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Abstract. A common challenge faced by two-sided marketplaces is to expand the market while ensuring 

efficient matching of the two sides. We study a new platform growth strategy that increases market 

thickness with free entry while allowing suppliers to discretionarily signal their quality to buyers, thus 

forming a tiered market structure that maintains high matching efficiency even as the market grows. We 

use a real-world example of this growth strategy in the context of non-fungible token (NFT) markets, in 

which suppliers could choose to delay the payment of NFT creation fees (i.e., market entry costs) until the 

moment when an NFT is sold (lazy minting), or make this payment up front at the time of NFT creations 

(gas minting). We use the difference-in-differences strategy to identify the impact of this lazy-minting 

policy on matching efficiency. We find that, although the introduction of lazy minting reduces the average 

matching likelihood of an NFT by 45.5%, it increases the gas-minting segment’s matching likelihood by 

116.9% and first-sale price by 126.5%. We establish that suppliers opt for gas minting, based on their high-

quality creations, and that choosing gas minting enables them to signal high quality to buyers, resulting in 

improved matching likelihood and higher first-sale prices. Overall, this new growth strategy benefits the 

platform due to increased sales and higher commission revenues. Our study establishes the value of a new 

platform growth strategy that allows entrants to self-select their entry costs, thereby shaping a tiered market 

segmentation with an effective quality-signaling mechanism.  
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1. Introduction  

The success of a two-sided platform hinges on the size of its two-sided network. As such, scaling 

has quickly become a widely accepted motto in platform economics and practice (Cennamo and Santalo 

2013). For instance, many major e-commerce retailers, such as Amazon.com, achieve rapid growth by 

forming partnerships with third-party merchants (Chen and Guo 2022). Many peer-to-peer platforms, such 

as Kickstarter in crowdfunding, grant users unlimited access to launching new campaigns to attract broader 

participation (Geva et al. 2019). Such a platform growth strategy has been termed get big fast (GBF; 

Cennamo and Santalo 2013). Although the GBF strategy has merit, unrestrained expansion can congest the 

platform (Roth 2008) and undermine platform performance due to the overwhelming presence of low-

quality offerings and high friction in matching the two sides of the platform (Geva et al. 2019, Li and 

Netessine 2020). 

Considering the potential conflict between rapid market growth and deteriorated matching 

efficiency, platforms have explored variants of the GBF strategy. One approach is to grow the network 

strategically by imposing tight restrictions and quality controls over entry (Oliva et al. 2003, Hagiu 2009, 

Boudreau 2010, Casadesus‐Masanell and Hałaburda 2014, Yang et al. 2021). Nintendo, in the 1980s, for 

example, introduced its “Seal of Quality” policy by enforcing stringent publishing guidelines for third-party 

game developers to ensure the quality of each game.1 Ensuring high-quality growth, however, comes at the 

expense of offering fewer market items, which could be detrimental for platform development in the long 

run (He and Goh 2022). Moreover, the cost of quality certification can be prohibitive when the platform 

has to manually review and assess each participant’s quality, as Nintendo did. An alternative approach is 

to exercise quality control through user-generated content, such as online reviews, to help buyers to 

differentiate between high- and low-quality products, thereby facilitating supply-demand matching. 

Delegating quality control to reviewers, however, may result in review manipulation (Nie et al. 2022), 

quality misrepresentation (Pu et al. 2022), or the “cold-start” problem in terms of new products’ being 

discovered and reviewed by consumers (Pallais 2014, Burtch et al. 2021). Further, reviews may not be 

informative or feasible for markets with unique and personalized product offerings (e.g., collectibles, 

artworks) due to the lack of multiple copies of the same product. 

This paper explores a new platform growth strategy that aims to achieve market growth and 

matching efficiency in a novel way. The key idea is to provide an option for the entrants to incur different 

entry costs, which allows them to signal their product quality. Those who do not want to incur an entry cost 

                                                      

1 See https://gamicus.fandom.com/wiki/Nintendo_Seal_of_Quality. Apple also practices similar quality review 

process to avoid erosion of platform quality, https://developer.apple.com/app-store/review/guidelines/#after-you-

submit (accessed September 10, 2022). 

https://developer.apple.com/app-store/review/guidelines/#after-you-submit
https://developer.apple.com/app-store/review/guidelines/#after-you-submit
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can still enter the market but cannot signal high quality. The availability of low entry costs empowers 

market growth, whereas the more expensive entry option signals quality and creates a tiered market that 

can simplify product discovery, thus making matching more efficient. Further, such an approach works 

better for markets with unique products because it leverages a supplier’s private knowledge of (or belief in) 

the product’s quality, which is more cost effective than the case in which platforms have to determine the 

quality of each entrant. 

We identify a recent application of this market growth strategy in the domain of non-fungible token 

(NFT) artwork marketplaces. Typically, NFT creators pay an upfront fee on Ethereum (i.e., minting fee in 

the form of Ethereum gas, at an average of $82) to create (mint) an artwork on NFT marketplaces (e.g., 

OpenSea, Foundation, Rarible). Considering that most NFT creators never sell their NFTs,2 paying an 

upfront minting fee hinders the supply of NFTs and represents an entry barrier. A new NFT minting policy, 

termed lazy minting, was introduced by Rarible.com to address this issue by offering a free market entry 

option. Specifically, lazy minting defers the fee payment until the time of an NFT’s first sale (no gas-fee 

payment if there is no sale), which significantly lowers the entry barrier for creators and boosts NFT 

supplies.  

Although removing the entry barrier would likely enlarge market size, it also would adversely 

impact matching efficiency in two-sided marketplaces due to the proliferation of choices and the 

concomitant search friction (Fradkin et al. 2015, Dinerstein et al. 2018, Geva et al. 2019, Li and Netessine 

2020). Further, a low entry barrier may inadvertently attract incapable or opportunistic creators who do not 

exert adequate efforts in making NFTs (e.g., many NFTs are simply pictures downloaded from the Internet). 

This can potentially lead to a type of market failure known as Gresham’s Law, whereby “bad money drives 

out good” (Akerlof 1970), leaving the NFT platform crowded with low-quality NFTs. This will take a toll 

on the buyer side as well because buyers may have difficulty in discerning valuable NFTs from a swarm of 

low-quality ones in an overly thick market.  

The interesting point about the lazy-minting policy is that Rarible makes lazy minting optional. 

Creators can still decide whether to pay the minting fees up front (gas minting) or later (lazy minting). We 

find that, even after lazy minting becomes available, some creators still opt for gas minting. This leads to 

the following questions: What is the motivation for creators to choose the costly gas minting channel even 

when a free option is available? Why, then, do creators not use lazy minting to enter the market freely? To 

answer these questions, we posit that this optional lazy-minting policy establishes a quality signaling 

mechanism for the NFT market. High-quality creators can choose to pay up front to signal their quality, 

                                                      

2  See https://protos.com/elite-five-percent-nft-traders-make-vast-majority-opensea-profits/. Notably, 5% of NFT 

traders have received 80% of the profits on the OpenSea marketplace, and 73% of the NFTs were never sold. 

https://protos.com/elite-five-percent-nft-traders-make-vast-majority-opensea-profits/
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akin to the idea of “money burning” in the advertising literature, which has documented that high-quality 

sellers invest more up front in advertising compared to low-quality ones (Kihlstrom and Riordan 1984, 

Milgrom and Roberts 1986, Kirmani and Rao 2000). This self-selection option in the market design creates 

a separating equilibrium where differentiated creators of varying NFT qualities can exercise discretion in 

choosing different minting actions. Further, due to the separating equilibrium, buyers can efficiently target 

their search to only the high-quality submarket comprised of gas-minted NFTs, thereby reducing search 

friction and increasing the efficiency of matching, particularly in the gas-minting market segment.  

Given the aforementioned counteracting effects, it is unclear whether introducing a policy such as 

lazy minting improves or hinders matching efficiency. Our first research objective aims to address this by 

investigating the impact of such a new platform growth strategy on the matching efficiency of the platform, 

measured by how likely an NFT is to receive a match/sale and how much it can be sold for. Further, the 

impact may be heterogeneous on different segments of the market, such as the gas-minting segment (which 

comes from the costly entry channel), as opposed to the entire market. Our second research objective centers 

on this heterogeneous effect, for which we analyze the lazy-minting policy’s differential impacts on the 

gas-minting segment vs. the entire market. Our third research objective is to investigate, based on the 

establishment of a separating equilibrium, whether the quality signaling mechanism is attainable for the 

gas-minting segment and to explore the heterogeneous effects that arise due to the inherent tension between 

the market thickness mechanism and quality signaling mechanism. In pursuit of these three objectives, we 

also analyze whether it is beneficial for the platform to adopt the policy by comparing the overall profits 

and the total number of sales of the platform before and after implementing the policy.  

We leverage the introduction of the lazy-minting policy on Rarible to empirically examine the 

impacts of this new market-growth strategy. On October 18, 2021, Rarible introduced the lazy-minting 

option, allowing creators to pay minting fees after the first sale. We consider Rarible as the treated platform 

and identify a comparable control platform, Foundation, which mandates gas minting. We collect six-month 

data (from August 2021 to February 2022) on both platforms and apply a difference-in-differences (DID) 

identification strategy. We find that the overall matching likelihood decreases by 45.5% after the 

introduction of the lazy-minting policy but increases by 116.9% in the subgroup of gas-minted NFT 

artworks. In addition, the first-sale price increases by 126.5% for gas-minted NFT artworks but is 

unchanged in the entire market. To explain the underlying mechanisms, we draw on market thickness and 

quality signaling theories. Due to the influx of low-quality, lazy-minted artworks, the increase in market 

thickness leads to higher search friction, reducing the overall matching efficiency (Li and Netessine 2020). 

The ability to signal high quality through gas minting, however, results in better matching outcomes in the 

gas-minting segment. The net impact of the two mechanisms is overall positive: The entire marketplace 

sees more sales and enjoys higher revenues after the introduction of lazy minting. 
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Our study provides implications for the emerging two-sided marketplaces by investigating a critical 

market growth problem. Although the literature recognizes the fallacy of the popular GBF strategy (Lee et 

al. 2006, Sterman et al. 2007, Boudreau 2012) and the pitfalls of thick markets (Bimpikis et al. 2020, Li 

and Netessine 2020, Arnosti et al. 2021), in practice, platforms typically rely on conservative growth 

strategies (Sterman et al. 2007, Yang et al. 2021) with controlled market size to mitigate the problems 

(Bimpikis et al. 2020, Arnosti et al. 2021, Hou et al. 2021). We contribute to this literature by theorizing 

and testing a potential win-win platform growth strategy that can substantially grow market size while 

improving matching efficiency and generating higher revenues for the platform.  

