

Technology Fragmentation, Platform Investment, and Complementary

Innovation*

Grace Gu
Carroll School of Management, Boston College, Chestnut Hill, Massachusetts 02467

grace.gu@bc.edu

Zhuoxin Li
Carroll School of Management, Boston College, Chestnut Hill, Massachusetts 02467

zhuoxin.li@bc.edu

* We thank Gord Burtch, Rob Fichman, Jerry Kane, Do Yoon Kim, Marios Kokkodis, Sam Ransbotham, Mike
Teodorescu, Feng Zhu for helpful feedback. Li acknowledges funding support from National Science Foundation
CAREER Award Grant.

1

Technology Fragmentation, Platform Investment, and Complementary Innovation

Abstract

Complementor innovation is an essential form of value co-creation in open platform

ecosystems. However, the increasing platform fragmentation, i.e., users in the ecosystem

adopting different versions of the platform technologies, has significantly hindered

complementor innovation. For instance, Android devices currently in the market run a dozen

old and new versions of the Android operating system, which increases the cost of

complementor innovation because app developers must exhaustively test on different

versions of the operating system when they release new apps or updates. Reducing platform

fragmentation is a complex coordination problem involving several parties in the ecosystem,

thus it is unclear whether and how a platform’s efforts to fight fragmentation would affect

complementor innovation. Focusing on recent efforts by Google to address Android

fragmentation, we find that while the platform investment does not immediately reduce

Android fragmentation, app developers respond to the platform’s action by significantly

increasing their innovation efforts in updating apps shortly after platform investment. We

find support of two possible explanations of the positive platform investment effect:

anticipated lower cost structure and higher platform value. App developers’ forward-looking

behavior is likely due to developers’ anticipation of lowered innovation cost in the future, as

the impact of platform investment is greater for developers with more variable cost structure

such as a larger and more diverse user base, less development experience and lack of

economies of scale (i.e., with a smaller portfolio of apps). The effect is also greater for

developers in more competitive markets where gaining user base can be costly due to market

competition. Our research highlights the role of platform commitment to improve platform

infrastructure in complementor innovation and provides implications for platform

investment and intervention.

Keywords: Multi-sided platforms; fragmentation; innovation; mobile apps; Android

2

1. Introduction
Complementor innovation is an integral part of value co-creation on many open platforms (e.g.,

(Van Alstyne et al. 2016; Boudreau 2010; Ceccagnoli et al. 2012; Gawer and Cusumano 2002;

Song et al. 2018; Wen and Zhu 2019). However, increasing platform fragmentation, i.e., divided

users in the ecosystem adopting different versions of the platform technologies, is a major hurdle

for complementor innovation. For instance, Android devices currently in the market run a dozen

old and new versions of the Android operating system, forcing app developers to exhaustively

test on different versions of the operating system when they release new apps or updates. Despite

the increasing prominence of platform fragmentation and all the hurdles stem from

fragmentation, platform owners know little about how to reduce fragmentation and stimulate

complementor innovation.

Fragmentation has been a long-lasting issue for many platform ecosystems. For platform

ecosystems such as operating systems (e.g., Windows and Android) and enterprise software (e.g.,

MySQL), old versions of the systems often continue to exist on a large number of devices long

after the release of new versions. For instance, Microsoft’s Windows XP was first released in

2001 but continued to run in a large number of devices until 2019, ten years after Microsoft

introduced Windows 7 and discontinued support for Windows XP in 2009.1 The Android

ecosystem is also heavily fragmented: the one billion Android devices run more than 10 major

versions of the Android operating system.2 The fragmentation problem creates unprecedented

challenges for app developers to release new apps or updates because they must exhaustively test

updates on different versions of the operating system to ensure compatibility. Therefore, on the

Android platform, fragmentation is one of the biggest hurdles for app developers.3

Due to the complex coordination problem among different parties, fighting fragmentation is

often a long-term commitment and is unlikely to achieve significant effects in the short or

medium run. However, although platform infrastructure is unlikely to be immediately improved

in the short run, platforms may still be worthwhile to invest in and commit to fighting

fragmentation as a first step to stimulate complementor innovation in the multi-party

1 https://www.extremetech.com/computing/289440-microsoft-xp-is-finally-dead-nearly-18-years-post-launch
2 https://www.pcmag.com/news/welcome-to-the-fragmentation-party-android-10
3 https://searchcloudcomputing.techtarget.com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/Android-
fragmentation-An-app-developers-worst-nightmare

3

coordination game (Anderson et al. 2014). Since platform owners do not have full control of the

entire ecosystem, they often need to take the lead in growing the ecosystem and incentivize

complementor innovation (Wu et al. 2020). For instance, platform owners can invest in first-

party innovation or improve platform infrastructure to pave the way for complementors to

innovate in the ecosystem (Hagiu and Spulber 2013). Facing increasing fragmentation in their

ecosystem, platform owners can also invest in platform infrastructure to reduce fragmentation

and signal their commitment to boost complementor innovation. However, the literature has

provided little guidance on what platform type of platform investment can be effective, and how

such investment drives complementor innovation. Platform investment to reduce fragmentation

can drive complementor through different mechanisms. First, reducing fragmentation can help

lower the expected cost for complementors to innovate in the ecosystem, especially for small

complementors that do not have the resources or economies of scale to develop their own

infrastructure to deal with fragmentation. Second, platform investment may boost

complementors’ expectation on the value of the platform for complementors, which trigger their

innovation to create and capture value in the ecosystem. Therefore, this research tests these two

possible mechanisms about anticipated cost structure and perceived expected platform value.

To understand whether and how platform’s efforts to reduce platform fragmentation affects

complementary innovation, our study focuses on the recent efforts by Google to address Android

fragmentation. In 2017, Google launched the Treble project, which adds a hardware abstraction

layer between the Android Operating System (OS) and the hardware (e.g., chipset). With this

vendor interface, the update of Android OS can be done independently by device manufacturers,

without having to modify the codes related to hardware such as chips. Google expected the

rollout of the Treble project to lower device manufacturers’ cost to abandon old Android

versions and upgrade to the latest ones, and therefore reduce Android fragmentation. The Treble

project is among the first attempts of major platforms to invest in platform infrastructure design

to fight fragmentation, which provides an apt empirical setting to study the impact of such

platform investment on complementary innovation.

We construct a comprehensive longitudinal dataset about Android fragmentation and app

innovation before and after the Treble project. The Android fragmentation data consists of

information about the version distribution of the Android operating system, whereas the app

activity log records the update history of each app. Our empirical analysis estimates the impact

4

of the Treble project on complementor innovation by comparing two groups of complementors

based on the differences in their likelihood of being affected by the Treble project. While most

apps are affected by the Treble project, graphic apps that use the OpenGL Library are less

affected by the Treble project as the library provides an app-level abstraction layer, which

already shields these apps from fragmentation. Also, we leverage the geographical regions in

Android fragmentation and estimate the impact of the Treble project by comparing regions of

high and low Android fragmentation.

Our findings support the two possible mechanisms of platform investment about lower

anticipated cost structure and perceived expected platform value. Empirical results show that,

although the platform investment does not reduce Android fragmentation right away, app

developers swiftly respond to the platform’s efforts by significantly increasing their innovation

efforts. In other words, although platform investment does not significantly improve the platform

infrastructure in the short run, the commitment to do so can effectively boost complementary

innovation as developers anticipate positive changes in the ecosystem (Schatzel and Calantone

2006). This effect is likely due to developers’ anticipation to lowered innovation cost in the

future, as the impact of platform investment is greater for developers with more variable cost

structure such as a larger and more diverse user base, less development experience, and lack of

economies of scale (i.e., with a smaller portfolio of apps). The effect is also greater for

developers in more competitive markets.

Our research highlights the role of platform commitment to improve platform infrastructure

in complementor innovation (Anderson et al. 2014; Hagiu and Spulber 2013). We find evidence

that complementors are forward looking—they may enhance their innovation efforts even before

the platform investment has materially improved the platform infrastructure. Also, the value of

platform investment goes beyond its effects of reducing complementors’ cost to innovate.

Platforms’ commitment to improve its infrastructure can enhance complementors’ perceived

value of the ecosystem in the long run and change the perceived market dynamics in the

ecosystem. This research also provides managerial implications for platform investment and

intervention. Some complementors are more responsive than others, depending on various

supply-side and demand-side factors (e.g., complementors’ cost structure and the competitive

dynamics in the submarket). These findings can help platform owners identify which types of

5

complementors are likely to respond to platform investment and design incentives to coordinate

their efforts accordingly.

2. Theoretical Background

2.1 Related Literature

Open Platforms and Platform Fragmentation Platform owners can open up their

ecosystems to cultivate positive network effects and encourage complementary innovation. For

instance, opening up the platform to complementors may encourage broad participation, which

can increase the volume, variety, and quality of offerings on the platform (Boudreau 2010,

2012). Alternatively, platform owners may restrict access to their platforms, forgoing some of

the benefits of broad participation for better control of the platform (Van Alstyne et al. 2016;

Gawer and Cusumano 2002).

