higher

when δ is lower. This is because at γ = 0 for lower values of δ prices are already much lower

than at higher δ values; there is less room for prices to drop. Another reason is that for

many values of δ the prices at high values of γ are similar (and low, around 1.18).
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7. Three Firms

Here we provide results for the case with n = 3, again focusing on µ = 1/4.21 All other

parameters are as in Sections 3 and 4. As with n = 2, we find that DPDP often increases

consumer surplus. Figure 11 shows the performance for µ = 1/4 at the baseline learning

parameters. In this case DPDP does best at γ = 0.73, leading to a 13% consumer surplus

gain and substantial price drops. However, we once again see that at γ = 1 the algorithms

appear less able to learn to charge lower prices (as discussed in Section 4). We also see that

regular PDP has only a modest effect on prices and no clear consumer surplus gains.
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Figure 11. For n = 3, the effect of Dynamic PDP on prices (left panel) and
consumer surplus (right panel), with ADV = 0.3 and differentiation µ = 1/4.

Heatmaps covering a range of learning parameters tell a similar story. Figure 12 shows the

effects of PDP (left panel) and Dynamic PDP (right panel). PDP always lowers consumer

surplus, similar to the n = 2 case in which PDP only raised consumer surplus in 13.43% of

the cases (Figure 3a). Although we do not display the data here, we also find that PDP

almost always lowers consumer surplus even if µ = 1/20, unlike the case with n = 2. Thus,

at least when δ is high, our predictions from Proposition 3 hold true when n = 3: prices fall

when PDP is imposed, but not enough to benefit consumers.22

In contrast to PDP, Dynamic PDP performs extremely well, increasing consumer surplus in

97.8% of the cases in Figure 12b. Although we do not display the data here, varying ADV

leads to the same qualitative effects as with two firms, as discussed in Section 4.2.

21The main difference when µ = 1/20 is that consumer surplus gains are larger for DPDP than when µ = 1/4.
22We also explored the effect of PDP across a broader range of δ values and found results consistent with the case
of n = 2: PDP reliably raises consumer surplus for smaller values of δ and, for any fixed γ, lowering δ tends to
significantly increase consumer surplus.
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Figure 12. Heatmaps of the effects of PDP and Dynamic PDP on consumer
surplus, for n = 3, γ = 0.7, and ADV = 0.3. Consumer surplus increases in
0% of the cases in (a) and 97.8% of the cases in (b).

8. Platform Profits

So far we have focused on whether platform interventions can raise consumer surplus. Here

we assess how such policies might influence the profits of the platform.

Many online marketplaces impose fees on sellers. The most common fees are fixed shares

of revenue and per-unit charges. Some platforms utilize both types of fees. For example,

on the Amazon Marketplace sellers pay a proportion of the revenues they earn. But some

categories have additional per-unit fees (or minimum per-sale fees from revenue sharing,

which is equivalent to a per-unit fee when binding), and some sellers adopt a pricing plan

offered by Amazon that also involves a per-unit fee. Additionally, some platforms such as

Amazon offer fulfillment services to sellers, which (for Amazon) involve per-units fees.23

Therefore, a platform might benefit from either increasing the total revenue or the total

output sold. One way to do this is by simply increasing the revenue or units sold per

shopper. Another way to do this is by increasing the market size (that is, the number of

shoppers on the platform), for example by implementing policies that raise consumer surplus.

Under our chosen specifications it is difficult—for a fixed market size—for revenue to in-

crease following one of our policy interventions. For example, from a theoretical perspective,

23Amazon Marketplace fees are described at sell.amazon.com/pricing.html, which also notes that fulfillment “in-
cludes picking and packing your orders, shipping and handling, customer service, and product returns.”
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Proposition 3 indicates that PDP always lowers revenue when the market is cartelized. Prac-

tically speaking, for our chosen specifications at γ = 0 both the Bertrand-Nash prices and

the prices set by the algorithms are beneath the revenue-maximizing prices in the absence of

any platform involvement. Thus, because both PDP and DPDP lower prices and decrease

variety, neither can raise revenue for these parameterizations. In specifications outside those

considered in this article, however, both in theory (for example, Proposition 1) and in the

associated experiments, we have confirmed that revenue can go up.

