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Abstract

A key issue for the design of platforms is how much discoverability to enable. Some
platforms are primarily aimed at providing tools for suppliers to serve their existing
buyers, and offer no or limited ability for buyers to discover new sellers or content
(e.g. Shopify, Substack, Teachable). Others are buyer-focused, offering search tools for
buyers to discover the most suitable suppliers or content (Amazon, Medium, Udemy).
We study what drives a platform’s choice between these two extremes.

1 Introduction

A key issue for the design of platforms is how much discoverability to enable. Some

platforms are primarily aimed at providing tools for sellers to serve their existing buyers,

and offer no or limited ability for buyers to discover new sellers or content providers they did

not know about (e.g. Shopify, Substack, Teachable). Other platforms, in addition to seller

tools, offer search tools and recommendations that make it easier for buyers to discover new

sellers or content providers (Amazon, Medium, Udemy).

We study a platform’s optimal choice of how much it wants to enable such discoverability.

Enabling more discoverability generates a fundamental tradeoff for platforms. On the one

hand, it creates more transactions by inducing buyers to purchase from new sellers, thereby

increasing the platform’s revenue for any given transaction fee it sets. This can also poten-

tially increase the transaction fees sellers are willing to pay because it allows them to be

found by new buyers. On the other hand, it also commoditizes sellers, by making it easier

for a seller’s a priori captive buyers to find and purchase from other sellers. This means some

sellers may be reluctant to participate on platforms that enable too much discoverability,
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potentially decreasing the transaction fees sellers are willing to pay. Indeed, it is this fear

of commoditization at the hands of large platforms that has created an opportunity for new

platforms to emerge that promise to only enable limited discoverability in order to attract

sellers.

To analyze this tradeoff, we build a model in which a platform attracts sellers, each

of whom brings some initially captive buyers. By its design choices (e.g. how easy it is for

buyers to search and compare across the listed sellers), the platform determines what fraction

of these buyers see other sellers that are also participating on the platform. We find that the

optimal extent of discoverability is higher when (i) sellers’ products are less substitutable,

(ii) the tools the platform offers to sellers are more valuable, (iii) the number of potential

sellers that can be brought onto the platform is higher, (iv) sellers are less asymmetric in

terms of the number of buyers they bring to the platform, and (v) the platform has a larger

installed base of buyers.

To help fix ideas, it is useful to briefly describe a few examples:

� Shopify competes with Amazon.com for attracting third-party e-commerce sellers. On

Amazon.com, sellers are exposed to intense competition with a large number of other

sellers, which the buyers can easily compare against each other and sort by price. By

contrast, Shopify has been very deliberate in not creating a similar marketplace that

enables discovery for buyers, and emphasizing to sellers that they can maintain full

control over their buyers and that they would not be “shopped around” to other sellers.

� Both Medium and Substack are platforms connecting independent writers with readers.

Medium is explicitly focused on making it easier for readers to discover posts and

writers. By contrast, Substack is primarily focused on providing writers the tools

they need to create and manage newsletters: each author must build their own reader

audience, without much (if any) help from Substack. Recently, Substack has created

a centralized website where readers can bookmark posts and authors they like, and

potentially discover new ones. However, most authors still obtain the majority of their

audience through their own efforts (e.g. social media, etc.).

� Both Teachable and Udemy are platforms connecting instructors that offer courses on

a wide range of topics with learners. Udemy is essentially a version of the Amazon

marketplace for online courses, where learners can browse and discover instructors

and courses, complete with a recommendation system based on the learners’ interests

and courses they have previously taken. By contrast, Teachable is much closer to the

Shopify model: it started off by solely providing instructors the tools they needed

to offer their courses online, without any marketplace enabling discovery of courses
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for learners. In 2019, Teachable launched Discover, a new dedicated sub-domain,

created for students to browse, preview or enroll in courses from Teachable instructors.

Teachable instructors opt in to appear on the discovery site. Importantly, Teachable

goes out of its way to make it clear to instructors that Discover is not a full-fledged

marketplace (like Udemy and others) which commoditizes instructors.1

� Doordash, Grubhub and Uber Eats offer online food delivery marketplaces where con-

sumers can search and discover listed restaurants to order from. By contrast, Olo and

Toast only offer software tools for restaurants, which allow them to accept and fulfill

online orders from their own websites.

Motivated by these contrasting examples, after fully analyzing the choice of discover-

ability by a monopoly platform, we also explore what happens when there are compet-

ing platforms, showing that competition between symmetric platforms reduces the level of

discoverability platforms choose. Moreover, we illustrate how discoverability can be an en-

dogenous way for otherwise identical platforms to differentiate, with one platform offering

maximum discoverability and attracting smaller sellers, and the rival platform choosing no

discoverability to attract larger sellers.