Compared to proprietary platforms (e.g., iOS), open platforms (e.g., Android) may not only

speed up user adoption but also create the fragmentation problem (Yoon 2014). Prior studies

have documented the existence of the fragmentation problem and propose techniques for app

developers to combat fragmentation. For example, Han et al. (2012) is among the first to study

the compatibility issues in the Android ecosystem and provided evidence of fragmentation. More

broadly, fragmentation also exists for technological adoption under open standards (Chen and

Forman 2006). Researchers have also proposed techniques to help developers prioritize Android

devices for development and testing by mining user reviews and usage data (Khalid et al. 2014;

Lu et al. 2016). Fragmentation and the changing Android APIs across versions can affect the

quality (e.g., portability and compatibility) and development efforts of Android apps (Linares-

Vásquez et al. 2013; McDonnell et al. 2013), as well as the competitive pressure that developers

face (Wu et al. 2020). Although these pioneer works have shed light on Android fragmentation

and the techniques for developers to deal with fragmentation, little is known about how platform

investment can help combat the fragmentation problem. Understanding the role of platform

investment is important as most developers still rely on platform-level efforts to combat

fragmentation—they do not have the experience and the economies of scale to build their own

technology infrastructure to deal with fragmentation.

Platform Commitment and Investment Commitment to the growth of the ecosystem is

an essential governance problem for platforms that exhibit network effects (Hagiu and Spulber

6

2013). For instance, platforms must periodically decide what level of platform performance to

invest in to sustain their user base and encourage complementor innovation (Anderson et al.

2014). Such a platform investment problem is a complex issue due to coordination difficulties

among all parties, including the platform owner (e.g., Google), device manufacturers (e.g.,

Samsung, ZTE, and Xiaomi), and other complementors (e.g., app developers). Value creation on

the platforms requires collective efforts from all parties (Ceccagnoli et al. 2012). To break the

deadlock in the coordination game, platform owners can seed the markets and commit to exert

continuing efforts (Hagiu and Spulber 2013), and therefore set the expectations for

complementors to follow up and exert efforts (Hossain and Morgan 2009; Shapiro and Varian

1999). Managing participants’ expectations is crucial in multi-sided platforms as such

expectations can become self-fulfilling in the presence of network effects (Boudreau 2021;

Shapiro and Varian 1999).

2.2 Platform Investment, Complementor Expectation, and Innovation

Platform investment has the potential to reduce fragmentation, and the reduction in

fragmentation may then boost complementary innovation. However, due to the complex

coordination problem, platform investment is often a long-term commitment and is unlikely to

significantly improve the platform infrastructure in the short or medium run. Nevertheless,

platform investment can boost complementary innovation in the short run as developers

anticipate positive changes in the ecosystem (Schatzel and Calantone 2006). For complementors,

platform investment can reveal considerable information about the platform owner’s strategy and

future intentions (Chellappa and Mukherjee 2021; Huang et al. 2018). Platform investment can

boost complementor’s anticipation of the prospect of the platform ecosystem (Schatzel and

Calantone 2006), triggering positive or negative responses from complementors to pursue first-

mover advantages (Banbury and Mitchell 1995; Kerin et al. 1992).

Not all complementors may equally respond to platform investment due to their differential

beliefs and various supply/demand side factors such as cost structure and market dynamics.

Complementors may positively respond to platform investment because of their positive

expectations in the value of the ecosystem (Boudreau 2021), i.e., complementors’ innovation

efforts are guided not only by a platform’s value but also by expectations of future value

(Shapiro and Varian 1999). Platform investment may change the cost structure of innovations in

7

the ecosystem and disproportionately affect complementors innovation (Anderson et al. 2014; He

et al. 2020). We discuss these heterogeneous effects in the rest of this section.

2.2.1 Anticipated Changes in Developers’ Cost Structure

Platform investment is expected to lower developers’ costs of developing a new app or releasing

an update because with reduced fragmentation, developers only deal with a smaller number of

versions of the platform technologies (e.g., Android operating system). Developers who

anticipate the decrease in future development and maintenance costs may boost their innovation

efforts. Platform investment can disproportionately benefit certain types of apps and developers,

i.e., developers with apps that attract a more diverse user base (and thus are more subject to

fragmentation), with a small portfolio of apps (lack of economies of scale to build their own

infrastructure), or with less experience on the platform. These apps and developers may benefit

more from platform investment to reduce fragmentation.

Economies of Scale The effects of platform investment are likely to vary across different

developers due to their cost structure. Developers’ cost structure varies substantially depending

on economies of scale. For instance, big developers that offer a large number of apps can afford

to build their own costly infrastructure to deal with the fragmentation problem. These big

developers likely benefit less from platform investment to reduce platform fragmentation (Wei et

al. 2018). Small developers that lack the economies of scale, however, may not afford the high

fixed costs to build their own infrastructure and thus may benefit more from reduced platform

fragmentation.

Developers’ Tenure and Experience Experienced developers are more likely to have

accumulated abundant knowledge and have the expertise to build their own infrastructure to deal

with fragmentation. New developers on the platform, however, may not have the expertise to

cope with platform fragmentation by themselves. The lack of experience and cumulative

investment suggests that inexperienced developers are more subjective to platform

fragmentation, and thus can be more responsive to platform investment to reduce fragmentation.

Diversity of User Base Popular apps that serve a large and diverse user base are often

more affected by platform fragmentation because of the diversity of OS versions installed on the

users’ devices. For instance, apps in the social media category (e.g., Facebook) are more likely to

attract users of high diversity in age, sex, race, and ethnicity. Apps that attract a homogeneous

8

segment of users, however, are less subject to the fragmentation problem as their users tend to be

more similar (e.g., holding a similar set of devices of similar OS versions).

2.2.2 Anticipated Changes in Platform Value Creation and Capture

Platform investment has the potential to reshape the ecosystem. In addition to anticipated change

in developers’ costs of innovation, platform investment can increase developers’ expectations on

the value of the platform and change the competitive dynamics on the platform. Complementors

may respond to platform investment by adjusting their innovation efforts as they anticipate

potential changes in market dynamics following the platform investment (Ceccagnoli et al. 2012;

Huang et al. 2018).

Reduced fragmentation can increase the competitiveness of the market as it lowers the barrier

of entry and the cost of innovation. Therefore, developers in a more competitive market are

more likely to increase innovation efforts after platform investment. Being more responsive can

help developers gain greater market share and enhance the chance of survival (Banbury and

Mitchell 1995). Such a first-mover advantage applies to the Android platform in which users

incur moderate switching costs (Kerin et al. 1992).

In the rest of the paper, we provide empirical evidence on the two potential mechanisms

discussed above: the effects of platform investment on complementor innovation are moderated

by developers’ anticipated changes in their cost structure as well as the anticipated changes in

platform value creation and capture.

3. Empirical Setting

3.1 Android Fragmentation

To study fragmentation as a key issue that hinders complementor innovation, we choose the

setting of Android, the open-sourced mobile operating system developed by Google. Android has

the largest market share among all smartphone platforms worldwide and has long suffered from

the issue of fragmentation.

The variety of makers, including Original Equipment Manufacturers (OEMs) and device

manufacturers, create a substantial fragmentation issue in the Android ecosystem as these

manufacturers can freely adopt their preferred version of the operating systems. A large number

of newer and older Android OS versions are running in more than one billion devices, which

9

results in a much more substantial fragmentation issue if compared to the iOS platform. For

instance, iOS 11 was released in September 2017 and was already running on 65% of iOS

devices by January 2018. In contrast, Android Oreo was released in August 2017 but was

running on just about 1% of Android devices by the same time (Appendix A.1), whereas early

versions were still running in the majority of Android devices: the market share for Nougat

released in August 2016 was 29%, Marshmallow released in October 2015 was 28%, Lollipop

released in November 2014 was 25%, and the market share for all early versions released prior to

2014 was 17% combined.

The fragmentation issue is due to the complex coordination problem in the Android

ecosystem. Device manufactures’ slow upgrade to new Android versions is the critical

antecedent of Android fragmentation. The fragmentation problem affects every player in the

ecosystem. In particular, fragmentation substantially increases the cost for app developers to

release new apps or updates because the changes would need to be tested across a variety of

devices running different versions of the Android operating systems. The fragmentation problem

also creates substantial challenges to deploy security updates, making Android devices

vulnerable to security breaches.

3.2 Fighting Fragmentation with Hardware Abstraction Layer: The Treble Project

To fight the fragmentation problem, Google launched the Treble project in 2017 to pave the way

for fast Android upgrades. The key idea of the project is to add a hardware abstraction layer

between the Android OS and the hardware (e.g., chipset). As illustrated in Figure A2 in

Appendix A, the decompiling of the Android OS from hardware implementation provides device

manufacturers more freedom to choose the most recent Android versions while transferring the

responsibilities of hardware implementation to component vendors such as chip manufacturers.

With this vendor interface, the update of Android OS can be done independently as device

manufacturers do not have to modify the codes related to the hardware. The Treble project has

the potential to make it faster, easier, and cheaper for device manufacturers to adopt Android OS

updates and get them out to users. The Treble project was completed and rolled out to the market

in December 2017.