Specification
Critical Growth Elasticity

(γ = 0.7)

PDP (µ = 0.05, δ = 0.95, n = 2) 0.297

DPDP (µ = 0.05, δ = 0.95, n = 2) 0.293

DPDP (µ = 0.25, δ = 0.95, n = 2) 2.002

PDP (µ = 0.05, δ = 0.2, n = 2) 1.044

PDP (µ = 0.25, δ = 0.2, n = 2) 0.864

DPDP (µ = 0.05, δ = 0.95, n = 3) 0.392

DPDP (µ = 0.25, δ = 0.95, n = 3) 1.712

Effects of Policies on Revenue

Table 3. Critical Growth Elasticities for revenue for different polices and µ, δ,
and n values, using γ = 0.7. If a one percentage point increase in consumer surplus
increases market size by at least this amount, then overall revenues increase.

But the policies we have considered might raise total revenues even if they lower per-customer

revenue, if offering consumers higher utility grows the market size. Especially when platforms

sell many products, there may be an externality: individual sellers ignore how lowering their

own prices might bring more overall shoppers to the platform, thereby benefiting sellers in

other categories when consumers one-stop shop.

To assess this possibility, we ask what elasticity of market size with respect to consumer sur-

plus would be required to raise overall revenues, according to our experiments. Specifically,

we look at various settings in which consumer surplus increases but per-customer revenue

decreases, for γ = 0.7, including cases with high (δ = 0.95) but also low (δ = 0.2) patience,

and cases with n = 2 and n = 3 firms. We suppose the initial market size is one. For each

setting, we compute the percentage increase in market size which would keep overall revenues

constant, and then divide that by the computed percentage increase in consumer surplus of

moving from γ = 0 to γ = 0.7. We call the final number the “Critical Growth Elasticity”

for revenue and present results in Table 3. For example, under PDP with µ = 0.05, δ = 0.95

and n = 2, the platform would break even on revenue if a one percentage point increase in

consumer surplus led to a 0.297% increase in the number of customers visiting the platform.
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Turning to per-unit fees, theory predicts that PDP and Dynamic PDP can increase total

output (Propositions 1 and 5) and thereby increase the profits of a platform using such fees.

We present results on output in Table 4. The second column gives the percentage of γ values

such that consumer surplus is strictly higher at that value compared to γ = 0. Similarly, the

third column gives the percentage of γ values such that total output is strictly higher at that

value compared to γ = 0. For example, when µ = 0.05, δ = 0.95, n = 2, and PDP is used,

consumer surplus is higher for 54% of the values of γ in (our grid on) [0.01, 1], and output

is higher for 22% of those values. The fourth and final column reports the critical growth

elasticity as defined above except looking at output rather than revenue, again focusing on

γ = 0.7 (values of 0.000 indicate that output is already higher at γ = 0.7 than at γ = 0). We

see that these tend to be smaller than the required values for revenue. For example, under

PDP with µ = 0.05, δ = 0.95 and n = 2, the critical growth elasticity for output is now

only 0.032; this follows because PDP with γ = 0.7 increases consumer surplus by 19.93%

and because the needed market growth to break even on total output is 0.64%.

Specification
% of γ values for which: Critical Growth Elasticity

CS Up Output Up (γ = 0.7)

PDP (µ = 0.05, δ = 0.95, n = 2) 54% 22% 0.032

DPDP (µ = 0.05, δ = 0.95, n = 2) 83% 3% 0.045

DPDP (µ = 0.25, δ = 0.95, n = 2) 38% 24% 0.268

PDP (µ = 0.05, δ = 0.2, n = 2) 77% 37% 0.000

PDP (µ = 0.25, δ = 0.2, n = 2) 100% 92% 0.000

DPDP (µ = 0.05, δ = 0.95, n = 3) 71% 69% 0.000

DPDP (µ = 0.25, δ = 0.95, n = 3) 84% 69% 0.000

Effects of Policies on Output

Table 4. The second and third columns give the percentage of γ values such
that consumer surplus or output increases, compared to γ = 0. The final column
gives the Critical Growth Elasticities for output for different polices and µ, δ, and
n values, using γ = 0.7. If a one percentage point increase in consumer surplus
increases market size by at least this amount, then overall output increases.
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9. Conclusion