2. Literature Review 

Our study is closely related to the literature that studies platform growth with increased market 

thickness and quality signaling in two-sided markets. Here, we review both strands of literature. 

2.1.  Platform Growth and Market Thickness 

There is a burgeoning body of literature on the market-expansion strategies used by two-sided 

platforms to grow their market sizes. Examples of these strategies include price subsidizing (Parker and 

Van Alstyne 2005), consolidating and merging competing platforms (Farronato et al. 2020, Li and 

Netessine 2020), enhancing compatibility, forming partnerships with competitors or complementors (Adner 

et al. 2020, Sharma and Mehra 2021), and opening platforms to third-party vendors (Song et al. 2020, Chen 

and Guo 2022), among others. The common idea behind these strategies is to rapidly acquire as many users 

as possible (i.e., the GBF strategy) to quickly grow the platform with a large user base (Cennamo and 

Santalo 2013, Yang et al. 2021), which is believed to be the key to a platform’s survival and competitive 

advantage in the platform economy. 

Although the success stories of platforms such as Amazon lend credence to the GBF strategy, there 

also is debate over its adverse consequences. GBF typically leads to a thick market with a large number of 

participants. Such a thick market has the potential to facilitate more matches due to the richness of supplies 

and the high heterogeneity of demand (Katz and Shapiro 1985, He and Goh 2022). A thick market, however, 

does not necessarily ensure high matching efficiency. For example, rampant platform growth may attract a 

large number of low-quality suppliers, leading to overcapacity (Sterman et al. 2007) and the inability to 

fulfill demand with high service quality (Oliva et al. 2003). In addition, the presence of an overwhelming 

number of choices can exacerbate the difficulty of product and price discovery for buyers (Koulayev 2014, 

Arnosti et al. 2021). This is also documented by Ghose et al. (2014), who find that providing more choices 

may cause buyers to make fewer purchases, owing to information overload. Similarly, Li and Netessine 

(2020) observe a decreased matching rate due to the increased search friction caused by a platform-

integration policy with a ballooned market.   
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To alleviate the problems associated with market thickness during platform expansions, scholars 

have examined and proposed a variety of approaches. A popular approach is to constrain the market size 

by limiting the number of available choices (Hagiu 2009, Casadesus‐Masanell and Hałaburda 2014, 

Bimpikis et al. 2020) or imposing market entry and participation restrictions (Arnosti et al. 2021, Hou et al. 

2021). Boudreau (2010) and Hagiu (2009) suggest that, instead of embracing an all-encompassing openness, 

quality controls should be imposed on the supply side to regulate suppliers’ access to the platform. Related 

to this approach, Yang et al. (2021) elaborate on a scheme whereby platforms should grow by targeting 

only average-quality firms. Other approaches include promoting the most desired or lowest-priced products 

to consumers (Dinerstein et al. 2018); designing interactive decision tools, such as recommendation and 

reputation systems (Häubl and Trifts 2000, Einav et al. 2016, Tadelis 2016, Ashlagi et al. 2020, Bimpikis 

et al. 2020); and disclosing richer marketplace information, such as demand information (Huang et al. 2022), 

availability information (Horton 2019), preference information (Bapna et al. 2016, Ashlagi et al. 2020, 

Horton et al. 2021), and quality information (Dimoka et al. 2012, Tadelis and Zettelmeyer 2015, Geva et 

al. 2019), among others. These approaches, however, are generally costly for platforms and cannot be easily 

applied to newly established platforms or those that sell unique products. Our study contributes to this 

stream of literature by investigating a novel and cost-effective platform growth strategy that couples market 

expansion with a unique opt-in, quality-signaling feature to manage market thickness. 

2.2.  Quality Signaling 

Our study also is related to the literature on signaling theory. Akerlof (1970) shows the possibility 

of market failure when buyers cannot distinguish high-quality sellers from low-quality ones, or “lemons,” 

due to information asymmetry. To mitigate information asymmetry and prevent market collapse, sellers 

can proactively transmit quality signals to consumers, thereby restoring market efficiency (Spence 1973). 

Some signaling examples include pricing (Milgrom and Roberts 1986), money-back guarantees (Moorthy 

and Srinivasan 1995), hassle-free return insurance (Zhang et al. 2022), third-party certification and 

assurance (Gao et al. 2010, Dimoka et al. 2012), advertising (Nelson 1974, Kihlstrom and Riordan 1984, 

Milgrom and Roberts 1986, Feng and Xie 2012, Joshi and Musalem 2021), and so forth. According to the 

categorization in Kirmani and Rao (2000), our specific example, the gas-minting quality signal, is a type of 

sale-independent signal, meaning that the cost of the quality signal is spent up front, regardless of whether 

future sales occur. The rationale behind this type of signal is that a high-quality seller, which has invested 

a high amount of money and effort up front, correctly believes that it can recover the upfront costs via future 

sales, unlike a low-quality seller.  

The signaling literature has documented the efficacy of platform-created quality-signaling designs. 

For example, Horton (2019) examines an opt-in signaling feature in an online labor market that allows 

workers to self-reveal their availability. This approach avoids wasted solicitation and reduces the 
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probability of rejection, thus increasing the matching likelihood. The follow-up work by Horton et al. (2021) 

investigates an employer-side signaling mechanism where employers signal their preference and 

willingness to pay for workers’ quality/ability. The study shows that this signaling mechanism helps 

potential employees to better target the “right” employers, thus improving market matching efficiency.  

In line with this stream of literature, our study also investigates an opt-in quality signaling design 

on the supply side. In our study, what is unique is that opting for quality signaling creates a market entry 

barrier for the suppliers because signaling quality is costly. Although quality signaling has been well studied 

in various settings, it has rarely been connected with entry barriers or examined in the market growth context. 

Its effectiveness as a part of a market growth strategy, therefore, is largely understudied. Theoretically, our 

research extends the extant studies by connecting the literature on platform growth with that on quality 

signaling to investigate the joint effects of market thickness and quality signaling when they are embedded 

in the same market growth strategy.  

3. Empirical Context and Data 

3.1.  Research Setting 

Our research setting is two-sided platforms for NFT trading between buyers and sellers/creators. 

An NFT indexes a unique digital asset represented by its metadata content, such as asset name, creator, 

creation time, description, and appearance, which are permanently stored on Blockchain. NFT marketplaces 

enable participants to mint (create) NFTs, showcase their inventory, and sell their NFTs. In addition, 

Blockchain enables a transparent, indisputable, and immutable provenance that pertains to each NFT by 

recording the NFT’s complete event history (Nadini et al. 2021). An example of an NFT’s history (including 

the minting activity and all trading transactions) is shown in Figure 1. 

The Ethereum Blockchain, where most NFTs are created, charges NFT creators an upfront gas-

minting fee each time they mint a new NFT. This fee is used to compensate Ethereum miners and validators 

for the computational resources that they spend to validate and record each minting activity. Typical gas-

minting fees range from $50 to $200, depending on the complexity of the minting transaction and real-time 

traffic on the Ethereum network. Thus, the gas-minting fee imposes a substantial cost on creators and 

represents a barrier to market entry.  

We leverage an empirical opportunity of the lazy-minting policy, which was launched by Rarible 

(the second largest NFT platform) on October 18, 2021, to eliminate the entry barrier.3 All of the NFTs 

created prior to this time had to pay their gas fees up front at the time of minting, referred to as gas minting. 

Under the lazy-minting option, however, NFT creators do not pay gas fees up front at the time of minting; 

                                                      

3 See https://rarible.medium.com/create-nfts-for-free-on-rarible-com-via-a-new-lazy-minting-feature-91cb4b7c68e6. 

 

https://rarible.medium.com/create-nfts-for-free-on-rarible-com-via-a-new-lazy-minting-feature-91cb4b7c68e6
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rather, this fee is collected later at the time of an NFT’s first sale.4 This new minting policy, thus, greatly 

lowers the entry barrier, given that most NFTs on Rarible (92.3% in our sample) never get sold. As a result, 

the number of NFTs on Rarible climbed sharply from 8,024 in the last month before the policy change to a 

total of 289,046 in the first month after the policy change (i.e., an increase of 36 times). Although this policy 

helps Rarible to grow the supply side, the problem of increased search friction could potentially offset the 

benefits brought by the market growth.  

 

 

Figure 1. Example of an NFT Provenance: Minting and Trading History 

Notably, Rarible made the policy optional to creators: They could still choose between gas minting 

and lazy minting. The choice of whether an NFT is gas-minted or lazy-minted is recorded in the metadata 

of the NFT and stored in the Blockchain, thus making it transparent to market participants. As a result, two 

segments of NFTs are formed based on the choice made by their creators. If the choice of paying the gas 

fee up front (i.e., gas minting) creates a credible signal of quality, such a signal may mitigate the negative 

effect of search friction or even realize higher matching efficiency by making it easier for the demand side 

to find the right NFTs. Therefore, the introduction of lazy minting as an option for NFT creators by Rarible 

presents us with a unique opportunity to study the novel market growth strategy that may increase market 

size and matching efficiency simultaneously. Accordingly, we take the NFTs created on Rarible as the 

treatment group.  

To estimate the impact of the lazy-minting policy, we identify another NFT marketplace, 

Foundation.app, as the control/counterfactual group. We select Foundation as the control platform for two 

reasons. First, Foundation is also an Ethereum-based NFT marketplace, and it mandates gas minting 

throughout our observation period. Second, according to the NFT marketplace ranking by Dappradar.com 

                                                      

4 For a lazy-minted NFT, the gas fee is postponed until the first sale occurs, and the sale mechanism determines who 

pays the gas fee (see Footnote 8 for further details). If it is sold via accepting bids in auctions, the deferred gas fee will 

be paid by creators. If it is sold through a fixed-price sale, however, the first buyer will pay the deferred gas fee. 
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(as shown in Figure A1 in Appendix A), Foundation is the closest artwork marketplace to Rarible in terms 

of the total number of traders and the total transaction volume.5 We thus compare the market performance 

of NFTs listed in these two platforms to examine how the introduction of the lazy-minting policy influences 

market matching efficiency. To make a clear distinction between the treatment and control groups, we 

exclude creators who multi-home between the two platforms (i.e., creators who create artworks on both 

Rarible and Foundation). 