The Treble project can be considered as Google’s commitment to fighting the fragmentation

issue in its Android ecosystem. This is among the first attempts of major platforms to invest in

10

the platform infrastructure design to fight fragmentation. The Treble project offers a valuable

opportunity to study the impact platform investment on complementor innovation.

Due to the complex coordination problem, the Treble project is unlikely to significantly

reduce fragmentation in the short or medium run, suggesting that fighting fragmentation is going

to be an enduring process with high uncertainty of eventual success (Dowell and Swaminathan

2006). However, app developers may consider the Treble project as a positive signal, and thus

respond to the project despite high uncertainty and long before the project can significantly

reduce OS fragmentation. For instance, app developers may boost their innovation efforts

responding to the Treble project. With such positive responses, the Treble project’s intended

effects can be accelerated, reducing the lead time required to achieve its goals.

4. Research Design, Data and Model

4.1 Identifying Treatment Effects based on App-Level Abstraction Layer: OpenGL

To estimate the effect of the Treble project on complementor innovation, we leverage a technical

design in the app-level abstraction layer, i.e., the Open Graphics Library (OpenGL),

which is an industrial standard adopted by most graphic apps with the aim of fixing hardware/OS

compatibility issues but at the same time also shields these apps from fragmentation. Apps that

use OpenGL are not affected or are less affected by Android fragmentation and thus are not

influenced by platform investment to reduce fragmentation (these apps can be considered the

“control group”), whereas apps that do not use OpenGL are affected by the Treble project and

thus can be considered the “treatment group.”

Appendix A.3 provides detailed discussion on what types of apps rely on OpenGL and the

release history of the OpenGL Library for Android. OpenGL has been managed by the non-profit

technology consortium Khronos Group, which is independent of Android. Also, there was no

new release of OpenGL for Android during the period of 2017-2018 covered in this paper (the

most recent release was in August 2015). Because the release and update of OpenGL are

independent of Google’s Android platform, the variations among apps in whether they use

OpenGL allow us to estimate the impact of the Treble project by comparing the innovation

efforts by the two groups of app developers.

As an alternative empirical design, we also leverage the geographical variations of

fragmentation among app developers to identify the treatment and control groups in the analysis.

11

We estimate the impact of the Treble project by comparing regions of high and low Android

fragmentation. Section 4.4 provides the details on how we construct the treatment variable.

In addition, to corroborate the main empirical design, we conduct further analyses comparing

the innovation of the same developer or the same app across Android vs. iOS platform, to control

for the unobservables between the treatment and control groups (Section 5.2).

4.2 Data Sources

We combine two data sources to construct a comprehensive dataset about Android fragmentation

and app innovation. Data on developer/app innovation is collected from the Google Play store,

the official marketplace for Android app developers to release/update their apps and for users to

download these apps. This longitudinal dataset contains the profile and activity log for all

developers and all apps from each developer from 2014 to 2020. The app profile includes the

app’s release date, category, file size, text description, developer, cumulative downloads, average

star rating, number of libraries, etc. The app activity log records the update history of an app,

including the timestamp and version number.

Data on Android fragmentation is collected from the version distribution dashboard on

Google’s Android developer page. The distribution dashboard reported the distribution of

Android versions running in all active Android devices that have accessed the Google Play store

in the past month. We supplement this platform-level data with more granular country-level

version distribution data from AppBrain, an Android app analytics company. AppBrain offers

one of the most popular software developer kits (SDK), with tens of thousands of developers

worldwide using the AppBrain SDK for their Android app. AppBrain anonymously processes

the server traffic of their SDK to generate version distributions of Android devices, globally and

by country, from over 100 million monthly unique users.

4.3 Variables and Measurement

Innovation Efforts As the key outcome measure of the study, a developer’s innovation

efforts are measured by their app updates (Boudreau 2012; Wen and Zhu 2019). Hence, the key

dependent variable for capturing the developer’s innovation efforts is Num_Updates, which is

the total number of updates of an app in a month (Foerderer 2020). We also separate the number

of updates into major updates (Num_Major_Updates) and minor updates (Num_Minor_Updates).

Major updates typically refer to substantial changes to an app, such as adding new features and

12

functionalities. Minor updates are small enhancements, such as bug fixes and performance

improvement. The widely adopted approach to distinguish major and minor updates is by

comparing the current version number to the previous version number (Boudreau 2010; Tiwana

2015; Wen and Zhu 2019). An update is considered major if the leading part of the version

number increases to a larger number (e.g., the version number changes from 3.0 to 4.0), whereas

the update is considered minor if only the rest of the version number has changed (e.g., the

version number changes from 3.0 to 3.1).

Fragmentation The degree of fragmentation of Android operating systems can be

measured by the Simpson’s Diversity index, which has been widely adopted to quantify the

diversity of an ecosystem (Harrison and Klein 2007; Simpson 1949). The index considers the

number of Android versions present, as well as the market share of each version. Specifically,

the fragmentation index based on the Simpson’s index at time t is

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 = 1 −�𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟2
𝑛𝑛

𝑣𝑣=0

,

where prvt is the market share of Android version v at time t in region r. The larger the Simpson’s

index, the more fragmented the Android platform is. In the OpenGL analysis, we treat the entire

Android platform as a region and compute the platform-wise Simpson index. In the geography

analysis, we treat each county as a separate region and compute region-specific Simpson index.

Figure 1 illustrates the Android fragmentation levels for ten representative countries with the

largest number of Android developers and the overall fragmentation level on the entire platform

in 2018. We can see rich geographical variations across countries in Android fragmentation.

Figure 1. Geographical Variations in Android Fragmentation

0.31

0.18

0.27
0.3

0.22
0.21

0.19

0.35

0.3
0.28

0.23

0
.1

.2
.3

.4
Fr

ag
m

en
ta

tio
n

Can
ad

a
Chin

a

Fran
ce

Germ
an

y
Ind

ia
Ja

pa
n

Rus
sia

Sou
th

Kore
a

Unit
ed

 King
do

m

Unit
ed

 Stat
es

Worl
dw

ide

13

Platform Investment—The Treble Project The Treble project was rolled out in late

December 2017. Therefore, we create a binary variable Post to capture the timing of the

investment, with Post equal to 0 for December 2017 and before, and Post equal to 1 after.4

Moderating Variables The effect of fragmentation on innovation may vary across

different developers and apps. For instance, big and experienced developers may be better

equipped with knowledge and tool to deal with fragmentation. Big developers with a larger

portfolio of apps may also benefit from economies of scale, i.e., they can afford to invest in their

own infrastructure to cope with fragmentation. Therefore, big developers may benefit less from

platform investment compared to small developers. Hence, we construct the moderating variable

Big_Developer, a dummy variable that equals 1 if the developer’s total number of apps is above

the median in the distribution of developer total app counts, and 0 otherwise.

Also, developers with shorter tenure on the platform may be more likely to move early

compared to longer tenure developers on the platform, so we construct another variable

Experienced_Developer, which indicates whether the developer’s years on the platform since its

first app is above or below the median among all developers.

The characteristics of an app may also influence an app’s response to platform investment.

For instance, apps of high popularity are more likely to suffer from the fragmentation issue due

to their large and diverse user base. Therefore, these apps are more likely to benefit from the

Treble project that reduces fragmentation. Hence, we construct another variable Popular_App,

which equals 1 (or 0) if the app’s number of rating counts is above (or below) the median.5

Market characteristics, such as market concentration, reflect the competitive environment and

may also affect complementors’ decision to innovate responding to the Treble project. The

competitiveness of the market can be operationalized by the concentration of the market defined

by similar apps that support the same Android OS version. We use the widely adopted the

Herfindahl–Hirschman Index (HHI)—a smaller number of the index indicates higher market

4 According to Google researchers’ report (Yim et al., 2019), the Treble project was tested out during the release
cycle of Android Oreo 8.0 and 8.1. During this cycle, the team completed experimentation with functions such as
modularization. We choose the end of this release cycle as the treatment date.
5 Alternatively, we can measure an app’s popularity using the app’s user base. Unfortunately, such data is not
available (Google only disclosures the bucket of cumulative downloads such as 10,000~50,000 but not the exam
number of downloads). As a robustness check, we consider the bucket of the number of downloads of an app as a
measure of app popularity.

14

concentration and thus a more competitive market, whereas a large number of the index indicates

lower concentration and thus more a competitive market. We construct the dummy variable

Concentrated_Mkt, which equals 1 if the HHI for the app’s available Android OS segment is

above the median among all Android OS versions’ markets, and 0 otherwise. As a robustness

check, we also construct an alternative HHI measure based on the developers’ number of app

ratings to proxy for the developers’ market share for each Android version. The empirical results

remain qualitatively unchanged.

We also create a measure to capture user base diversity. The diversity of the user base

determines to what extent fragmentation would affect the complementors. We capture the level

of user base diversity by app category using the variable Diverse_Category, which equals 1 if the

number of various Android versions developed for apps in a category is above the median in the

entire distribution of categories, and equals 0 otherwise.