In this article we examined the intersection of several important trends: the growing use of

pricing algorithms, increased concerns about the potential anticompetitive role of algorithms,

and heightened interest among policymakers about the rules that govern interactions between

platform users. Using both theory and experiments, we showed that platform rules that steer

demand can increase competition between sellers, and simultaneously raise a platform’s

profits. Which rules are most effective depends on whether sellers (or their algorithms)

behave competitively or collusively. When collusion is a concern, for example, rules that

condition on past prices and treat sellers in a non-neutral fashion may be required.

Given our stylized modeling choices and the many practical considerations faced by a plat-

form, we do not suggest that our exact policies are the ideal ones. For instance, we have

focused solely on price as the strategic variable. But in the real world, if steering were based

entirely on price, then sellers might offer inefficiently low-cost and low-quality products. And

even if price is the primary consideration, there are many potential rules that we have not

considered that may be more effective in promoting competition.

In deciding which rules to adopt, the platform must be cognizant of differences between how

algorithms behave and what theory or simple intuition might suggest. Our experiments have

already identified several learning challenges of algorithms. Most speculatively, it may be

possible for a platform to exploit learning challenges and other idiosyncrasies of algorithms.

At the very least, a platform should account for such issues as it sets its rules.

Despite such challenges and limitations, our work is proof of concept that demand-steering

policies may be procompetitive, both in competitive and cartelized markets, even when

sellers use pricing algorithms. And, although we are not advocating that platforms should

have a regulatory duty to promote competition, our work provides some evidence that it

may be feasible for platforms to do so.
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Appendix: Omitted Proofs

Proof of Lemma 1: We restrict attention to pure strategies. (It is lengthy but straightfor-

ward to prove the result when firms can use mixed strategies.) Consider a given period and

relabel the firms such that p1 ≤ p2 ≤ · · · ≤ pn (for simplicity we drop time superscripts). It

is straightforward to verify that any prices satisfying p1 = p2 = · · · = pm = c for m ≥ k + 1

constitute a Nash equilibrium. We now prove there is no Nash equilibrium in which pk+1 > c.

On the way to a contradiction, suppose that there is an equilibrium in which pk+1 > c.

Note that firm k + 1 cannot be shown with probability one, and if it is shown with positive

probability then pk+1 = pk. If pk > c then firm k + 1 could lower its price to just slightly

less than pk and thereby ensure it is shown with probability one and so increase its profits.

Hence pk = c < pk+1, but this means firm k could increase its profits by instead setting

pk ∈ (c, pk+1). We have arrived at a contradiction and so conclude pk+1 = c. �

We use the following lemma in some subsequent proofs.

Lemma 3. Total industry output is monotonically increasing in consumer surplus, because

equation (2) can be rewritten as∑
j∈Nt

Dj(p
t) = 1− exp (a0/µ)

exp (U t(pt)/µ)
.

Proof of Proposition 1: First we determine consumer surplus with and without PDP.

Suppose only k < n firms are shown to consumers. From Lemma 1 all firms (that are shown

to consumers) charge c, and so using equation (2) consumer surplus is

µ log

{
k exp

(
a− c
µ

)
+ exp

(
a0

µ

)}
. (5)

Suppose instead that all n firms are shown to consumers. There is a unique and symmetric

equilibrium. Denote by p∗BN the equilibrium price. Using equation (2) consumer surplus is

µ log

{
n exp

(
a− p∗BN

µ

)
+ exp

(
a0

µ

)}
. (6)

We now derive p∗BN . If firm i deviates by charging pi its profit is

(pi − c)
exp

(
a−pi
µ

)
exp

(
a−pi
µ

)
+ (n− 1) exp

(
a−p∗BN

µ

)
+ exp

(
a0
µ

) .
Taking a first-order condition and imposing symmetry, we find that

p∗BN − c
µ

−
n exp

(
a−p∗BN

µ

)
+ exp

(
a0
µ

)
(n− 1) exp

(
a−p∗BN

µ

)
+ exp

(
a0
µ

) = 0. (7)