3.2.  Data  

We use the public application programming interfaces (APIs) provided by the two platforms to 

collect data on all NFT artworks that were created between August 16, 2021, and February 7, 2022. As a 

result, our data span 25 weeks, with 9 weeks of pre-treatment data and 16 weeks of post-treatment data for 

both platforms. Figure 2 provides a summary of the research timeline. The data contain the metadata on 

each artwork’s token identifier; the creator’s Ethereum address; NFT descriptions; minting type (i.e., lazy 

or gas minting); number of likes; sale mechanism, which can be either buy-now sale or auction-based sale; 

NFT type (i.e., video or image); and so forth. We also trace the complete provenance history of minting, 

listing, bidding, buying, and selling activities for each artwork. Each provenance record indicates the 

activity type, activity timestamp, transaction price (if any), and Ethereum wallet address of the participants.  

 

Figure 2. Research Setting and Timeline  

3.3.  Variables  

We measure matching efficiency at the NFT level through two aspects.6 The first variable is 

matching likelihood, operationalized as a dummy variable that indicates whether an artwork was sold within 

30 days after its creation time.7  This variable reflects how easily a match can be achieved for an NFT by 

capturing the average matching efficiency of the platform. As a result, we drop the last 30-day NFT data 

                                                      

5 See https://dappradar.com/nft/marketplaces/protocol/ethereum (accessed October 22, 2022). 
6 We are particularly interested in the first-sale matching efficiency of the primary market (i.e., artworks listed by the 

creator and purchased by the first collector) because the choice of lazy minting or gas minting is made by the creator, 

who is normally the first seller of the artwork. 
7 To make the sale outcomes comparable between newly created NFTs and NFTs created earlier, we consider 30 days 

after each NFT’s creation time as a reasonable time window for the first sale to happen. This time window covers 

most sales, as 83% of the sold NFTs were sold to their first buyers within 30 days after their creation. 

https://dappradar.com/nft/marketplaces/protocol/ethereum
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because we do not have adequate time to observe the complete sale activities for these NFTs. After this 

adjustment, the post-treatment periods contain 84 days across 12 weeks.  

The second outcome variable that we construct is the first-sale price for each NFT sold. To control 

for the unstable value of cryptocurrencies and make sale prices comparable, we map each sale price in ETH 

or other cryptocurrencies (e.g., RARI, DAI, USDC) to its corresponding USD closing price on the day of 

sale. This variable reflects the value of an NFT conditional on a sale.  

We present the definition and descriptive statistics of the key variables in Table 1. We will discuss 

them in detail when we use them in the relevant empirical analyses. We apply a natural logarithm 

transformation on variables with high skewness. We also provide descriptive statistics on Rarible’s gas-

minted and lazy-minted NFTs separately in Table 2. Notably, we observe a tale of two stories. The gas-

minted NFTs created after the treatment have a higher average matching likelihood and higher first-sale 

prices than do those created before the treatment, whereas the lazy-minted NFTs experience lower matching 

rates and lower sale prices on average. 

Table 1. Summary Statistics 

Variable Description Obs.   Mean     Std. Dev. 

Main Dependent Variables     

Matching likelihood Equal to 1 if an NFT had its first sale within 30 

days since its creation 

1,355,640 0.015 0.121 

ln(first-sale price) First-sale price (in USD) of a sold NFT 20,182 7.053 1.428 

Control Variables     

Fixed sale Equal to 1 if an NFT is listed by fixed-price sale 1,355,640 0.699 0.459 

NFT type Equal to 1 if an NFT is of the video type 1,355,640 0.095 0.293 

Variables For Mechanisms     

No. of creations per day Number of creations each creator created per 

day 

29,466,297 0.046 4.773 

ln(minimum asking price) Minimum asking price set by the creator for an 

NFT 

1,130,233 5.359 2.535 

Adjust asking prices or not Equal to 1 if an NFT’s listed prices were once 

adjusted during the 30-day sale time window 

1,130,233 0.126 0.332 

Ratio of markdown 

adjustments 

Ratio of markdown price adjustments to the total 

number of price adjustments 

142,662 0.871 0.294 

ln(no. of days to match) Number of days taken for a match to happen 

since the creation of an NFT 

20,182 1.406 0.918 

ln(no. of bids) Number of bids each buyer placed each week 281,086 0.063 0.283 

ln(no. of bids per match) Number of bids each buyer placed each week to 

secure a match 

17,086 0.961 0.453 

No. of likes per day Average number of likes received per day for an 

NFT 

1,355,640 0.023 0.151 

ln(maximum bidding 

price) 

Maximum bidding price for an NFT 20,977 5.858 2.659 
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Selling experience Total count of historical sales of an existing 

creator who had created NFTs before the 

treatment 

98,101 10.065 57.180 

Platform-level Variables     

Matching rate Ratio of NFTs sold within 30 days out of all the 

NFTs created on the same day on the platform 

     294 0.212 0.186 

Total  no. of matches Total number of NFTs created in a day and sold 

within the next 30 days on the platform  

      294 68.646 47.139 

ln(commission revenue) Platform-level revenue from commission fees of 

all the sold NFTs created in one day  

294 9.232 1.675 

Note. To be consistent with the empirical analyses, we report the ln(x+1) values for these log-transformed variables, 

with the exception of commission revenue as transformed by ln(x).  

 

Table 2. Summary Statistics for the Two Groups of NFTs on Rarible 
 

Variable 

Pre-Treatment  

Gas-Minted NFTs 

Post-Treatment  

Gas-Minted NFTs  

Post-Treatment  

Lazy-Minted NFTs  

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Matching likelihood 0.077 0.266 0.131 0.338 0.001 0.034 

ln(first-sale price) 6.144 1.867 7.548 1.793 5.513 2.412 

Fixed sale 0.468 0.499 0.518 0.500 0.727 0.445 

NFT type 0.090 0.286 0.155 0.362 0.089 0.285 

ln(minimum asking price) 6.280 2.634 6.645 2.458 5.274 2.543 

Adjust asking prices or not 0.338 0.473 0.294 0.456 0.120 0.325 

Ratio of markdown adjustments 0.780 0.341 0.611 0.441 0.876 0.290 

ln(no. of days to match) 1.103 1.027 1.329 0.955 1.210 1.140 

No. of likes per day 0.042 0.130 0.080 0.270 0.014 0.093 

ln(maximum bidding price) 2.232 2.057 4.575 2.217 2.325 2.117 

 

4. Empirical Strategy and Results 

4.1.  Empirical Model 

We leverage the policy shock of lazy minting on Rarible by employing the DID identification 

strategy. Our setting mimics a quasi-experiment in which NFTs created on Rarible serve as the treatment 

group, while NFTs created on Foundation serve as the control group to reflect the natural trend of NFT 

markets. Given that each NFT is minted only once, we only observe the 30-day matching outcome of each 

NFT only once; thus, our data are repeated cross-section (RCS) data of unique NFTs minted at different 

times. As such, our data do not conform to a typical panel dataset (in which the same unit is observed across 

time in both the pre-and post-treatment periods), and, accordingly, the DID estimation is computed by 

comparing the matching efficiencies of different NFTs that are created before and after the lazy-minting 

policy (rather than the same NFTs before and after the policy). Although DID is commonly applied to panel 

datasets, it is also widely used for RCS data in the literature (Pischke 2007, Venkataramani et al. 2017, 

Sant’Anna and Zhao 2020). We construct a sample of 1,355,640 NFTs on the two platforms across 147 

days (21 weeks), and each NFT appears once as a unique observation. We then apply the following 

econometric specification as our main model: 
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𝑌𝑖𝑗𝑡 = 𝛽0 + 𝛽1𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 + 𝛽2𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 + 𝛽3𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖 + 𝑣𝑗 + 𝑢𝑡 + ϵ𝑖𝑗𝑡 ,              (1) 

where 𝑖 denotes one NFT, 𝑗 indexes the platform, and 𝑡 represents the day when NFT 𝑖 was created. Each 

𝑖 is associated with one 𝑗 and one 𝑡 only. The main outcome variables of interest include (1) matching 

likelihood (binary) and (2) first-sale price within 30 days, which is log-transformed by ln(first-sale price+1). 

The dummy variable 𝑃𝑜𝑠𝑡𝑡  equals 1 if day 𝑡 occurs after the introduction of lazy minting (i.e., October 18, 

2021), and 0 otherwise. 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  equals 1 if artwork 𝑖  was created on Rarible, and 0 if created on 

Foundation. The treatment effect of the lazy-minting policy is captured by 𝛽1. In addition, we control for 

the sale mechanism to account for the possible effect of different sale types on sale outcomes by adding 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖, which is equal to 1 if creation 𝑖 was listed by the fixed-price sale, and 0 if by auction.8 We 

also control for the digital format of each NFT by a dummy variable 𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖, which equals 1 if artwork 

𝑖 is of the video type, and 0 if it is of the image type. 𝑣𝑗  controls for the platform fixed effects, capturing 

platform time-invariant characteristics that might influence NFT sales (e.g., platform commissions). 𝑢𝑡 

controls for the day fixed effects, allowing us to better isolate the time-specific confounding factors, such 

as cryptocurrency daily price fluctuations and the overall supply/demand dynamics. 𝑃𝑜𝑠𝑡𝑡  and 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  

are included in Specification (1) and their effects have been absorbed by the day fixed effects and platform 

fixed effects, respectively. 𝜖𝑖𝑗𝑡  denotes the error term. Throughout the paper, we cluster the standard errors 

at the day level to account for markets’ dynamics. 

4.2.  Main Results 

We first examine the treatment effect of the lazy-minting policy on the entire market, i.e., including 

gas-minted NFTs and lazy-minted NFTs. We run Specification (1) and report the results in Table 3, 

Columns (1) and (2). The estimated coefficient of the DID variable suggests a negative and significant 

treatment effect of the lazy-minting policy on matching likelihood. Specifically, NFTs created on Rarible 

had an absolute 0.035 lower matching likelihood after the introduction of lazy minting. This translates to a 

decreased rate of 45.5% (0.035/0.077) because the average matching likelihood for Rarible NFTs before 

the treatment is 0.077. The impact of lazy minting on the first-sale price is negative but non-significant. 