4.4 Empirical Model

To measure the effect of platform investment, we construct two groups of apps: the “control”

group of apps that are not affected (or are only slightly affected) by the platform investment to

reduce fragmentation and the “treatment” group of apps that are affected by platform investment.

We construct a Treated variable, which equals 1 for an app in the “treatment” group and 0

otherwise. We use two different approaches to construct the “control” and “treatment” groups.

The first approach leverages app-level variations in their tendency to be affected by the platform

investment, whereas the second approach leverages geographical variations in fragmentation.

App-Level Variations in the Use of OpenGL The platform investment does not affect all

apps equally. App developers in the graphics/video categories typically use the industry-standard

OpenGL to create cross-language, cross-platform applications. For OpenGL analysis, the

“control” group consists of apps that leverage OpenGL as an abstraction layer and thus are not

(or are only slightly) affected by platform investment to reduce fragmentation, and the

“treatment” group consists of apps that do not OpenGL as an abstraction layer and thus are

responsive to fragmentation reduction. Matching of apps in these two groups is done at the app

level, based on covariates including the app’s first release date, app complexity (i.e., the number

of libraries used), user ratings (i.e., the average star rating and the number ratings). Appendix B

15

provides the details on how we construct these two groups of apps. For OpenGL analysis,

Treated equals 1 if an app does not rely on OpenGL and 0 otherwise.

Geographical Variations in Android Fragmentation We also leverage geographical

variations in platform fragmentation across locations (i.e., regional markets defined by countries)

to identify the differences in the treatment levels. Regional markets with higher fragmentation

may benefit more from the platform investment to reduce fragmentation. We therefore construct

two groups of projects: the “control” group of app developers that serve regional markets of low

fragmentation and the “treatment” group of developers that serve regional markets of high

fragmentation. Matching is at the developer level, based on covariates including the developer’s

tenure on the Android platform, the number of apps offered by the developer, and developer

ratings (i.e., average star rating and the total number of ratings across all apps by the developer).

The degree of Android fragmentation is continuous across countries, with the Simpson’s

index ranging from 0.1 to 0.4. The middle chunk of the distribution is dense, so the 50% cutoff

(i.e., the median) would not be suitable for the fragmentation level data. Following prior studies

in statistics and econometrics, we equally divide this range into three buckets such that each

bucket has the same number of countries (Farronato et al. 2020; Gelman and Park 2009). There,

we assign the binary variable Treated to be 0 for developers in countries with the fragmentation

index from 0.1 to 0.2 (this corresponds to about one-third of developers facing with the least

fragmentation), and 1 for developers in countries with fragmentation from 0.3 to 0.4 (this

corresponds to about one-third of developers facing the most fragmentation). We conduct

robustness checks with alternative cutoffs (0.1~0.25 and 0.25~0.4; 0.1~0.15 and 0.35~0.4). The

results remain qualitatively unchanged.

The platform investment is exogenous to the Treated variable as either app-level variations

or geographical variations are independent of the Treble project. We estimate the main effect of

the platform investment using the following linear model:

𝐿𝐿𝐿𝐿𝐿𝐿(𝑁𝑁𝑁𝑁𝑁𝑁_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 + 𝛽𝛽3𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖. (1)

The unit of analysis is at the app-month level. The linear model is appealing for its

interpretability. For app i in month t, the estimated coefficient for the interaction term, 𝛽𝛽3,

captures the differences in the impacts of the platform investment on app innovation, which can

be interpreted as the percentage change in update frequency. Since the dependent variable (i.e.,

16

the number of updates) is an integer variable, we also use count models as robustness checks

(estimates from the count models cannot be interpreted as straightforward as the linear model).

4.5 Descriptive Evidence of Complementor Anticipation

We first investigate whether the Treble project reduces fragmentation in the Android ecosystem

in the short run. Figure 2 illustrates the platform-wise fragmentation of Android, from January

2016 (two years prior to the Treble project) to January 2020 (two years after the Treble project).

As we expected, the Treble project did not mitigate platform fragmentation until the middle of

2019, possibly due to the slow response from device manufacturers.6

Figure 2. Android Fragmentation over Time

However, despite the lack of short-term changes in fragmentation, the Treble project has an

immediate effect on app developers’ innovation efforts. As we proposed in the theoretical

development (Section 2), platform investment such as the Treble project signals the platform’s

commitment to reducing fragmentation, which boosts complementors’ confidence in exerting

their own efforts. Developers may anticipate lowered cost to develop and maintain their apps and

the changing competitive dynamics in the ecosystem. Hence, we may still observe changes in the

6 Compared to app developers, device manufacturers face more constraints in new product releases. Popular brands
often follow a regular timeline of annual product releases. For example, to release a new product around September
and October.

17

developers’ innovation efforts shortly after the Treble project’s rollout. The matching algorithms

in Appendix B construct a balanced sample between the treatment and control group

observations. For the OpenGL analysis, the affected and matched apps are balanced across a set

of covariates (Table B1 in Appendix B) in the 6 months before the Treble project takes effect.

For the geography analysis, the affected and matched developers are also balanced on a set of

developer characteristics (Table B2 in Appendix B).

Based on the matched pairs, our data sample contains app-month level observations for the

OpenGL analysis, and developer-month level observations for the geography analysis. Table 1

reports the summary statistics.

Table 1. Summary Statistics

Variable Mean Std. dev. Min Max
For OpenGL Analysis:
 Treated 0.501 0.500 0 1
 Post 0.539 0.499 0 1
 Log(Num_Updates) 0.143 0.317 0 2.639
 Log(Num_Major_Updates) 0.024 0.129 0 1.609
 Log(Num_Minor_Updates) 0.121 0.296 0 2.639
 Big_Developer 0.625 0.484 0 1
 Experienced_Developer 0.598 0.490 0 1
 Popular_App 0.441 0.497 0 1
 Concentrated_Mkt 0.442 0.497 0 1
For Geography Analysis
 Treated 0.495 0.500 0 1
 Post 0.557 0.497 0 1
 Log(Num_Updates) 0.165 0.340 0 2.197
 Log(Num_Major_Updates) 0.029 0.141 0 1.609
 Log(Num_Minor_Updates) 0.140 0.317 0 2.197
 Big_Developer 0.499 0.500 0 1
 Experienced_Developer 0.361 0.480 0 1
 Popular_App 0.475 0.499 0 1
 Concentrated_Mkt 0.440 0.496 0 1

Notes. The unit of analysis is at the app-month level. Number of observations in this table is 158,255
for the OpenGL analysis, and 54,531 for the geography analysis.

18

Based on the matched groups, as a preliminary step, we first examine the changes in app

update frequency by comparing the monthly number of updates over time for the treated and

matched groups. Figure 3 shows that, in the pre-treatment period, there are no substantial

differences in update frequency between these two groups of apps. After the Treble project rolls

out, however, our OpenGL analysis (Figure 3a) and geography analysis (Figure 3b) both show

clear trends that app developers introduce more updates.

Figure 3. Coefficients over Months with OpenGL as Treatment

(a) Based on OpenGL Analysis

(b) Based on Geography Analysis

19

These increases in developer’s innovation efforts shortly after Treble project’s rollout is a

contrast to the previous evidence in Figure 3, which illustrates that Treble project does not

immediate reduce fragmentation in the Android platform in the short run. In fact, the app

developers’ responses to the Treble project in the short run is not much driven by the actual

reduction in fragmentation, but possibly more by app developers’ anticipation of future changes

in the Android ecosystem after the Treble project. In other words, app developers are forward

looking; the Treble project boosts app developers’ confidence in innovation, and hence we

observe more efforts devoted to app updates on the complementor’s side that follow the platform

investment. In the next section, we report the precise estimates of these effects using the

difference-in-differences (DID) models.

5. Empirical Results

5.1 Evidence of Complementor Innovation Increase After Platform Investment

Table 2 reports the main effects estimation based on Equation (1). We can see that in the time

period following the platform’s investment to reduce fragmentation, app developers significantly

increase their innovation efforts. The results are robust in both the OpenGL analysis and

geography analysis, where we observe that developers update their apps 1% to 3.4% more

frequently following the platform investment.

Table 2. The Effect of Platform Investment on Innovation

Model (1) (2)
 OpenGL Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated 0.0004
(0.002)

0.0004
(0.053)

Post -0.023***
(0.002)

-0.043***
(0.001)

Treated × Post 0.010***
(0.003)

0.010***
(0.002)

Observations 158,255 158,255
R-squared 0.001 0.001
Month FE No Yes

(a) Based on OpenGL Analysis

20

Model (1) (2)
 Geography Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated 0.008*
(0.005)

0.008*
(0.004)

Post -0.037***
(0.004)

-0.064***
(0.002)

Treated × Post 0.034***
(0.006)

0.034***
(0.004)

Observations 54,531 54,531
R-squared 0.003 0.003
Month FE No Yes

(b) Based on Geography Analysis

Notes. The unit of analysis is at the app-month level. Number of observations in this
table is 158,255 for the OpenGL analysis, and 54,531 for the geography analysis.
Variables are defined in Section 4.3. Robust standard errors in parentheses. *Significant
at 10%; ** at 5%; *** at 1%.