We note for future reference that µ < p∗BN − c < µn/(n − 1). This follows from the fact

that the lefthand side of equation (7) is strictly increasing in p∗BN , is strictly negative at
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p∗BN = c + µ, and is strictly positive at p∗BN = c + µn/(n − 1). We also note for later that

when a− c < a0, limµ→0(p∗BN − c)/µ = 1 and limµ→0 p
∗
BN = c. To see this, rewrite (7) as

p∗BN − c
µ

=
n exp

(
a−c−a0

µ

)
exp

(
−p∗BN−c

µ

)
+ 1

(n− 1) exp
(
a−c−a0

µ

)
exp

(
−p∗BN−c

µ

)
+ 1

. (8)

We have already proved that (p∗BN − c)/µ is bounded. Note also that a − c < a0 implies

limµ→0 e
(a−c−a0)/µ = 0. Hence as µ → 0 the limit of the righthand side of (8) is 1. This

establishes that limµ→0(p∗BN−c)/µ = 1. The claim that limµ→0 p
∗
BN = c follows immediately.

PDP strictly increases consumer surplus if and only if (5) strictly exceeds (6), or

k

n
> exp

(
−p
∗
BN − c
µ

)
. (9)

By Lemma 3 PDP also strictly increases total output if and only if (9) holds.

Consider part (1) of the proposition. We proved earlier that p∗BN − c > µ, and so from (9)

k/n > e−1 is a sufficient condition for PDP to increase consumer surplus and output. Next,

assume that a− c < a0, and note that PDP increases revenue if and only if ∆r > 0 where

∆r = c
k exp

(
a−c−a0

µ

)
1 + k exp

(
a−c−a0

µ

) − p∗BN n exp
(
a−p∗BN−a0

µ

)
1 + n exp

(
a−p∗BN−a0

µ

) .
It is convenient to rewrite ∆r as

∆r = exp

(
a− c− a0

µ

) ck

1 + k exp
(
a−c−a0

µ

) − p∗BNn exp
(
−p∗BN−c

µ

)
1 + n exp

(
a−c−a0

µ

)
exp

(
−p∗BN−c

µ

)
 . (10)

We proved earlier that limµ→0(p∗BN − c)/µ = 1 and limµ→0 p
∗
BN = c. Hence the limit of the

square-bracketed term in (10) as µ→ 0 is c (k − ne−1), which is strictly positive because by

assumption c > 0 and k/n > e−1. By continuity the square-bracketed term is also strictly

positive for µ in a neighborhood of µ = 0. Moreover e(a−c−a0)/µ for all µ > 0. Hence ∆r > 0

for µ in a neighborhood of µ = 0.

Finally, consider part (2) of the proposition. We proved earlier that p∗BN − c < µn/ (n− 1),

and so from (9) k/n < e−
n

n−1 is a sufficient condition for PDP to decrease consumer sur-

plus and output. Since the prices of displayed products also fall, revenue decreases as well. �

Proof of Lemma 2: Dropping time superscripts and labeling products such that p1 ≤
p2 ≤ · · · ≤ pn, a monopolist’s profit in any given period is

k∑
i=1

(pi − c)Di(p) =
k∑
i=1

(pi − c)
exp

(
a−pi
µ

)
∑k

j=1 exp
(
a−pj
µ

)
+ exp

(
a0
µ

) ,
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and its derivative with respect to the price of product i = 1, . . . , k is

Di(p)

[
1− pi − c

µ
+

∑k
j=1(pj − c)Dj(p)

µ

]
. (11)

At the optimum (11) should equal zero for each i = 1, . . . , k—which is only possible if

p1 = p2 = · · · = pk.

Substituting p1 = · · · = pk = pm(k) in equation (11) and setting it to zero, pm(k) satisfies

k exp

(
a− pm(k)

µ

)
+ exp

(
a0

µ

)
−
(
pm(k)− c

µ

)
exp

(
a0

µ

)
= 0. (12)

The lefthand side of (12) is strictly decreasing in pm(k) and so there is a unique optimum.