We further conduct a subsample analysis of the gas-minted NFTs (i.e., excluding all of the lazy-

minted NFTs in the post-treatment period) to examine the heterogeneous impact of the lazy-minting policy 

on the gas-minting segment using Specification (1). We focus on this subsample because we expect the 

                                                      

8 The two platforms apply the same two types of sale mechanisms. The first type is an auction with a seller/creator-

specified reserved price, which is the minimum amount that the creator is willing to sell an NFT for. All bids must 

meet or exceed the reserved price, and the highest bid wins the auction. The second type is a fixed-price sale or buy-

now sale for which creators list their artworks at fixed prices to allow prospective buyers to acquire the NFTs right 

away. Buyers can still place bids lower than the fixed price, but then they have to wait for the creator to decide on 

whether to accept the highest bid. 
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gas-minting segment to behave differently from the lazy-minting segment as well as the entire market, as 

choosing gas minting can serve as a credible signal of quality because creators who mint relatively high-

quality NFTs would be more willing to pay gas fees up front. Further, with the high-quality signal, gas-

minted NFTs also would be more likely to be appreciated/recognized by buyers. Accordingly, this segment 

should perform better than it did previously, when no such quality-signaling option existed. Table 3, 

Columns (3) and (4), confirm our conjecture. The matching likelihood of gas-minted NFTs on Rarible 

increases by 0.090 after the introduction of lazy minting, which corresponds to a 116.9% increase rate 

(0.090/0.077). Moreover, the first-sale price also exhibits a statistically significant increase rate of 126.5%. 

Compared with the results in Columns (1) and (2), the gas-minting segment is better off after lazy minting 

becomes available. This observation suggests that the quality signaling effect may be of greater salience 

than the market thickness effect for the gas-minting segment.   

Table 3. The Treatment Effect of Lazy-Minting Policy on Matching Efficiency 

 (1) (2) (3) (4) 

Variable Matching 

Likelihood 

First-Sale Price 

(ln) 

Matching 

Likelihood 

First-Sale Price 

(ln) 

Sample Full NFT Sample Sold NFT Sample Gas-Minted NFT 

Sample 

Sold Gas-Minted 

NFT Sample 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.035***(0.009) -0.138 (0.140) 0.090*** (0.012) 1.265*** (0.157) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 0.006*** (0.001) 0.427*** (0.063) 0.155*** (0.009) 0.373*** (0.064) 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖 0.006*** (0.001) 0.100*** (0.031) 0.032*** (0.005) 0.054* (0.029) 

Platform Fixed Effects YES YES YES YES 

Day Fixed Effects YES YES YES YES 

No. of Observations 1,355,640 20,182 75,444 18,679 

No. of Clusters 147 147 147 147 

Adjusted R-squared 0.301 0.148 0.142 0.133 

       Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. 

4.3.  Parallel Trends 

The validity of the DID identification strategy hinges on the parallel-trends assumption (Angrist 

and Pischke 2009). In this context, artworks on Rarible and Foundation should experience similar trends in 

matching efficiency before lazy minting was introduced, making the additional difference in matching 

efficiency between artworks on Rarible and Foundation after the treatment attributable to the introduction 

of lazy minting. We use a relative time model to test whether NFTs created on Rarible and Foundation 

follow parallel trends before the treatment and report the results in Appendix B. All of the pre-treatment 

relative time dummies are statistically insignificant, and there is no clear trend before the treatment, 

suggesting the validity of the parallel-trends assumption.  

5. Mechanisms  

Drawing upon the theories on market thickness and quality signaling, we posit that the impacts of 

the new market growth strategy (i.e., lazy-minting policy) depend on the relative influence of these two 
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countervailing mechanisms.  On the one hand, the introduction of the lazy-minting option allows all creators 

to enter the market without paying the upfront gas fees, potentially attracting NFTs even with a low chance 

to be sold. This directly increases the thickness of the NFT market on the supply side (e.g., as measured by 

the number of creators and artworks). In turn, the increased market thickness would intensify supply-side 

price competition, prompting sellers to lower their asking prices (Tucker and Zhang 2010). 

In addition, a thicker market could influence demand-side behavior. Having too many available 

choices may overwhelm buyers by increasing their cognitive burden when evaluating the sheer number of 

offerings (Iyengar and Lepper 2000, Koulayev 2014, Geva et al. 2019). Buyers may have to examine more 

alternatives before finding a match, exacerbating their market search friction (Li and Netessine 2020). As 

a response to intensified friction, buyers may tend to bid more to capture a potential match. In all, due to 

the intensified friction on both sides of the market, sellers/buyers may receive fewer matches, and it may 

take a longer time for them to achieve a match, leading to overall deteriorated matching efficiency.  

On the other hand, the quality signaling mechanism could have the opposite effect. The co-

existence of the two minting methods enables creators to signal the quality of each artwork. Creators of 

high-quality artwork would have the option to strategically choose gas minting to signal their willingness 

to pay for the upfront gas fee because they believe that their NFT has a higher chance of getting sold to 

recover the minting cost. Therefore, on the supply side, the gas-minting segment would be expected to 

exhibit higher quality, on average, after the treatment. If this holds true, creators would ask for higher prices 

for gas-minted NFTs, and buyers would be willing to place higher bids on these gas-minted assets. 

Accordingly, we would expect the gas-minted NFTs to have a higher sale chance and higher selling prices. 

That is, the quality signaling effect would positively influence matching efficiency for the gas-minting 

submarket. 

Further, the success of the quality signaling mechanism depends upon the existence of a separating 

equilibrium, whereby creators of low-quality artworks cannot adopt gas minting to falsely signal to buyers 

that their artworks are of high quality. Such an outcome is possible when buyers do not rely simply on the 

minting type (chosen by the creator) to determine the value of the NFT. Rather, they use the minting type 

of the artwork as the starting point of their search process to reduce search friction and are able to discern 

between high- and low-quality NFTs once they subsequently inspect the artwork. We thus further establish 

the existence of the separating equilibrium, which is the foundation of an effective quality signaling 

mechanism (Spence 1973). 

These two competing mechanisms have opposing impacts on matching efficiency, and which effect 

would dominate is an empirical question. The main results reported in Table 3 suggest that the market 

thickness effect prevails over the quality signaling effect in the entire market, as reflected by the decrease 

in the average matching likelihood. In contrast, the quality signaling effect dominates the market thickness 
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effect in the gas-minting segment, as manifested by the increase in matching likelihood and first-sale price. 

Next, we provide direct empirical evidence on the existence of these two mechanisms and discuss the 

resultant implications for various stakeholders (i.e., supply side, demand side, and the overall market).  

5.1.  Market Thickness Effect 

Evidence for the Increase in Market Thickness  

We first provide model-free evidence at the platform level to demonstrate the increase in market 

thickness. The results presented in Table 4 illustrate how the introduction of lazy minting affects the average 

number of NFT supplies and creators per week on Rarible. Consistent with our expectation, there was an 

influx of market supplies and participants after lazy minting was introduced, with more than 99% of the 

Rarible NFTs created by lazy minting. To get a better sense of the substantial change in market thickness 

caused by the lazy-minting policy, we visualize the weekly trends of the total number of creations and 

creators on each platform in Appendix C. 

Next, we provide formal empirical evidence to confirm the increase in market thickness and 

quantify the market thickness effect. Specifically, we examine how creators respond to lazy minting in 

terms of their daily number of creations. To do so, we construct a panel dataset at the creator-day level, 

recording how many artworks each creator created each day. We conduct the following analysis: 

Number of Creations𝑘𝑡 = 𝛽0 + 𝛽1𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑘 + 𝑣𝑘 + 𝑢𝑡 + 𝜖𝑘𝑡,                                      (2) 

where k denotes the creator, and 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑘 equals 1 if creator k is from Rarible, the treatment platform. 

𝑃𝑜𝑠𝑡𝑡  equals 1 if day t is after the treatment. The outcome variable of interest is a count measure, 

Number of Creations𝑘𝑡. In this analysis, we add the creator fixed effects 𝑣𝑘  and the day fixed effects 𝑢𝑡. 

𝜖𝑘𝑡 is the idiosyncratic error term. We perform this analysis with two different samples, given that the lazy-

minting policy is likely to change the creator pool: (1) all of the creators who had created at least one NFT, 

and (2) the existing creators who had produced NFTs before the treatment.  

Table 4. Market Thickness Change on Rarible and Foundation 
 Rarible (Treatment Group) Foundation (Control Group) 

 Average No. of 

Gas-minted 

NFTs Per Week 

Average No. 

of Lazy-

minted NFTs 

Per Week 

Average No. of 

Creators of Gas-

minted NFTs 

Per Week 

Average No. of   

Creators of Lazy-

minted NFTs Per 

Week 

Average No. of 

NFTs Per Week 

Average No. of 

Creators Per 

Week 

Before 

Treatment 

3,241 0 1,675 0 2,103 799 

After 

Treatment 

411 106,683 218 14,327 1,868 766 

  

The results presented in Column (1) of Table 5 suggest that, overall, the lazy-minting option 

motivates creators to generate 0.082 more creations each day than they did before. This effect is likely due 

to two forces: (1) lazy minting attracts lots of new creators (specifically 178,179 new creators = 200,451 – 

22,272), and (2) lazy minting enhances those existing creators’ productivity. Table 5, Column (2), further 

confirms the second force: The existing creators on Rarible became more productive by creating 0.029 

additional NFTs per day, on average, than they did during the pre-treatment periods. This suggests that the 
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market across the board became more active in creating NFTs after the lazy-minting policy, giving rise to 

a thicker market. 

Table 5. Market Thickness Increases: Artists Create More 
 (1) (2) 

Variable Number of Creations Number of Creations 

Sample Full Creator Sample Existing Creators  

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑘 0.082*** (0.005) 0.029** (0.012) 

Creator Fixed Effects YES YES 

Day Fixed Effects YES YES 

No. of Observations 29,466,297 3,273,984 

No. of Clusters 200,451 22,272 

Adjusted R-squared 0.059 0.037 

       Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the creator level in parentheses. 