5.2 Additional Evidence: Comparing Innovation on Android vs. iOS Platforms

To corroborate the main effects, we also examine the effect of The Treble project on

complementary innovation by comparing app updates of the same developer or the same app

between the Android vs. iOS platforms. By comparing the same developer across platforms, we

identify a treatment and control “twin pair” where the developer’s innovation on the iOS

platform serves as the counterfactual estimate to its innovation on the Android platform, except

for that Project Treble did not take place in the counterfactual scenario. This is to minimize the

potential confounding effects caused by unobservables between the treatment and control groups.

Specifically, we identify 7,079 matched developers on both Android and iOS platforms,

with 10,710 matched apps that have update records on both Android and iOS platforms. We

compare these apps’ updates between the two platforms before vs. after the Treble Project, both

at the developer level and at the app level.

Table 3 Panel (a) reports the main effects estimation by comparing the same apps across

platforms, and Table 3 Panel (b) reports the main effects estimation by comparing the same

developers across platforms, based on Equation (1). As in previous main analyses, we can see

that in the time period following the platform’s investment to reduce fragmentation, app

21

developers significantly increase their innovation efforts on Android compared to that on the iOS

platform. The results are robust in both the app-level analysis and the developer-level analysis,

where we observe that developers update their apps about 3.8% to 5.1% more frequently

following the platform investment.

Table 3. The Effect of Platform Investment on Innovation (Android vs. iOS)

Model (1) (2)
 App Level Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated -0.028***
(0.002)

-0.028***
(0.002)

Post -0.010***
(0.003)

-0.045***
(0.002)

Treated × Post 0.038***
(0.003)

0.038***
(0.002)

Observations 239,168 239,168
R-squared 0.001 0.001
App FE No Yes

(a) Comparing same apps across platforms

Model (1) (2)
 Developer Level Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated -0.040***
(0.004)

-0.040***
(0.003)

Post -0.021***
(0.004)

-0.049***
(0.003)

Treated × Post 0.051***
(0.005)

0.051***
(0.003)

Observations 158,604 158,604
R-squared 0.001 0.003
Developer FE No Yes

(b) Comparing same developers across platforms

 Notes. Robust standard errors in parentheses.
 *Significant at 10%; ** at 5%; *** at 1%.

22

5.3 Heterogeneous Effects in Complementor Innovation

Why do we observe an increase in complementor innovation when the Treble project does not

immediately reduce fragmentation in the Android platform? Following our theoretical

development in Section 2, we test whether the cost structure of the complementors and market

competitiveness can explain the differences in complementors’ choice to innovate early after the

platform’s investment. In the rest of this paper, we report the empirical results from the OpenGL

analysis in the main text and put the findings from the geography analysis in Appendix C (the

findings are qualitatively the same as those from the OpenGL analysis).

Size of a Developer’s App Portfolio (Economies of Scale). First, the size of a developer’s

app portfolio indicates the developer’s cost of developing apps and can affect their decision to

increase innovation efforts following platform investment. Results in Table 4 Column (1) show

that developers who have developed more apps in the past (developers offering a larger portfolio

of apps) tend to increase their innovation less compared to smaller developers after the platform

investment. This result could be due to economies of scale. Specifically, big developers can

afford to build their own infrastructure to deal with the fragmentation problem themselves

(testing environment for multiple OS versions and devices, etc.). Such infrastructure can be used

across multiple apps and lower the cost of innovation, which small developers are unable to do.

Therefore, small developers benefit more from the platform investment potentially due to their

lack of the internal infrastructure, thus the smaller developers are more likely to take advantage

of the platform’s investment to reduce fragmentation compared to larger developers.

Developer’s Tenure and Experience. Similarly, more experienced developers may also

have better infrastructure to lower development costs compared to new developers, whereas new

developers may likely anticipate to take advantage of the reduce in fragmentation to lower cost.

Table 4 Column (2) reports the estimated coefficients for the heterogeneous effects regarding a

developer’s tenure on the platform. New developers can be more responsive and are more likely

to leverage the Treble project to improve their apps after the platform investment. Experienced

developers already develop the internal capability to deal with fragmentation, and thus are less

responsive to platform investment to reduce fragmentation.

App Popularity and Diversity of User Base. At the app level, developing a popular app can

be costly as it needs to cater to a larger and more diverse user base than a less popular app. This

23

may also affect the developer’s decision to increase innovation with anticipated fragmentation

reduction. We can see from Table 4 Column (3) that popular apps have a greater magnitude of

update increase compared to less popular apps when fragmentation is reduced. As expected, the

plausible explanation is that apps of high popularity are more likely to suffer from the

fragmentation issue due to their large user base and the variety of users they serve. Therefore,

these apps are more likely to benefit from the platform investment to reduce fragmentation, thus

the developers are more likely to decide to move early and increase innovation efforts when they

anticipate a lower cost in future.

Market Competitiveness. Lastly, developers in a more competitive market may tend to

innovate more than those in less competitive markets, as it may be more costly for them to attract

the users who will soon update to newer versions of the Android platform. Table 4 Column (4)

shows that in Android markets with greater concentration, i.e., less competition, developers are

less likely to increase their innovation compared to those in more competitive markets after the

Treble project. This result could be due to developer incentives to gain network effects. Reduced

fragmentation enables users to update their Android OS systems which opens up a new user

segment to complementors. When competition exists in a market subject to network effects,

complementors move early to attract the user base in the initial stage of competition to gain

network effects. Therefore, platform investment to reduce fragmentation incentivizes

complementors to increase innovation.

In sum, the forward-looking increase in complementor innovation that we find in the main

effect is likely due to developers’ anticipation of lowered innovation cost in the future, as the

impact of platform investment is greater for developers with more variable cost structure such as

a larger and more diverse user base, less development experience, and lack of economies of scale

(i.e., with a smaller portfolio of apps). The effect is also greater for developers in more

competitive markets where gaining user base can be costly due to market competition.

Table 4. Heterogeneity in Innovation Efforts

Model (1) (2) (3) (4)
Dependent Variable Log(Num_Updates)

Treated -0.001
(0.005)

0.003
(0.005)

0.005*
(0.003)

-0.004
(0.004)

Post -0.027***
(0.004)

-0.043***
(0.004)

-0.020***
(0.002)

-0.027***
(0.003)

24

Treated × Post 0.019***
(0.006)

0.017***
(0.006)

0.003
(0.003)

0.017***
(0.005)

Big_Developer -0.117***
(0.004)

Treated × Big_Developer 0.005
(0.005)

Post × Big_Developer 0.005
(0.005)

Treated × Post × Big_Developer -0.014**
(0.007)

Experienced_Developer -0.098***
(0.004)

Treated × Experienced_Developer -0.002
(0.005)

Post × Experienced_Developer 0.029***
(0.005)

Treated × Post ×
Experienced_Developer

 -0.012*
(0.007)

Popular_App 0.135***
(0.004)

Treated × Popular_App -0.011**
(0.005)

Post × Popular_App -0.008*
(0.005)

Treated × Post × Popular_App 0.014**
(0.007)

Concentrated_Mkt -0.061***
(0.003)

Treated × Concentrated_Mkt 0.007
(0.005)

Post × Concentrated_Mkt 0.008*
(0.004)

Treated × Post × Concentrated_Mkt -0.016**
(0.006)

Observations 158,255 158,255 158,255 158,255
R-squared 0.032 0.019 0.042 0.009

 Notes. Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

6. Robustness Checks

We conduct several robustness checks to ensure that the findings are robust across alternative

measures of innovations by app developers. We also rule out alternative explanations.

25

Major vs. Minor Updates Repeating the main analysis using the dependent variables of

the apps’ major vs. minor updates, results in Table 5 show that the affected developers tend to

make both more major and more minor innovations after fragmentation is reduced.

Table 5. The Effect of Platform Investment on Major vs. Minor Innovations

Model (1) (2) (3) (4)
 OpenGL Analysis
Dependent Variable Log(Num_Major

_Updates)
Log(Num_Major

_Updates)
Log(Num_Minor

_Updates)
Log(Num_Minor

_Updates)
Treated 0.0004

(0.0011)
0.0004

(0.0009)
-0.0004
(0.0022)

-0.0004
(0.0015)

Post -0.0141***
(0.0009)

-0.0180***
(0.0007)

-0.0111***
(0.0021)

-0.0284***
(0.0011)

Treated × Post 0.0026**
(0.0013)

0.0026*
(0.0014)

0.0079***
(0.0030)

0.0079***
(0.0022)

Observations 158,255 158,255 158,255 158,255
R-squared 0.0025 0.0025 0.0002 0.0002
Month FE No Yes No Yes

 Notes. Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

New OS Releases One might be concerned that the release of a new OS in 2017 that

accompanies the rollout of the Treble project may confound our estimated main effects. Since

the new OS release affects apps in both the treatment and control groups, its effect should have

been controlled for in the DID analysis if the effect is similar across the two groups.