We also note for future reference that pm(k) is strictly increasing in k. This follows from the

implicit function theorem because the lefthand side of (12) is strictly decreasing in pm(k)

and strictly increasing in k. �

Proof of Proposition 2: Let πm(k) denote the per-period fully collusive profit, that is,

per-period industry profit when all firms charge pm(k) and k of them are shown. Let D̃(p, k)

be the demand faced by a single-product firm that charges p and is shown alongside k − 1

other single-product firms that charge pm(k).

We first argue that arg maxp(p − c)D̃(p, k) equals pm(k) for k = 1, and is strictly less than

pm(k) for k > 1. The proof for k = 1 is immediate. To prove the claim for k > 1, note that

the derivative of (p− c)D̃(p, k) with respect to p is proportional to

exp
(
a−p
µ

)
+ (k − 1) exp

(
a−pm(k)

µ

)
+ exp

(
a0
µ

)
(k − 1) exp

(
a−pm(k)

µ

)
+ exp

(
a0
µ

) − p− c
µ

,

which is strictly decreasing in p and strictly negative when evaluated at p = pm(k).

We now argue that full collusion is sustainable if and only if

πm(k)

1− δ
≥ nmax

p
(p− c)D̃(p, k). (13)

For the “if” part, consider a collusive scheme where each firm charges pm(k) until there is

a deviation, and then charges c forevermore. The platform randomly chooses each period

which firms to display, so a firm’s expected payoff in each period from colluding is πm(k)/n.

The payoff from deviating is no more than maxp(p−c)D̃(p, k). Hence (13) is sufficient for the

collusive scheme to be an equilibrium. For the “only if” part, note that in a fully collusive

scheme per-period industry profit is πm(k), and that each firm could deviate by charging

less than pm(k) and get maxp(p − c)D̃(p, k) (or arbitrarily close to it for k = 1). Hence if

(13) does not hold at least one firm prefers to deviate from full collusion.

Next, let δ̂k be the unique δ such that (13) holds with equality.
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To prove that δ̂1 = 1−1/n, recall that arg maxp(p−c)D̃(p, 1) = pm(1), which in turn implies

that maxp(p− c)D̃(p, 1) = πm(1).

To prove that δ̂1 > δ̂2 > · · · > δ̂n−1, first note that πm(k) is strictly increasing in k. Hence it

is sufficient to show that maxp(p− c)D̃(p, k) is decreasing in k. To do this, first rewrite the

multiproduct firm’s first-order condition in equation (12) as

(k−1) exp

(
a− pm(k)

µ

)
+ exp

(
a0

µ

)
=

(
pm(k)− c

µ

)
exp

(
a0

µ

)
− exp

(
a− pm(k)

µ

)
. (14)

We know from the proof of Lemma 2 that pm(k) strictly increases in k, and so the righthand

side of (14) strictly increases in k. It then follows from (14) that (k − 1) exp
(
a−pm(k)

µ

)
also

strictly increases in k. This further implies that D̃(p, k) strictly decreases in k because

D̃(p, k) =
exp

(
a−p
µ

)
exp

(
a−p
µ

)
+ (k − 1) exp

(
a−pm(k)

µ

)
+ exp

(
a0
µ

) .
It is then straightforward to argue that maxp(p− c)D̃(p, k) decreases in k. �

Proof of Proposition 3: The proof of Lemma 2 has derived an implicit expression for

pm(k) and showed that pm(k) is strictly increasing in k, hence pm(1) < pm(2) < · · · < pm(n).

Consumer surplus from PDP when prices are determined by a monopolist can, using Equa-

tions (2) and (12), be written as

µ log

{
pm(k)− c

µ

}
+ a0. (15)

Consumer surplus therefore increases in k because pm(k) increases in k. Using Lemma 3

output also increases in k. Since output and prices increase in k so does revenue. �

Proof of Proposition 4: Consider a pure-strategy subgame perfect Nash equilibrium

(SPNE), and let p̂t denote the transaction price in period t along the equilibrium path. Let

U denote period 0 as well as all periods t > 0 in which p̂t > p̂t−1, and let D denote all periods

t > 0 in which p̂t ≤ p̂t−1.