Evidence for Supply-side Response to Market Thickness Increase  

We conjecture that the sharp increase in NFT supply intensifies creators’ price competition, 

weakening their position of commanding higher prices. That is, thriving in a thicker market with a larger 

number of competitors becomes more difficult for creators. We identify evidence of fiercer competition 

from the listing behavior of creators. First, we reuse Specification (1) and replace the dependent variable 

with the minimum asking price (logarithmic) of each NFT during the first 30 days since its creation (or 

before its first sale, if any) to represent creators’ willingness to accept (WTA) a price.9 We expect creators 

to lower their WTA as a response to the intensified competition, to enhance their sale probability. Table 6, 

Column (1), lends support to this statement, indicating a 72.5% (= e-1.290 – 1) decrease in creators’ WTA.  

We next leverage another outcome variable to gauge the level of price competition, i.e., Adjust 

Asking Prices or Not. It is a dummy variable that indicates whether the creator ever adjusted the asking 

price of each NFT during the 30-day sale window (or before the first sale, if any). This variable reflects 

whether creators actively monitor the market dynamics and try to compete with other sellers. Rarible 

charges an additional listing fee (2.5% service fee) up front at the time of any price adjustment. Given the 

lower chances of selling an NFT in a competitive market, creators may not be willing to pay such 

irrecoverable menu costs. Thus, we expect that creators would be less active and less likely to alter their 

asking prices, knowing that the chance to sell NFTs becomes lower in a more competitive market. Table 6, 

Column (2), supports our supposition, demonstrating that creators adjust their asking prices less frequently; 

they would rather keep the first asking price untouched and wait for potential sales than pay more money 

to adjust the prices. 

Our third piece of empirical evidence is that, due to the intensified price competition, creators are 

more inclined to lower, than to increase, the asking price. We compare each adjusted asking price with its 

                                                      

9 Creators’ asking prices include reserved prices in auctions and buy-now prices in fixed-price sales. We use the 

minimum asking prices among all of the listed prices, including the adjusted ones.  
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previous asking price to determine whether the creator increases or reduces the price. We then compute the 

ratio of markdown adjustments, which is calculated by dividing the number of times a creator reduces 

asking prices by the total number of price adjustments for each NFT during the 30-day period (or before its 

first sale, if any). As we expect, Table 6, Column (3), shows that the ratio of markdown adjustments 

increases by 0.053, which translates to an increased rate of 6.80% (0.053/0.780). This result indicates that 

creators mark down their asking prices more frequently than before (conditional on a price change), 

suggesting a higher competition level in a thicker market. 

Finally, the intensified competition may not only lead to changes in creators’ listing behavior, from 

the sale-outcome perspective, but also may result in a longer time for NFTs to be sold (measured by the 

number of days to match since an NFT’s creation). Because more competing alternatives are now available 

in the market, each NFT would get lower market exposure, and, thus, the average number of days taken for 

creators to wait for a match to occur would be extended. As shown in Table 6, Column (4), for each sold 

NFT, the number of days to match increases by 25.1% after the lazy-minting policy. 

Table 6. Intensified Competition on the Supply Side 
 (1) (2) (3) (4) 

Variable Minimum Asking 

Price (ln) 

Adjust Asking Price 

or Not 

The Ratio of 

Markdown 

Adjustments 

Number of Days to 

Match (ln) 

Sample NFT Sample with 

Asking Prices 

NFT Sample with 

Asking Prices 

NFT Sample with 

Adjusted Asking 

Prices 

Sold NFT Sample 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -1.290*** (0.049) -0.238*** (0.011) 0.053*** (0.012) 0.251*** (0.066) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 0.539*** (0.037) -0.061*** (0.005) 0.356*** (0.007) -0.674*** (0.061) 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖  -0.007 (0.036) 0.040*** (0.005) -0.023*** (0.006) 0.069*** (0.019) 

Platform Fixed Effects YES YES YES YES 

Day Fixed Effects YES YES YES YES 

No. of Observations 1,130,233 1,130,233 142,662 20,182 

No. of Clusters 147 147 147 147 

Adjusted R-squared 0.033 0.023 0.242 0.075 

 Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. Some NFTs’ 

sale type is the open-bid auction without any asking prices, and we exclude those NFTs in this analysis. 

 

Evidence for Demand-side Response to Market Thickness Increase  

In a two-sided market, increased market thickness on the supply side tends to be in tandem with an 

increase in search friction on the demand side, i.e., more alternative offerings available for buyers to 

compare and choose from. When this happens, each buyer needs to place more bids to increase the chance 

of securing a match (Hann and Terwiesch 2003, Li and Netessine 2020). To provide evidence for this, we 

investigate how buyers change their bidding behavior, as measured by two variables: (1) total number of 

bids placed each week,10 and (2) average number of bids placed each week to achieve one match, calculated 

                                                      

10 We mark the number of bids as zero if a buyer/bidder did not place any bids in one week. 
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by 
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝐵𝑖𝑑𝑠 𝑃𝑙𝑎𝑐𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑏𝑚𝑒𝑟 𝑜𝑓 𝑀𝑎𝑡𝑐ℎ𝑒𝑠 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 
. We conduct the analysis at the week level rather than at the day level 

to smooth the sparse bidding activities. For the second measure, we remove the zero-bid observations and 

focus only on observations with at least one bid placed in one week (i.e., the numerator is at least 1).11 As 

a result, we build a panel dataset at the buyer-week level and apply Specification (3) for the analysis:  

 𝑙𝑜𝑔(𝑌𝑏𝑡) = 𝛽0 + 𝛽1𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑏 + 𝑣𝑏 + 𝑢𝑡 + 𝜖𝑏𝑡,                                                            (3) 

where b denotes the buyer, and t indexes the bidding week. 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑏  equals 1 if buyer b is from Rarible, 

the treatment platform. 𝑃𝑜𝑠𝑡𝑡 equals 1 if week t is after the treatment. To make the analysis consistent, we 

count only the bids placed within 30 days following the creation of each NFT (or before the first sale, if 

any). We also add the buyer fixed effects 𝑣𝑏 and the time fixed effects 𝑢𝑡. For the second outcome variable, 

if the denominator is 0 at the week level (i.e., no matches occurred), we let the fraction equal the total 

number of bids placed.12 Then, to make a clear distinction between the cases of no match and the cases of 

one match, we control for a dummy variable 𝑀𝑎𝑡𝑐ℎ𝑏𝑡 in Specification (3), indicating whether buyer b 

received at least one match from the bids placed in week t (i.e., whether the denominator is greater than 0 

or equal to 0). The results in Table 7 suggest that, after the lazy-minting policy, buyers generally tend to 

place 8.20% more bids (Column 1). Further, as a result of higher search friction, buyers need to place 33.5% 

more bids, on average, to secure a match in this thicker market (Column 2).13  

Table 7. Larger Search Friction on the Demand Side 
 (1) (2) 

Variable Number of Bids (ln) Number of Bids Per Match (ln) 

Sample Buyer-Week Panel Active Bidding Panel 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑏  0.082*** (0.003) 0.335*** (0.072) 

𝑀𝑎𝑡𝑐ℎ𝑏𝑡 - 0.191*** (0.014) 

Buyer Fixed Effects YES YES 

Week Fixed Effects YES YES 

No. of Observations 281,086 8,883 

No. of Clusters 10,811 2,608 

Adjusted R-squared 0.118 0.328 

Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the buyer level in parentheses. 

 

5.2.  Quality Signaling Effect 

To provide evidence that gas minting indeed serves its quality-signaling purpose, we collect 

evidence to show that the gas-minting segment behaves differently from the entire market in three respects. 

                                                      

11 We remove the zero-bid sample to ensure that buyers are, indeed, searching for potential matches actively. 
12 We also conduct a robustness check by dropping those observations for which the denominator is 0; the results are 

consistent. 
13 In addition to the number of bids and the number of bids per match, we conduct a robustness check by changing the 

outcome variables to (1) total number of unique NFTs that a buyer bids on and (2) average number of NFTs that a 

buyer bids on per match. As expected, the results are consistent with those in Table 7. 
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First, on the supply side, creators would use gas minting only when they are confident in the quality of their 

NFTs and believe that their NFTs could be sold eventually. As a result, gas minting can serve as a credible 

quality signal because gas-minted NFTs should demonstrate a higher level of quality than do average NFTs 

in the entire market. In addition, creators also would place higher valuations on the gas-minted NFTs due 

to the overall higher NFT quality, as manifested by asking for higher prices in the gas-minting segment 

compared to the entire market. Second, on the demand side, buyers should be able to appreciate the quality 

signal by showing higher valuations (i.e., higher bids) on gas-minted NFTs than average NFTs in the entire 

market. In addition, the quality signaling effect of the gas-minting segment may serve as an effective search 

filter for buyers to better target high-quality NFTs and, thus, reduce the search friction for buyers. Third, 

once the supply side and the demand side agree on this quality signal when trading, the signaling advantage 

of gas minting might carry over into the sold/matched NFT segment, which should be the segment of most 

interest to the NFT platform. In other words, we should also expect the sold gas-minted NFTs to exhibit 

better market outcomes than sold average NFTs. 

Evidence for Quality Signal from Supply-Side Self-Selection into Gas Minting 

We argue that, if the quality signal is truly at play, creators would strategically mint high-quality 

NFTs by gas minting and low-quality NFTs by lazy minting, thus forming a two-tier market segmentation. 

In the pre-treatment period, the gas-minting segment contains NFTs of both low and high quality, as gas 

minting was the only option. As a result, we expect the quality of the gas-minting segment to increase after 

the lazy-minting policy, whereas the quality of the entire market would decrease due to the sheer number 

of low-quality NFTs from lazy minting. 

Unlike physical assets and products, there is a lack of a standard way to measure the quality of a 

digital asset such as an NFT. We herein come up with three new measures to proxy an NFT’s quality: (1) 

number of likes received per day, (2) willingness to accept (WTA, as noted above), measured as the 

minimum asking price set by the seller, and (3) price markdowns that captures to what extent the seller is 

willing to lower the price. The first measure reflects buyers’ valuations of the NFT, while the other two 

reflect sellers’ valuations.  