Considering the situation if the new OS release has different effects on each group, we

conduct a robustness check by excluding from our sample any apps that ever upgraded to the

new OS release during the observed time period and re-run the main analysis. From Table 6, we

can see that all main findings continue to hold: both the signs and magnitudes of the parameter

estimates are comparable to those of the base models in Table 2.

Table 6. Parameter Estimates Excluding New OS Releases

Model (1) (2)
 OpenGL Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated 0.0002
(0.002)

0.0002
(0.053)

26

Post -0.023***
(0.002)

-0.043***
(0.01)

Treated × Post 0.010***
(0.003)

0.010***
(0.002)

Observations 157,931 157,931
R-squared 0.001 0.001
Month FE No Yes

Notes. Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

Count Model Specification To further corroborate the main results, because our outcome

variable, the number of app updates, is a count variable with nonnegative values, instead of

taking the natural logarithm of the dependent variable to correct for the skewness as we did for

the main analysis, an alternative model specification is to employ a negative binomial regression

which accounts for nonnegative over-dispersed count data to test the robustness of the effects.

Table 7 presents the estimated results using the alternative model specification of negative

binomial regression models. Using the same main analysis samples, all the main findings

continue to hold.

Table 7. Parameter Estimates with Count Models

Model (1) (2)
 OpenGL Analysis
Dependent Variable Num_Updates Num_Updates
Treated -0.006

(0.017)
0.006

(0.017)
Post -0.186***

(0.017)
-0.207***

(0.029)
Treated × Post 0.078***

(0.024)
0.076***
(0.023)

Observations 158,255 158,255
R-squared 0.001 0.001
Month FE No Yes

Notes. Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

Alternative Measures To test the robustness of our moderating effects, we also calculate

alternative measures to conduct the analyses. The empirical results (Table 8) remain qualitatively

unchanged compared to those in Table 4.

27

First, for app popularity, alternatively, we can measure an app’s popularity using the app’s

user base. Unfortunately, such data is not available (Google only discloses the bucket of

cumulative downloads such as 10,000~50,000 but not the exact number of downloads). As a

robustness check, we consider the bucket of cumulative downloads of an app as a measure of app

popularity. Our results remain qualitatively unchanged. Second, when measuring market

concentration, instead of computing HHI based on developers’ number of apps for each

minimum supported Android version, we also construct an alternative HHI based on the

developers’ number of app ratings to proxy for the developers’ market share for each Android

version. Using this alternative measure for market concentration, we find the effects continue to

hold. Lastly, we find that, in app categories where the user base is more diverse, developers are

more likely to increase their innovation following the completion of the Treble project.

Table 8. Heterogeneity in Innovation Efforts with Alternative Measures

Model (1) (2) (3)
Dependent Variable Log(Num_Updates)

Treated 0.004
(0.004)

-0.004
(0.004)

-0.005
(0.005)

Post -0.013***
(0.003)

-0.027***
(0.003)

-0.016***
(0.005)

Treated × Post 0.002
(0.005)

0.017***
(0.005)

0.001
(0.006)

Popular_App2 0.120***
(0.003)

Treated × Popular_App2 -0.007
(0.005)

Post × Popular_App2 -0.013***
(0.004)

Treated × Post × Popular_App2 0.010*
(0.006)

Concentrated_Mkt2 -0.061***
(0.003)

Treated × Concentrated_Mkt2 0.007
(0.005)

Post × Concentrated_Mkt2 0.008*
(0.004)

Treated × Post × Concentrated_Mkt2 -0.016**
(0.006)

Diverse_Category -0.038***
(0.004)

28

Treated × Diverse_Category 0.0002
(0.006)

Post × Diverse_Category -0.010*
(0.006)

Treated × Post × Diverse_Category 0.015**
(0.007)

Observations 158,255 158,255 158,255
R-squared 0.018 0.009 0.004

 Notes. The sample is the same as the main analysis in Table 3 based on OpenGL analysis.
 Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

7. Discussion and Conclusions
This research provides insights into the impact of platform investment to reduce fragmentation

on complementary innovation. Due to the complex coordination issue among all parties, platform

investment is often a long-term commitment and is unlikely to significantly change the

ecosystem in the short run. However, we find evidence of that app developers are forward

looking. Developers may enhance their innovation efforts even before the platform investment

has reduced fragmentation and their cost to innovate. The platform owner’s commitment to

investment in the platform can enhance developers’ perceived value of the ecosystem in the long

run and change the market dynamics in the ecosystem. This research contributes to the literature

by highlighting the broader impact of platform investment on complementary innovation.

7.1 Theoretical Implications

This research provides theoretical insights into how platform investment to improve platform

infrastructure influences complementary innovation. Such an investment often would not be able

to significantly reshape the platform infrastructure immediately (e.g., reducing platform

fragmentation) due to the complex coordination issues involving different types of participants

(e.g., device manufacturers and app developers). However, this research shows that some

complementors may quickly respond to platform investment as they anticipate possible changes

in cost structure and market dynamics in the long run, despite the substantial uncertainty about

whether the platform investment will eventually improve the platform infrastructure. This

research provides empirical evidence on the existence of such complementor behavior and how it

differs across apps and developers of different ages, economies of scale, user base diversity, and

29

the competitive environments the complementors operate in. This research highlights the role of

complementors’ anticipation in their innovation efforts in platform ecosystems.

7.2 Practical Implications

This research informs platform participants about the short-/medium-term effects of platform

investment to fight fragmentation. We find that such efforts may not reduce fragmentation in the

short run due to the complex coordination problem among all parties involved in the process.

However, platform owners should not be discouraged by the enduring fragmentation problem in

the short run after their investment. App developers do perceive such platform investment as

valuable and increase their innovation efforts following the platform investment. Ignoring such

positive responses from app developers may lead to a problematic conclusion that platform

investment would not create a positive effect.

Platform investment to reduce fragmentation has heterogeneous effects on different apps and

developers. Our findings have implications for targeted interventions. The effects are stronger for

apps with a larger and more diverse user base and apps in a more competitive category, and for

less experienced developers and developers without economies of scale (i.e., with a smaller

portfolio of apps). Platform owners can reach out to these apps and developers as they are more

responsive to platform investment.

7.3 Future Research

This research focuses on the short-/medium-term effects of platform investment on app

developers’ innovation. We do not consider the long-term effects of platform investments

because of the technical challenges in measuring such effects. In the long run, device

manufacturers may also respond to platform investment. Measuring the responses by device

manufacturers can be very challenging because device manufacturers are constrained by other

factors when they release new devices. For instance, device manufacturers have their own

product development cycles, and thus we may not observe manufacturer responses in the middle

of the product release cycle.

References

Van Alstyne, M. W., Parker, G. G., and Choudary, S. P. 2016. “Pipelines, Platforms, and the
New Rules of Strategy,” Harvard Business Review (94:4), pp. 54–62.

30

Anderson, E. G., Parker, G. G., and Tan, B. 2014. “Platform Performance Investment in the
Presence of Network Externalities,” Information Systems Research (25:1), pp. 152–172.

Banbury, C. M., and Mitchell, W. 1995. “The Effect of Introducing Important Incremental
Innovations on Market Share and Business Survival,” Strategic Management Journal
(16:S1), pp. 161–182.

Boudreau, K. 2010. “Open Platform Strategies and Innovation: Granting Access vs. Devolving
Control,” Management Science (56:10), pp. 1849–1872.

Boudreau, K. J. 2012. “Let a Thousand Flowers Bloom? An Early Look at Large Numbers of
Software App Developers and Patterns of Innovation,” Organization Science (23:5), pp.
1409–1427.

Boudreau, K. J. 2021. “Promoting Platform Takeoff and Self-Fulfilling Expectations: Field
Experimental Evidence,” Management Science.

Ceccagnoli, M., Forman, C., Huang, P., and Wu, D. J. 2012. “Cocreation of Value in a Platform
Ecosystem: The Case of Enterprise Software,” MIS Quarterly (36:1), pp. 263–290.

Chellappa, R. K., and Mukherjee, R. 2021. “Platform Preannouncement Strategies: The Strategic
Role of Information in Two-Sided Markets Competition,” Management Science (67:3), pp.
1527–1545.

Chen, P., and Forman, C. 2006. “Can Vendors Influence Switching Costs and Compatibility in
an Environment with Open Standards? ” MIS Quarterly 30, pp. 541–562.

Dowell, G., and Swaminathan, A. 2006. “Entry Timing, Exploration, and Firm Survival in the
Early US Bicycle Industry,” Strategic Management Journal (27:12), pp. 1159–1182.

Farronato, C., Fong, J., and Fradkin, A. 2020. “Dog Eat Dog: Measuring Network Effects Using
a Digital Platform Merger,” NBER Working Paper (28047).

Foerderer, J. 2020. “Interfirm Exchange and Innovation in Platform Ecosystems: Evidence from
Apple’s Worldwide Developers Conference,” Management Science (66:10), pp. 4772–4787.