It is straightforward to prove that π̃(p) is strictly increasing in p between c and pm(1). Let

ADV ∗ be the unique ADV which solves π̃(ADV ) = πm(1)/n, and define δ̂ as

δ̂ =


1− 1

n
if ADV ≤ c(

1− 1
n

)
πm(1)

πm(1)−π̃(ADV )
if ADV ∈ (c, ADV ∗)

1 if ADV ≥ ADV ∗.

Note that Proposition 2 shows δ̂1 = 1 − 1/n, and therefore we can conclude that δ̂ ≥ δ̂1.

Assume throughout the proof that δ < δ̂.
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We first prove that p̂t ≤ pm(1) for all t. On the way to a contradiction suppose there exists a

t ∈ U such that p̂t > pm(1). Any firm could charge pm(1) in period t and win the advantage,

and then i) if ADV ≤ c, charge c in all future periods, and ii) if ADV > c, charge ADV

in all future periods and keep the advantage. Therefore in period t the n firms’ combined

discounted payoff is at least

n

[
πm(1) +

δπ̃(max{c, ADV })
1− δ

]
. (16)

It is straightforward to show that this strictly exceeds πm(1)/(1−δ) because δ < δ̂. However

this is a contradiction since the joint profit in each period cannot exceed πm(1). Therefore

p̂t ≤ pm(1) for all t ∈ U . This further implies that p̂t ≤ pm(1) in any period t ∈ D as well.

Hence p̂t ≤ pm(1) for all t.

Thus the supremum p̄ ≤ pm(1) over transaction prices exists. We now prove that p̄ = c

We start by proving p̄ = c for the case ADV > c. We do this in two steps.

In the first step we prove that p̄ ≤ ADV . This follows automatically from earlier arguments

if ADV = pm(1), so for this part of the proof consider ADV < pm(1). On the way to a

contradiction suppose that p̄ ∈ (ADV, pm(1)]. Let t̄ be the first period in which p̂t > p̄−∆

for ∆ ∈ (0, p̄ − ADV ), and note that t̄ ∈ U . Any firm could charge p̄ − ∆ in period t̄ and

win the advantage, and then keep the advantage by charging ADV in all future periods.

Therefore starting from period t̄, along the equilibrium path the firms’ combined discounted

profits are at least

n

[
π̃(p̄−∆) +

δπ̃(ADV )

1− δ

]
. (17)

In addition, since p̄ is the supremum over transaction prices, joint profit in any period cannot

exceed π̃(p̄). Therefore (17) must be weakly less than π̃(p̄)/(1− δ), or equivalently

n

[
π̃(p̄−∆) +

δπ̃ (ADV )

1− δ

]
≤ π̃(p̄)

1− δ
. (18)

However (18) does not hold when ADV ≥ ADV ∗, because π̃(p̄−∆) > π̃(ADV ) and because

ADV ≥ ADV ∗ implies nπ̃(ADV ) ≥ πm(1) ≥ π̃(p̄). Similarly (18) does not hold when

ADV ∈ (c, ADV ∗) and ∆ is sufficiently small. To see why, note that (18) can be written as

δ ≥ nπ̃(p̄−∆)− π̃(p̄)

n[π̃(p̄−∆)− π̃ (ADV )]
, (19)

and also note that the righthand side is continuous in ∆ and equal to
(
1− 1

n

) π̃(p̄)
π̃(p̄)−π̃(ADV )

≥ δ̂

at ∆ = 0. Therefore for any δ < δ̂ there exists ∆ sufficiently small such that (19) fails.

Summarizing, there exists ∆ such that for any ADV > c the condition (18) fails. We

therefore have a contradiction, and conclude that p̄ ≤ ADV .

In the second step (still for the case ADV > c) we prove that p̄ = c. On the way to a

contradiction suppose that p̄ ∈ (c, ADV ]. Again let t̄ be the first period in which p̂t > p̄−∆

for ∆ ∈ (0, p̄− c), and note that t̄ ∈ U . In period t̄ any firm could charge p̄−∆ and win the

advantage, and then keep the advantage by charging p̄ − ∆ < ADV in all future periods.
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Hence the n firms’ combined discounted profit along the equilibrium path from period t̄

onwards is at least

n

[
π̃(p̄−∆)

1− δ

]
.