First, we use the average number of likes per day as the quality proxy, computed by 
𝐹𝑖𝑛𝑎𝑙_𝐿𝑖𝑘𝑒𝑠

𝑇𝑒𝑛𝑢𝑟𝑒
.14 

Normalizing the number of likes (into a daily measure) is necessary because NFTs created at different times 

have various time windows to accrue likes. The number of likes (e.g., Facebook likes) is documented as an 

effective and widely used indicator of product quality in online retailing (Li and Wu 2018). Therefore, 

                                                      

14 NFT tenure is defined by how many days have elapsed since the creation day to February 7, 2022 (i.e., the end of 

our sample period). This computation entails an underlying assumption that the arrival rates of likes is generally linear 

over time. We verify that this is truly the case by checking the arrival distribution of new likes across time. 
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taking the number of likes per day as the dependent variable, we rerun Specification (1) under the full 

sample and gas-minting subsample to examine how NFT quality changes in different market segments. 

Table 8, Column (1), shows that the introduction of lazy minting decreases the average NFT quality by 

0.032 likes per day (which corresponds to a 0.032/0.050 = 64.0% decrease in quality). In contrast, Table 8, 

Column (2), shows that there is a significant increase in the number of likes of the gas-minting segment 

(which corresponds to a 0.050/0.050 = 100.0% increase). A comparison of Column (1) with Column (2), 

which shows the opposite directions of the NFT quality change, supports our argument that the gas-minting 

option serves as a valid quality signal and is leveraged by creators who sell high-quality NFTs.  

As a natural consequence of the differentiated quality of NFTs, creators should also ask for different 

prices in the two market segments. We posit that the gas-minting segment would attract high-quality 

creators who have higher valuations on their NFTs and, thus, demand higher sale prices. In contrast, the 

lazy-minting segment would attract a large number of low-valuation creators who are willing to sell their 

artworks at lower prices. In our second measure, we employ creators’ WTA, measured by the logged 

minimum asking price, to gauge creators’ valuation and compare the differences between the gas-minting 

segment and the entire market. The results in Table 8, Columns (3) and (4), confirm our expectations. We 

observe a striking contrast in creators’ WTA: Creators lower their WTA in the entire market by 72.5% 

(e-1.290 – 1), whereas they do not alter their WTA in the gas-minting segment (with a positive but non-

significant coefficient).  

Table 8. Supply-Side Self-Selection into Gas Minting 
 (1) (2) (3) (4) (5) (6)  

Variable Number of Likes  

Per Day 

Minimum  

Asking Price (ln) 

The Ratio of  

Markdown Adjustments 

Sample Full NFT 

Sample 

 Gas-

Minted 

NFT 

Sample 

Full NFT 

Sample with 

Asking 

Prices 

Gas-Minted 

NFT Sample 

with Asking 

Prices 

Full NFT 

Sample with 

Adjusted 

Asking Prices 

Gas-Minted 

NFT Sample 

with Adjusted 

Asking Prices 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.032*** 

(0.002) 

0.050*** 

(0.008) 

-1.290*** 

(0.049) 

0.063 

(0.078) 

0.053*** 

(0.012) 

-0.218*** 

(0.039) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 0.001 

(0.001) 

0.057*** 

(0.003) 

0.539*** 

(0.037) 

0.440*** 

(0.050) 

0.356*** 

(0.007) 

0.209*** 

(0.015) 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖  0.014*** 

(0.001) 

0.029*** 

(0.002) 

-0.007 

(0.036) 

-0.127*** 

(0.023) 

-0.023*** 

(0.006) 

0.002 

(0.007) 

Platform Fixed Effects YES YES YES YES YES YES 

Day Fixed Effects YES YES YES YES YES YES 

No. of Observations 1,355,640 75,444 1,130,233 59,010 142,662 14,463 

No. of Clusters 147 147 147 147 147 147 

Adjusted R-squared 0.003 0.096 0.033 0.079 0.242 0.092 

       Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. 

 

Along the same line, we argue that creators would be less likely to mark down their prices when 

they make a price adjustment for their gas-minted NFTs due to their high valuations. Hence, we construct 



21 

 

  

our third measure as the ratio of markdown price adjustments. As seen in Table 8, Columns (5) and (6), 

creators are 27.9% (0.218/0.780) less likely to make markdown adjustments for gas-minted NFTs (in other 

words, they are more likely to raise their asking prices for this niche gas-minting submarket). In contrast, 

creators tend to lower their NFTs’ listing prices in the entire market due to the predominant competition 

effect. Taken together, this set of results indicates that creators understand and leverage the quality signals 

of gas-minting, thus strategically self-selecting gas minting for higher-quality NFTs with higher valuations. 

Evidence for Quality Signal from Demand-Side Valuation of Gas Minting 

On the demand side, we posit that buyers would appreciate the gas-minting signal because the two-

tier market segmentation helps them to conduct quality screening more efficiently and better distinguish 

high-quality artworks from low-quality ones. Consequently, buyers are expected to exhibit a stronger 

preference for the NFTs in the gas-minting segment after the lazy-minting policy creates the market tier. 

We use the highest/maximum bidding price to capture buyers’ willingness to pay (WTP) for each NFT. We 

rerun Specification (1) and report the results in Table 9, Columns (1) and (2). As seen in the table, buyers 

do not change their WTP significantly in the entire market but significantly raise their WTP on the gas-

minting segment, by 198.1%. This finding provides evidence that buyers can discern the quality signal 

embedded in gas minting and are willing to pay more to purchase a gas-minted NFT. 

Table 9. Demand-Side Appreciation of Gas Minting 
 (1) (2) (3) (4) 

Variable Maximum Bidding Price (ln) Number of Bids (ln)  

Sample Full NFT Sample 

with At Least One 

Bid 

Gas-minted NFT 

Sample with At 

Least One Bid 

Buyer-Week Panel  Buyer-Week Panel, 

Bids on Gas-

minted NFTs 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.093 (0.133) 1.981*** (0.252) 0.082*** (0.003) -0.032*** (0.006) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖  -1.306*** (0.097) -1.319*** (0.162) - - 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖 0.171*** (0.027) 0.112*** (0.023) - - 

Platform Fixed Effects YES YES NO NO 

Day Fixed Effects YES YES NO NO 

Buyer Fixed Effects NO NO YES YES 

Week Fixed Effects NO NO YES YES 

No. of Observations 20,977 16,920 281,086 230,750 

No. of Clusters 147 147 10,811 8,875 

Adjusted R-squared 0.743 0.670 0.118 0.138 

 Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses for Columns 

(1) and (2) and the buyer level in parentheses for Columns (3) and (4). 

 

Further, we expect that buyers’ search costs would be significantly reduced in the gas-minting 

segment, given that the quality signaling mechanism could enable buyers to better distinguish and target 

high-quality NFTs for purchase, leading to a more efficient and less costly search process in the gas-minting 

segment. To test this, we recount the number of bids placed by each buyer, particularly on those gas-minted 

NFTs, and rerun Specification (3). As seen in Table 9, Column (4), buyers, on average, bid 3.20% fewer 

bids on gas-minted NFTs after the lazy-minting policy, suggesting a significant reduction in search friction 
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for buyers who look for NFTs in the gas-minting segment. In contrast, buyers experience intensified search 

friction in the overall market due to the large number of lazy-minted NFTs, as shown in Table 9, Column 

(3).15 

Evidence for the Separating Equilibrium: A Necessary Condition for Valid Quality Signals 

One prerequisite for a valid quality signal is that no one has the incentive to fake quality type. That 

is, the signal should truly reveal the sender’s quality type, and the signal observers can “separate” high-

quality from low-quality actors based on the observable signal, resulting in a valid separating equilibrium 

(Spence 1973). In our context, if gas minting can serve as a valid quality signal and a separating equilibrium 

exists, buyers are expected to be able to see through the mimicking behavior of low-quality creators who 

adopt gas minting to imitate high-quality ones. If this is indeed the case, low-quality creators should see no 

improvement in matching outcomes when leveraging gas minting, so they would not have an incentive to 

choose gas minting and pretend to be of high quality. In other words, the gas-minting quality signal would 

work only for high-quality NFTs created by high-quality creators but not for low-quality NFTs created by 

low-quality creators, thereby disincentivizing low-quality creators to use gas minting and separating the 

two segments of creators.  

To support the above arguments, we test for the presence of the underlying separating equilibrium 

of the gas-minting signal. We first define the quality type of an NFT creator. We focus on the existing 

creators who created NFTs before the lazy-minting policy and determine each creator’s quality type based 

on his or her past selling experiences. Specifically, we count the total number of NFTs that a creator sold 

before the lazy-minting policy. We find that 61% of the creators never sold any of their artworks (i.e., no 

selling experience), and we define these creators and their NFTs as a low-quality type. In contrast, the top 

25% of creators sold at least four of their artworks before the lazy-minting policy, and we regard them and 

their NFTs as a high-quality type.16   

Next, we conduct our analysis using Specification (1) within the gas-minting sample, which is 

further split into two subsamples based on the two quality types. The outcome variables of interest are 

matching likelihood and first-sale price. We examine whether and how the signal of gas minting works 

differently for NFTs and creators of differentiated quality. We add creator-fixed effects in this analysis to 

control for the time-invariant characteristics of creators.  

The results are presented in Table 10. We find that low-quality creators do not reap a significantly 

higher matching likelihood or higher sale prices even when using gas minting after the policy change, 

                                                      

15 A similar pattern is observed when we examine: (1) number of bids per match and (2) number of NFTs that a buyer 

bids on, which are the dependent variables we used in Table 7.  
16 We also vary the cutoffs for determining the high-quality type (i.e., three selling experiences, top 20% with six 

selling experiences, and top 10% with 19 selling experiences), and all the results are consistent. 
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whereas high-quality creators can sell their artworks more easily (with a 0.145 increase in matching 

likelihood) at higher prices (with a 37.0% increase in first-sale price) through leveraging gas minting. The 

findings suggest that the gas-minting signal is effective for only high-quality creators and that low-quality 

creators are not able to deceive buyers simply by adopting gas minting. Considering the high costs of 

sending the signal of gas minting (albeit without a significant increase in returns), we expect that rational 

low-quality creators do not have an incentive to self-select into the gas-minting segment in the long term, 

whereas high-quality creators do, thus forming a tiered market structure with separating equilibrium. This 

result echoes the advertising literature, that high-quality sellers are more likely to make upfront investments 

in advertising to signal their quality, whereas low-quality sellers do not adopt this “money-burning” strategy 

because their future incomes would not be able to cover the upfront advertising expenditure (Nelson 1974, 

Kirmani and Rao 2000, Joshi and Musalem 2021). 