Gawer, A., and Cusumano, M. A. 2002. Platform Leadership: How Intel, Microsoft, and Cisco
Drive Industry Innovation, (Vol. 5), Harvard Business School Press Boston, MA.

Gelman, A., and Park, D. K. 2009. “Splitting a Predictor at the Upper Quarter or Third and the
Lower Quarter or Third,” The American Statistician (63:1), pp. 1–8.

Hagiu, A., and Spulber, D. 2013. “First-Party Content and Coordination in Two-Sided Markets,”
Management Science (59:4), pp. 933–949.

Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., and Stroulia, E. 2012. “Understanding
Android Fragmentation with Topic Analysis of Vendor-Specific Bugs,” in 2012 19th
Working Conference on Reverse Engineering, pp. 83–92.

Harrison, D. A., and Klein, K. J. 2007. “What’s the Difference? Diversity Constructs as
Separation, Variety, or Disparity in Organizations,” Academy of Management Review
(32:4), pp. 1199–1228.

He, S., Peng, J., Xu, L., Li, J., and Dai, B. 2020. “The Impact of Platform Owner’s Entry on
Third-Party Stores,” Information Systems Research (31:4), pp. 1467–1484.

Hossain, T., and Morgan, J. 2009. “The Quest for QWERTY,” American Economic Review

31

(99:2), pp. 435–440.
Huang, P., Tafti, A., and Mithas, S. 2018. “Platform Sponsor Investments and User

Contributions in Knowledge Communities:: The Role of Knowledge Seeding,” MIS
Quarterly (42:1), pp. 213–240.

Kerin, R. A., Varadarajan, P. R., and Peterson, R. A. 1992. “First-Mover Advantage: A
Synthesis, Conceptual Framework, and Research Propositions,” Journal of Marketing
(56:4), pp. 33–52.

Khalid, H., Nagappan, M., Shihab, E., and Hassan, A. E. 2014. “Prioritizing the Devices to Test
Your App on: A Case Study of Android Game Apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 610–620.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R., and
Poshyvanyk, D. 2013. “Api Change and Fault Proneness: A Threat to the Success of
Android Apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 477–487.

Lu, X., Liu, X., Li, H., Xie, T., Mei, Q., Hao, D., Huang, G., and Feng, F. 2016. “PRADA:
Prioritizing Android Devices for Apps by Mining Large-Scale Usage Data,” in 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp. 3–13.

McDonnell, T., Ray, B., and Kim, M. 2013. “An Empirical Study of Api Stability and Adoption
in the Android Ecosystem,” in 2013 IEEE International Conference on Software
Maintenance, pp. 70–79.

Schatzel, K., and Calantone, R. 2006. “Creating Market Anticipation: An Exploratory
Examination of the Effect of Preannouncement Behavior on a New Product’s Launch,”
Journal of the Academy of Marketing Science (34:3), pp. 357–366.

Shapiro, C., and Varian, H. R. 1999. “The Art of Standards Wars,” California Management
Review (41:2), pp. 8–32.

Simpson, E. H. 1949. “Measurement of Diversity,” Nature (163:4148), p. 688.
Song, P., Xue, L., Rai, A., and Zhang, C. 2018. “The Ecosystem of Software Platform: A Study

of Asymmetric Cross-Side Network Effects and Platform Governance,” MIS Quarterly
(42:1), pp. 121–142.

Tiwana, A. 2015. “Evolutionary Competition in Platform Ecosystems,” Information Systems
Research (26:2), pp. 266–281.

Wei, L., Liu, Y., Cheung, S.-C., Huang, H., Lu, X., and Liu, X. 2018. “Understanding and
Detecting Fragmentation-Induced Compatibility Issues for Android Apps,” IEEE
Transactions on Software Engineering (46:11), pp. 1176–1199.

Wen, W., and Zhu, F. 2019. “Threat of Platform-Owner Entry and Complementor Responses:
Evidence from the Mobile App Market,” Strategic Management Journal (40:9), pp. 1336–
1367.

Wu, X., Kumar, S., and Pang, M.-S. 2020. “Tackling Android Fragmentation: Mobile Apps’
Dilemma and the Platform’s Strategies,” International Conference on Information Systems.

Yoon, I. 2014. “Platform Policy and Its Effect on Diffusion: The Case Study of Android and
IOS,” Massachusetts Institute of Technology.

32

Appendix A. Industry Background

A.1. Android Version History and Fragmentation

Table A1. Android Version History

Name Version Number Release Date API Level

No official codename 1.0 September 23, 2008 1
No official codename 1.1 February 9, 2009 2
Cupcake 1.5 April 27, 2009 3
Donut 1.6 September 15, 2009 4
Eclair 2.0 – 2.1 October 26, 2009 5 – 7
Froyo 2.2 – 2.2.3 May 20, 2010 8
Gingerbread 2.3 – 2.3.7 December 6, 2010 9 – 10
Honeycomb 3.0 – 3.2.6 February 22, 2011 11 – 13
Ice Cream Sandwich 4.0 – 4.0.4 October 18, 2011 14 – 15
Jelly Bean 4.1 – 4.3.1 July 9, 2012 16 – 18
KitKat 4.4 – 4.4.4 October 31, 2013 19 – 20
Lollipop 5.0 – 5.1.1 November 12, 2014 21 – 22
Marshmallow 6.0 – 6.0.1 October 5, 2015 23
Nougat 7.0 – 7.1.2 August 22, 2016 24 – 25
Oreo 8.0 – 8.1 August 21, 2017 26 – 27
Pie 9 August 6, 2018 28
Android 10 10 September 3, 2019 29
Android 11 11 September 8, 2020 30
Cupcake 1.5 April 27, 2009 1

 Source. Wikipedia and manually verified by search of news articles.
 https://en.wikipedia.org/wiki/Android_version_history

33

Figure A1. Comparison of Fragmentation: iOS vs. Android

Source. Forbes: https://www.forbes.com/sites/ianmorris/2018/04/13/android-is-still-failing-where-apples-
ios-is-winning

34

A.2. The Treble Project

Figure A2. Comparison of Fragmentation: iOS vs. Android

(a) New Vendor Interface between Android OS and Hardware

(b) Process of Android Updates before and after Treble

35

A.3. OpenGL Standard

Apps with graphic elements such as video games and graphic design apps are sensitive to

hardware (e.g., PC, video game console, or mobile devices) and software (e.g., different

operating systems) specification, which leads to compatibility issues arising from different

Android versions. To address such compatibility issues, the industry has developed OpenGL,

which is a cross-language, cross-platform API for rendering 2D and 3D vector graphics.

Specifically, OpenGL can be considered as an abstraction level between an app and the

hardware/software that supports the app.

While the use of the OpenGL Library helps handle the issue of compatibility arising from

different Android versions, it also makes fragmentation of the Android platform less of a concern

to the apps that use OpenGL. From a technical perspective, unlike the Treble project which

mainly affects the hardware abstraction layer of the ecosystem, OpenGL mainly affects the app-

level abstraction layer. Therefore, with OpenGL as an additional abstraction layer, apps rely

more on the consistency and updates of the OpenGL Library rather than the changes in hardware

layer fragmentation of the Android ecosystem.

Since 2006, OpenGL has been managed by the non-profit technology consortium Khronos

Group, which is separate from Android. Due to this reason, the release and update of OpenGL

are independent of Google’s Android platform, including the Treble project. During the rollout

of the Treble project, the OpenGL Library remained consistent and did not release any updates.

Therefore, apps that have already leveraged OpenGL (e.g., graphic related apps) are less affected

by the rollout of the Treble project, whereas apps that do not use OpenGL (e.g., non-graphic

related apps) are more affected by the Treble project.

The use of OpenGL provides us with differences in the level of “treatment” from

fragmentation, i.e., how much an app is affected by fragmentation or the Treble project.

Specifically, this distinction enables us to measure the effect of the Treble project by comparing

two groups of apps: apps that use OpenGL and thus are not (or only slightly) affected by the

Treble project (the “control” group) and those that do not use OpenGL and thus are affected by

the Treble project (the “treatment” group), constructed under a matching approach.

Android includes support for high performance 2D and 3D graphics with the Open Graphics

Library (OpenGL), specifically, the OpenGL ES API. OpenGL is a cross-platform graphics API

that specifies a standard software interface for 3D graphics processing hardware. OpenGL ES is

36

a flavor of the OpenGL specification intended for embedded devices. Android supports several

versions of the OpenGL ES API.

Table A2. OpenGL ES Version History

Version Number Release Date Support of Android Versions

1.0 and 1.1 July, 2003 Android 1.0 and higher
2.0 March, 2007 Android 2.2 (API level 8 and higher)
3.0 August, 2012 Android 4.3 (API level 18 and higher)
3.1 March, 2014 Android 5.0 (API level 21 and higher)
3.2 August 2015 Android 6.0 (API level 23 and higher)

 Source. Android Developer Site: https://developer.android.com/guide/topics/graphics/opengl

Appendix B. Construction of Treated and Matched Group

B.1. Identify Affected Apps and Matched Apps with OpenGL

OpenGL ES (OpenGL for embedded systems) is a library intensively used by graphic related

Android apps. To identify apps that leverage OpenGL and those that do not, we conduct code

analysis and text analysis of app description. First, we look into the libraries used by an app and

determine if the app uses the OpenGL library. If yes, we consider the app as OpenGL supported.