However for ∆ sufficiently small this is strictly above π̃(p̄)/(1− δ) which is a contradiction.

Hence p̄ ≤ c. But since p̄ < c is impossible we must have p̄ = c.

We now prove that p̄ = c for the case ADV ≤ c. On the way to a contradiction suppose

that p̄ ∈ (c, pm(1)]. Let t̄ be the first period in which p̂t > p̄−∆ for ∆ ∈ (0, p̄− c), and note

that t̄ ∈ U . Any firm could charge p̄−∆ in period t̄ and sell for sure. Therefore the sum of

the n firms’ combined discounted profits along the equilibrium path starting in period t̄ is at

least nπ̃(p̄−∆). However for any δ < δ̂ there exists ∆ sufficiently small such that nπ̃(p̄−∆)

strictly exceeds π̃(p̄)/(1 − δ), which contradicts p̄ being the supremum. Hence p̄ ≤ c. But

since p̄ < c is impossible it must be that p̄ = c.

We have therefore established for all ADV satisfying 0 < ADV ≤ pm(1) and all δ < δ̂ that

p̄ = c in any pure strategy SPNE. The final step is to construct a SPNE where firms charge

c in each period. Consider the following strategy:

(1) In period 0 all firms charge c.

(2) Suppose that the firm that won or kept the advantage in period t charged weakly

less than c in period t. Then in period t+ 1 all firms charge c.

(3) Suppose that the firm that won or kept the advantage in period t charged strictly more

than c in period t. Then in period t+ 1 all firms not holding the advantage charge c,

while the firm holding the advantage charges the minimum of min{c+ADV, pm(1)}
and its price from period t.

Using the one-shot deviation principle it is straightforward to check that this strategy forms

a SPNE. Moreover along the equilibrium path the transaction price is c in every period. �

Proof of Proposition 5: Following similar arguments as in the proof of Proposition 1,

Dynamic PDP (with k = 1) raises consumer surplus and output if and only if

exp

(
pm(n)− c

µ

)
> n⇐⇒ pm(n) > µ log(n) + c. (20)

Recall from the proof of Lemma 2 that pm(n) solves

n exp

(
a− pm(n)

µ

)
+ exp

(
a0

µ

)
−
(
pm(n)− c

µ

)
exp

(
a0

µ

)
= 0. (21)

The lefthand side is strictly decreasing in pm(n), so condition (20) is satisfied if and only if

the lefthand side of (21) is strictly positive when evaluated at pm(n) = µ log(n) + c i.e.,

exp

(
a− c
µ

)
+ exp

(
a0

µ

)
− exp

(
a0

µ

)
log(n) > 0⇐⇒ n < ñ.

�
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experience replay database composition in deep reinforcement learning. Deep Reinforce-

ment Learning Workshop,” Advances in Neural Information Processing Systems (NIPS-

DRLWS).

De Corniere, A., and G. Taylor (2019): “A model of biased intermediation,” The

RAND Journal of Economics, 50(4), 854–882.

Deck, C. A., and B. J. Wilson (2003): “Automated pricing rules in electronic posted

offer markets,” Economic Inquiry, 41(2), 208–223.

Dinerstein, M., L. Einav, J. Levin, and N. Sundaresan (2018): “Consumer price

search and platform design in internet commerce,” American Economic Review, 108(7),

1820–59.

DOJ (2018): “Life in the Fast Lane,” Prepared remarks by Assistant Attorney General

Makan Delrahim, US Department of Justice.

Ezrachi, A., and M. E. Stucke (2017): “Artificial intelligence & collusion: When com-

puters inhibit competition,” University of Illinois Law Review, pp. 1775–1810.



38

Furman, J., D. Coyle, A. Fletcher, D. McAuley, and P. Marsden (2019): “Un-

locking digital competition: Report of the Digital Competition Expert Panel,” HM Trea-

sury.
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