Table 10. The Separating Equilibrium: The Heterogeneous Effects of Gas-Minting Signal on Low-

Quality Creators and High-Quality Creators 
 (1) (2) (3) (4) 

Quality Type Low-Quality Existing Creators High-Quality Existing Creators 

Variable Matching Likelihood First-Sale Price 

(ln) 

Matching Likelihood First-Sale Price 

(ln) 

Sample Gas-minted NFT Sample  Gas-minted NFT Sample  

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  0.013 (0.019) 0.161 (0.136) 0.145*** (0.043) 0.370** (0.154) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 0.031*** (0.007) 0.117 (0.084) 0.380*** (0.032) 0.002 (0.044) 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖 0.012 (0.010) 0.122** (0.054) 0.066*** (0.015) 0.120*** (0.029) 

Creator Fixed Effects YES YES YES YES 

Day Fixed Effects YES YES YES YES 

No. of Observations 20,562 1,497 16,485 7,919 

No. of Clusters 147 141 147 147 

Adjusted R-squared 0.465 0.824 0.397 0.783 

Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. 

6. Robustness Checks  

We carry out a series of robustness checks that pertain to (1) identification of the impacts of the 

lazy-minting policy and (2) sensitivity of our econometric analyses. For reference, we summarize these 

analyses in Table 11. The findings of these robustness checks are consistent with the main results, 

suggesting that our main results are unlikely to be biased. We omit the details of these robustness checks 

due to the page limitation. 

Table 11. Summary of the Robustness Checks 

Category Concerns Solutions Assumption/Target 

Identification 

 

 

 

 

 

Foundation and Rarible 

might attract different 

creators and NFTs 

Use coarsened exact 

matching to create a 

matched NFT sample  

To resolve self-

selection and make 

NFTs more 

comparable 

Unobserved confounding 

events before the policy 

change may pollute the 

 (1) Conduct the 

placebo test by 

assigning three fake 

To test the no-

anticipation 

assumption 
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identification, e.g., users’ 

anticipations of the policy 

change 

treatments; (2) remove 

the last month’s data 

right before the policy  

The two-way fixed effects 

DID model might not be 

adequate to identify the 

treatment effect precisely 

when the effects are 

heterogeneous 

Use a nascent 

heterogeneity-robust 

DID estimator 

(DID_M) developed by 

De Chaisemartin and 

D’Haultfoeuille (2020) 

To relax the 

homogeneity 

treatment assumption 

and test the parallel-

trends assumption 

Unobserved confounding 

events after the policy 

change may lead to the 

observed results 

 (1) Shorten the post-

treatment periods; (2) 

further employ DID_M 

To rule out 

confounding events 

after the policy change 

DID estimation with 

covariates might have 

model misspecification 

problems (Sant’Anna and 

Zhao 2020)  

 (1) Remove the two 

covariates from the 

specifications; (2) use 

the doubly robust DID 

estimator  

To test homogeneity 

treatment assumption 

in covariates and 

resolve model 

misspecification  

The serial correlation in the 

outcome variable may lead 

to inconsistent and biased 

standard errors 

Employ the random 

implementation test to 

shuffle the treatment 

indicator for 1,000 

replications 

To show that our 

results are not driven 

by false significance 

that results from serial 

correlations 

Sensitivity 

analyses 

 

 

 

 

 

 

The time window to 

identify the first sale (i.e., 

30 days) might seem 

arbitrary 

Experiment with three 

alternative sale time 

windows of 14 days, 60 

days, and no restrictions 

To show that our 

results are not 

sensitive to specific 

models or parameter 

selections 

The linear probability 

model may not be the most 

proper model for the 

outcome variable, matching 

likelihood 

Employ the logit and 

probit models to show 

the robustness of the 

main results 

To show that our 

results are not 

sensitive to specific 

models or parameter 

selections 

The first-sale price of lazy-

minted NFTs may not be 

comparable with that of 

gas-minted NFTs, due to 

the waived upfront gas 

costs 

For each sold gas-

minted NFT, adjust its 

first-sale price by 

deducting its upfront 

gas-minting fee from 

the first-sale price 

To show that our 

results are not 

sensitive to specific 

models or parameter 

selections 

 

7. Discussion and Conclusion  

7.1.  Lazy Minting and Platform-level Performance 

We have shown how the introduction of lazy minting influences different NFT segments differently. 

We then take the platform as the stakeholder and examine whether the new policy benefits the platform in 

terms of the total number of sales and revenues. This is equivalent to investigating whether the efficiency 

gain from the gas-minting segment recoups the efficiency loss from the lazy-minting segment. Although 

the presence of the lazy minting option lowers the average matching likelihood, the platform may still 

benefit from the policy due to the larger market base brought by lazy minting. In addition, the platform may 
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reap higher revenues due to higher sale prices and improved matching efficiency in the gas-minting segment. 

To provide evidence for these conjectures, we aggregate the data to a platform-day level panel across 147 

days and investigate the impact of the lazy-minting policy on the overall platform matching performance, 

using the following specification:  

𝑌𝑗𝑡 = 𝛽0 + 𝛽1𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑗 + 𝑣𝑗 + 𝑢𝑡 + 𝜖𝑗𝑡 , (4) 

where 𝑌𝑗𝑡  represents the platform-level performance, including the matching ratio, total number of 

matches/sales, and total commission revenue, calculated by the commission fees received from the first 

sales of all the NFTs created in day t on platform j, restricted to a future 30-day sale time window until day 

t+30. We retain the platform fixed effects 𝑣𝑗 and day fixed effects 𝑢𝑡 in the model.  

The results presented in Table 12 suggest that, although the matching ratio decreases (Column (1)), 

the Rarible platform actually receives 14.266 more successful matches per day (which corresponds to a 

14.266/35.429 = 40.3% increase) and 48.8% higher commission revenue after introducing the lazy-minting 

policy (Columns (2) and (3)). These findings show that it is indeed profitable for platforms to grow the 

market by leveraging the lazy-minting policy. Although a higher percentage of NFTs cannot be sold, the 

absolute number of sales and total revenues actually increase.17  

Table 12. The Treatment Effect of Lazy-Minting Policy on Platform Performance 
 (1) (2) (3) 

Variable Matching Ratio Total Number of Matches Revenue (ln) 

Sample Platform-Level Panel Platform-Level Panel Platform-Level Panel 

𝑃𝑜𝑠𝑡𝑡 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑗 -0.038*** (0.009) 14.266*** (5.425) 0.488*** (0.178) 

Platform Fixed Effects YES YES YES 

Day Fixed Effects YES YES YES 

No. of Observations 294 294 294 

No. of Clusters 147 147 147 

Adjusted R-squared 0.951 0.780 0.787 

Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. 

 

7.2.  Theoretical Implications 

Through an opt-in quality-signaling design, we study a new market growth strategy that can 

preserve matching efficiency while growing markets. To the best of our knowledge, this is the first study 

that explicitly connects market-entry mechanisms with a quality-signaling design. Although an extensive 

body of research has examined various quality signals (Kirmani and Rao 2000, Dimoka et al. 2012, Horton 

et al. 2021), little is known about the role of quality signaling in sparking and sustaining the growth of 

platforms. Our study thus contributes to the current knowledge by connecting the two streams of literature 

on market growth and quality signaling, demonstrating the efficacy of quality signaling in ensuring 

                                                      

17 We also find support for the parallel-trends assumption for this analysis. The results are robust when we identify 

sales by alternative sale time windows (i.e., 14 days, 60 days, and no restrictions; results available upon request). 
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matching efficiency while enlarging the market size. Many online markets allow their suppliers to 

optionally adopt features such as free shipping, free returns, warranties to consumers, and so forth. These 

features allow suppliers to differentiate themselves from their competitors. The implications of these 

features, however, in serving as a good quality signal toward growing the platform’s market size are not 

well understood. In this sense, our findings highlight the potential value of optional quality-signaling 

features designed for suppliers that can aid in rapid market scaling for platforms.  

Further, our findings suggest that a thicker and denser market does not automatically degrade 

matching efficiency, which stands in contrast to the previous literature that typically documents that market 

thickness hurts matching efficiency due to accentuated search frictions and choice overload (Roth 2008, 

Geva et al. 2019, Li and Netessine 2020). In the paper most related to our work, Geva et al. (2019) study a 

platform entry problem and find that the inflow of low-quality campaigns significantly increases market 

thickness, which reduces individual campaign performance. Our finding that high matching efficiency can 

co-exist with market thickness, as shown in the gas-minting segment of the NFT market, is in contrast to 

the conventional wisdom that market thickness and congestion typically lead to deteriorated matching 

outcomes (Boudreau 2012, Geva et al. 2019, Li and Netessine 2020).  

Finally, our study contributes to the signaling literature by empirically establishing the existence 

of the separating equilibrium (Horton et al. 2021). Signaling-theory studies have examined a variety of 

quality signals, albeit with little attention to how signals might create separating equilibrium (Bergh et al. 

2014), or they predominantly rely on abstract analytical models to build separating equilibrium without 

much empirical evidence to show its actual presence (Zhang et al. 2022). Our study addresses this gap in 

the literature by building on the critical concept of separating equilibrium in the signaling literature and 

empirically proving its presence. Our analysis presents a research opportunity for future studies to 

empirically validate the separating equilibrium using observational or experimental data. 

7.3.  Managerial Implications 

The new market growth strategy presented in this paper may be a preferable solution to various 

two-sided platforms that attempt to scale up market sizes. For example, e-commerce platforms can allow 

third-party sellers to enter freely without setting any requirements to increase market size and, at the same 

time, allow sellers to determine whether to offer premium services (e.g., free shipping; hassle-free return; 

qualified certifications, such as Amazon’s prime seller badge) as credible quality signals. Similar practices 

can be applied to online labor platforms (e.g., all workers can enter freely but may self-select to pay a 

platform premium fee to indicate high working capability), online dating platforms (e.g., self-select to get 

identities verified), and user-generated content platforms (e.g., self-select to pay an upgrade fee to get higher 

exposure of contents), among others. In addition, compared to existing matching-enhancing methods (e.g., 

product reviews; recommendation systems; quality certificates), the opt-in quality signaling design, 
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imposed on the supply side, can be more viable for emerging platforms that face the cold-start problem of 

short histories, or specific platforms that sell unique and tailor-made products or services (e.g., art markets). 