Second, we analyze the text description of the app and determine if the description contains

“OpenGL” related keywords. These related keywords are compiled from the OpenGL API

documentation.7 Specifically, we use the Python Natural Language Processing toolkit (NLTK) to

identify the top 20 keywords in the documentation. After further stemming these keywords, we

end up with 17 unique keywords: “graphic photo visual video media map 2d 3d cad game motion

model animat simulat render design virtual”.

We then apply similar text analysis to identify if an app’s description contains some of the

OpenGL related keywords to determine if the app is associated with OpenGL. We try different

thresholds on the number of matched keywords and the empirical results are robustness across

various thresholds.

7 https://www.opengl.org//documentation/

37

B.2. Balance Checks

Table B1. Balance Check of the Treated and Matched Developers’ Characteristics

Variables Treated Matched Paired t-test
Mean Standard

error
Mean Standard

error
t-stats

Developer Years on Android 6.072 0.052 6.067 0.051 0.072
Developer App Count 4.482 0.145 4.449 0.127 0.172
Developer Average Rating 3.967 0.016 3.941 0.016 1.144
Developer Rating Count 6.992 0.045 6.902 0.046 1.391

Notes. The unit of analysis is each developer in the treated and control countries. The number of
observations in each group is 1,146. Variables are calculated based on the developers’ characteristics
before January 2018 when the Treble project was initiated. Developer Rating Count is calculated as the
logarithm of the developer’s total rating count plus 1. None of the above paired t-test results is significant.

Table B2. Balance Check of the Treated and Matched Apps’ Characteristics

Variables Treated Matched Paired t-test
Mean Standard

error
Mean Standard

error
t-stats

App Years on Android 5.740 0.021 5.718 0.021 0.742
Number of Libraries 9.627 0.098 9.597 0.099 0.218
App Average Rating 3.910 0.008 3.908 0.007 0.196
App Rating Count 5.162 0.019 5.162 0.020 0.001

Notes. The unit of analysis is each app in the treated and control group. The number of observations in
each group is 6,702. Variables are calculated based on the apps’ characteristics before January 2018
when the Treble project was initiated. App Rating Count is calculated as the logarithm of the app’s total
rating count plus 1. None of the above paired t-test results is significant.

38

Appendix C. Results from Geography Analysis
Table C1. Heterogeneity in Innovation Efforts

Model (1) (2) (3) (4)
Dependent Variable Log(Num_Updates)
Treated 0.009

(0.007)
0.021***
(0.006)

0.007
(0.005)

-0.0002
(0.007)

Post -0.050***
(0.007)

-0.053***
(0.005)

-0.023***
(0.004)

-0.049***
(0.006)

Treated x Post 0.047***
(0.010)

0.039***
(0.008)

0.020***
(0.006)

0.048***
(0.008)

Big_Developer -0.131***
(0.006)

Treated x Big_Developer -0.004
(0.009)

Post x Big_Developer 0.022***
(0.008)

Treated x Post x Big_Developer -0.030***
(0.012)

Experienced_Developer -0.100***
(0.006)

Treated x Experienced_Developer -0.024***
(0.009)

Post x Experienced_Developer 0.035***
(0.008)

Treated x Post x Experienced_Developer -0.019*
(0.011)

Popular_App 0.153***
(0.006)

Treated x Popular_App -0.0001
(0.009)

Post x Popular_App -0.024***
(0.008)

Treated x Post x Popular_App 0.025**
(0.012)

Concentrated_Mkt -0.068***
(0.006)

Treated x Concentrated_Mkt 0.010
(0.009)

Post x Concentrated_Mkt 0.022***
(0.008)

Treated x Post x Concentrated_Mkt -0.031***
(0.012)

Observations 54,531 54,531 54,531 54,531
R-squared 0.039 0.023 0.049 0.011

 Notes. The sample is the same as in Table 3 based on the geography analysis. Robust standard errors in
parentheses. *Significant at 10%; ** at 5%; *** at 1%.

39

Table C2. Heterogeneity in Innovation Efforts with Alternative Measures

Model (1) (2) (3)

Dependent Variable Log(Num_Updates)
Treated 0.017**

(0.006)
-0.0002
(0.007)

-0.002
(0.006)

Post -0.016**
(0.006)

-0.049***
(0.006)

-0.036***
(0.006)

Treated × Post 0.019*
(0.010)

0.048***
(0.008)

0.034***
(0.008)

Popular_App2 0.133***
(0.006)

Treated × Popular_App2 -0.009
(0.009)

Post × Popular_App2 -0.024***
(0.008)

Treated × Post × Popular_App2 0.017
(0.012)

Concentrated_Mkt2 -0.068***
(0.006)

Treated × Concentrated_Mkt2 0.010
(0.009)

Post × Concentrated_Mkt2 0.022***
(0.008)

Treated × Post × Concentrated_Mkt2 -0.031***
(0.012)

Diverse_Category -0.060***
(0.006)

Treated × Diverse_Category 0.020**
(0.009)

Post × Diverse_Category -0.001
(0.008)

Treated × Post × Diverse_Category 0.001
(0.012)

Observations 54,531 54,531 54,531
R-squared 0.018 0.011 0.004

 Notes. The sample is the same as the main analysis in Table 3 based on the geography analysis.
 Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

40

Table C3. The Effect of Platform Investment on Major vs. Minor Innovations

Model (1) (2) (3) (4)
 Geography Analysis
Dependent Variable Log(Num_Major

_Updates)
Log(Num_Major

_Updates)
Log(Num_Minor

_Updates)
Log(Num_Minor

_Updates)
Treated -0.0032

(0.0020)
-0.0032
(0.0025)

0.0114***
(0.0042)

0.0114***
(0.0029)

Post -0.0154***
(0.0017)

-0.0237***
(0.0014)

-0.0236***
(0.0037)

-0.0439***
(0.0015)

Treated × Post 0.0099***
(0.0025)

0.0099***
(0.0027)

0.0250***
(0.0055)

0.0250***
(0.0030)

Observations 54,531 54,531 54,531 54,531
R-squared 0.0017 0.0017 0.0023 0.0019
Month FE No Yes No Yes

 Notes. Robust standard errors in parentheses. *Significant at 10%; ** at 5%; *** at 1%.

41

Table C4. Parameter Estimates Excluding New OS Releases

Model (1) (2)
 Geography Analysis
Dependent Variable Log(Num_Updates) Log(Num_Updates)

Treated 0.009**
(0.005)

0.009**
(0.004)

Post -0.037***
(0.004)

-0.063***
(0.002)

Treated x Post 0.034***
(0.006)

0.034***
(0.004)

Observations 54,449 54,449
R-squared 0.003 0.003
Month FE No Yes

 Notes. Robust standard errors in parentheses.
 *Significant at 10%; ** at 5%; *** at 1%.

Table C5. Parameter Estimates with Count Models

Model (1) (2)
 Geography Analysis
Dependent Variable Num_Updates Num_Updates

Treated 0.051*
(0.028)

0.050*
(0.027)

Post -0.263***
(0.028)

-0.322***
(0.047)

Treated × Post 0.230***
(0.038)

0.236***
(0.037)

Observations 54,531 54,531
R-squared 0.002 0.002
Month FE No Yes

 Notes. Robust standard errors in parentheses.
 *Significant at 10%; ** at 5%; *** at 1%.

	1. Introduction
	2. Theoretical Background
	2.1 Related Literature
	2.2 Platform Investment, Complementor Expectation, and Innovation
	2.2.1 Anticipated Changes in Developers’ Cost Structure
	2.2.2 Anticipated Changes in Platform Value Creation and Capture

	3. Empirical Setting
	3.1 Android Fragmentation
	3.2 Fighting Fragmentation with Hardware Abstraction Layer: The Treble Project

	4. Research Design, Data and Model
	4.1 Identifying Treatment Effects based on App-Level Abstraction Layer: OpenGL
	4.2 Data Sources
	4.3 Variables and Measurement
	4.4 Empirical Model
	4.5 Descriptive Evidence of Complementor Anticipation

	5. Empirical Results
	5.1 Evidence of Complementor Innovation Increase After Platform Investment
	5.2 Additional Evidence: Comparing Innovation on Android vs. iOS Platforms
	5.3 Heterogeneous Effects in Complementor Innovation

	6. Robustness Checks
	7. Discussion and Conclusions
	7.1 Theoretical Implications
	7.2 Practical Implications
	7.3 Future Research

	References
	Appendix A. Industry Background
	A.1. Android Version History and Fragmentation
	A.2. The Treble Project
	A.3. OpenGL Standard

	Appendix B. Construction of Treated and Matched Group
	B.1. Identify Affected Apps and Matched Apps with OpenGL
	B.2. Balance Checks

	Appendix C. Results from Geography Analysis