Overall, our paper offers insight into solving a common dilemma for different types of two-sided platforms.  

For sellers, we show the power of quality signaling in creating market segments and facilitating 

matches. This provides implications for sellers on how they can survive in a crowded market. High-quality 

sellers, to achieve better market performance, should strive to improve their quality and then highlight 

(signal) their quality. For low-quality sellers, it is best not to mimic high-quality users’ behavior by adopting 

the quality signal because, in a tiered market with an established separating equilibrium, this mimicking 

behavior would not work. 

Finally, our paper implies that buyers can rely on the tiered market segmentation formed by the 

quality signaling mechanism to search for their desired products. Specifically, buyers who care about 

quality should focus on the high-end seller segment that signals high quality by incurring an upfront cost 

before earning any revenue.  

7.4.  Concluding Remarks 

A pitfall of the widely believed GBF strategy for growing platform markets is that the strategy may 

compromise matching efficiency and undermine the quality of markets. In this paper, we identify and 

investigate a new market growth strategy in the NFT market, namely the lazy-minting policy, which 

ameliorates the GBF strategy by killing two birds with one stone: growing the market scale while 

maintaining matching efficiency. We unravel two competing mechanisms of the new growth strategy, i.e., 

market thickness effect and quality signaling effect, and leverage the policy change of lazy minting in a 

leading NFT marketplace—Rarible. We find that, although the introduction of the lazy-minting policy 

decreases the average matching likelihood (attributed to the predominance of the market thickness effect), 

it benefits the gas-minting segment with improved market quality, higher matching likelihood, and higher 

sale prices (attributed to the prevailing effect of quality signaling by adopting gas minting). Moreover, we 

find that the opt-in quality signaling design helps the market to separate creators of differentiated quality 

and, thus, establishes a tiered market equilibrium by showing that the gas-minting signal works for high-

quality creators but not for low-quality creators. Overall, the efficiency gain from quality signaling 

surpasses the efficiency loss from market thickness, improving overall market performance by increasing 

the total number of transactions and revenues. As such, our study proves the effectiveness of the new market 

growth strategy and provides several theoretical and practical implications. 

This study provides avenues for future research. First, the measurement of NFT quality (the number 

of likes per day) may need to be further improved. As the quality of each artwork can be subjective, and 

the evaluation usually involves potential information asymmetries between NFT creators and researchers, 

labeling each artwork as high quality or low quality is not a doable task and, thus, is beyond the scope of 
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our study. To achieve a more precise measure of quality, we advocate that NFT markets can provide a 

public standard to evaluate each NFT’s quality (e.g., the rarity and scarcity of NFTs) or create opportunities 

for NFT creators to publicly assess each other’s NFT quality and disclose these data on quality for future 

research. Second, the new market growth strategy, i.e., the lazy-minting policy, also may have impacts on 

the secondary resale market. Future research can examine how lazy minting affects product resales for 

buyers and whether the quality signaling effect still plays a significant role during resales in the secondary 

market. Finally, although this study focuses mainly on platform-level designs and market-level matching 

outcomes, it can be extended to investigate the impacts on the behaviors of individual creators or buyers.  
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Appendix A: NFT Marketplace Ranking 

Figure A1 reports the ranking of Ethereum NFT markets from Dappradar.com, which is one of the most well-

known websites for NFT discovery, statistics tracking, and NFT ranking. As we can see from Figure A1, Foundation 

is the most similar platform to Rarible, with regard to their market share and the number of active trader accounts. 

This ranking statistic is one reason for us to choose the Foundation platform as the control group. The other reason is 
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that Foundation kept using gas minting during our whole observation period, enabling it to serve as a clean control 

group in the DID estimation. 

 
(a) NFT Marketplace Ranking by the Number of Traders 

 
(b) NFT Marketplace Ranking by Total Market Volume 

Figure A1. NFT Marketplace Ranking from Dappradar.com 

 

Appendix B: Parallel-Trends Assumption and The Relative Time Model 

To test the parallel-trends assumption, we modify Specification (1) by replacing the DID interaction term 

with decomposed weekly time leads and lags (Burtch et al. 2018, Wang and Overby 2022). We create the relative time 

dummies at the week level rather than the day level to smooth the fluctuations in the NFT markets. Specifically, we 

decompose the periods in the last five pre-treatment weeks and those in the first five post-treatment weeks into a set 

of weekly relative time dummies. To cover the entire period, we collapse all the pre-treatment periods from the 

beginning (i.e., August 16th, 2021) through five weeks prior to the treatment into one dummy 𝑃𝑟𝑒𝑡
−6 (which subsumes 

four pre-treatment weeks), and all the post-treatment periods beyond five weeks post-treatment into another dummy 

𝑃𝑜𝑠𝑡𝑡
6 (which subsumes seven post-treatment weeks). The underlying working assumption is that the periods five 

weeks prior to the treatment should not influence the post-treatment results too much, and the periods five weeks after 

the treatment should have reached a constant and stable treatment effect. We treat 𝑃𝑟𝑒𝑡
−1  as the reference baseline 

because we might see an immediate treatment effect in 𝑃𝑜𝑠𝑡𝑡
1. The final form is as follows: 

𝑌𝑖𝑗𝑡 = 𝛽0 + 𝛽−6𝑃𝑟𝑒𝑡
−6 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 + ∑ 𝛽𝜏

−2

𝜏=−5

𝑃𝑟𝑒𝑡
𝜏 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 + ∑ 𝛽𝜏

5

𝜏=1

𝑃𝑜𝑠𝑡𝑡
𝜏 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗

+ 𝛽6 𝑃𝑜𝑠𝑡𝑡
6 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 + 𝛽7𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 + 𝛽8𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖  + 𝑣𝑗 + 𝑢𝑡 + 𝜖𝑖𝑗𝑡 ,       (B1)    

where τ indexes the week number, 𝑃𝑟𝑒𝑡
𝜏 denotes if creation day t is τ weeks prior to the treatment, and 𝑃𝑜𝑠𝑡𝑡

𝜏 denotes 

if creation day t is τ weeks after the treatment. 𝑃𝑜𝑠𝑡𝑡
6

 is the collapsed time dummy, representing if day t is in the sixth 

week or any subsequent weeks following the treatment (similar interpretation for 𝑃𝑟𝑒𝑡
−6). Accordingly, 𝛽6 estimates 

the average treatment effect for the last seven weeks in the post-treatment periods. 
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As shown in Table B1, all the pre-treatment time dummies are statistically insignificant, suggesting no 

significant pre-treatment difference in matching outcomes between the two platforms, i.e., the two markets exhibited 

similar fluctuations before lazy minting was introduced. In addition, there is no clear descending or ascending trend 

as reflected by the coefficients of the pre-treatment relative time dummies. Hence, the parallel-trends assumption holds, 

and Foundation could serve as a valid control group. Also, using the decomposed week dummies, we can observe 

consistent treatment effects in the post-treatment periods.  

 

Table B1. Parallel Trends and The Relative Time Model 

Variable Matching 

Likelihood 

First-Sale Price 

(ln) 

Matching 

Likelihood 

First-Sale Price  

(ln) 

Sample Full NFT Sample Sold NFT Sample Gas-Minted NFT 

Sample 

Sold Gas-Minted 

NFT Sample 

𝑃𝑟𝑒𝑡
−6 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  0.006 (0.022) -0.396 (0.260) 0.019 (0.022) -0.411 (0.262) 

𝑃𝑟𝑒𝑡
−5 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  0.019 (0.022) -0.041 (0.392) 0.025 (0.022) -0.051 (0.396) 

𝑃𝑟𝑒𝑡
−4 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.038 (0.025) -0.272 (0.309) -0.040 (0.024) -0.277 (0.309) 

𝑃𝑟𝑒𝑡
−3 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.014 (0.033) -0.368 (0.364) -0.013 (0.033) -0.381 (0.365) 

𝑃𝑟𝑒𝑡
−2 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.026 (0.026) 0.025 (0.318) -0.032 (0.025) 0.021 (0.319) 

𝑃𝑟𝑒𝑡
−1 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  baseline 

𝑃𝑜𝑠𝑡𝑡
1 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗  -0.062** (0.025) -0.668* (0.393) 0.028 (0.023) -0.338 (0.484) 

𝑃𝑜𝑠𝑡𝑡
2 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.129*** (0.041) -0.399 (0.353) -0.062 (0.060) 0.684 (0.427) 

𝑃𝑜𝑠𝑡𝑡
3 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.046 (0.029) -0.666 (0.457) 0.051 (0.034) -0.354 (0.943) 

𝑃𝑜𝑠𝑡𝑡
4 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.056** (0.026) -0.069 (0.399) 0.099*** (0.031) 0.928** (0.388) 

𝑃𝑜𝑠𝑡𝑡
5 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.046** (0.022) 0.226 (0.414) 0.091** (0.042) 1.544*** (0.314) 

𝑃𝑜𝑠𝑡𝑡
6 × 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑖𝑗 -0.020 (0.021) -0.474* (0.270) 0.121*** (0.023) 1.179*** (0.260) 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑎𝑙𝑒𝑖 0.006*** (0.001) 0.418*** (0.064) 0.156*** (0.009) 0.362*** (0.066) 

𝑁𝐹𝑇 𝑇𝑦𝑝𝑒𝑖 0.006*** (0.001) 0.101*** (0.031) 0.033*** (0.005) 0.048* (0.028) 

Platform Fixed Effects YES YES YES YES 

Day Fixed Effects YES YES YES YES 

No. of Observations 1,355,640 20,182 75,444 18,679 

No. of Clusters 147 147 147 147 

Adjusted R-squared 0.302 0.151 0.143 0.140 

     Notes. *p<0.1, **p<0.05, ***p<0.01. Robust standard errors are clustered at the day level in parentheses. 

 

Appendix C: Market Thickness Change 

Note: The vertical line represents the time point when the lazy-minting policy was introduced on Rarible. 

 
                            (a) Total Number of Creations                (b) Total Number of Creators  

                 Figure C1. Market Thickness Change: The Total Number of Creations/Creators by Week 
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