1.1 Related literature

The paper fits within the burgenoning literature on platform design, with other authors

exploring how platforms optimally design consumer search (Hagiu and Jullien, 2011; White,

2013; Dukes and Liu, 2016; Jiang and Zou, 2020; and Zhong, 2023), how many or which

sellers are allowed to participate (Casner, 2020), their product recommendations (Barach et

al, 2020; Zhou and Zou, 2023), and their reputation system (Shi et al, 2023). Teh (2022)

explores how such optimal design choices vary with different platform business models and

how this can lead to misalignment with welfare objectives (see also Choi and Jeon, 2023,

who consider how platform design is biased in ad-funded platforms). Hagiu and Wright

(2023) explore how different design choices can be used by platforms to limit leakage or

disintermediation. In terms of this literature, our paper is closest to those works focused on

search design, and in particular papers that show that the platform may want to add frictions

to consumer search in order to relax seller competition, thereby allowing the platform to

extract more revenue from sellers. Our focus is on how the extent of discoverability affects

sellers’ participation incentives given sellers can always sell to their buyers directly without

the platform. This contrasts with other papers in this literature, which typically take seller

1See https://teachable.com/blog/discover-by-teachable
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participation as exogenously given. Another distinction is that in our setting, each seller

brings its own buyers, so discovery arises from one seller’s buyers discovering another seller,

rather than the platform’s buyers discovering the sellers. As a result, and in constrast to

the existing literature, the platform in our setting may optimally choose no discoverability

at all. This is despite the fact we focus on the platform charging per-transaction fees, which

in standard settings imply the platform will choose its design to maximize the volume of

transactions, for example, by making search as easy as possible (see Teh, 2022).

Our paper is also related to the four key strategies that can be used to turn product firms

into platforms (Hagiu and Altman, 2017). Previous work has only analyzed one of these

strategies formally. Specifically, Hagiu et al. 2020, explore the possibility of a multiproduct

firm becoming a platform by inviting rivals to sell products or services on top of its core

product. The current paper can be seen as a first attempt at considering one of the other key

strategies proposed in Hagiu and Altman, which is reaching out to customers’ customers.

Here the original customers of the “product” firm are sellers, which it sells software tools

to, and their customers are the initially captive buyers they bring. By offering discovery for

these buyers, the firm creates network effects and turns itself into a proper platform that

helps buyers discover new sellers.

Finally, our paper is part of an emerging literature that focuses on the downsides of

participating on platforms from the perspective of sellers. In our paper, the downside is

a form of commoditization: sellers bring their buyers to the platform, which then allows

those buyers to discover other, possibly competing, sellers. In a sense, by participating on

platforms, sellers can lose control over their relationship with their own buyers, something

which has been widely discussed in the popular press (see, Hagiu and Wright, 2021 for

a discussion). Other related work exploring the downsides of participating on platforms

include recent work on possible imitation and self-preferencing by hybrid marketplaces like

those offered by Amazon and Apple (Anderson and Bedre-Defolie, 2022; Hagiu et al., 2022;

and Madsen and Vellodi, 2022). In a similar vein, Mayya and Li (2022) show empirically

how participating on food-delivery platforms may commoditize restaurants.

2 Baseline model with two sellers

We start with a simple baseline model, which we will later extend in various directions.

Suppose there are two symmetric sellers, each of which sells a product that buyers value at

v. Both sellers have marginal cost c < v. Each seller i = 1, 2 starts with a measure λ of

captive buyers (buyers who only know about the seller). So all buyers are initially captive,

half belonging to each seller.
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The platform offers participating sellers B2B tools (which we will call “tools” for brevity)

which is captured by a reduction in sellers’ marginal costs by b. This could be software

and other infrastructure that more efficiently handles the building of a website, payments,

delivery, customer service, record-keeping and receipts, and so on. If this is the only thing

the platform does the platform can be thought of as just a SaaS (software-as-a-service)

company. The platform charges each seller a non-negative per transaction fee of f , so the

effective marginal cost for a seller on the platform is c + f − b. If both sellers participate,

the platform can choose to make a fraction x of buyers aware of both sellers (i.e. make them

discover the seller they were not initially aware of). With probability θ a buyer who is aware

of both sellers views their products as perfect substitutes, while with probability 1 − θ a

buyer views them as independent (and therefore buys from both if they are aware of both).

The timing is natural. In period 1 the platform chooses its level of discoverability x and

transaction fee f .2 In period 2, each seller decides whether to join the platform. Then in

period 3, each seller sets its price, and demands and payoffs are realized.

For certain choices of f and x, it is possible that there are multiple equilibria in sellers’

decisions in period 2, one in which all sellers join given they expect the other sellers to join,

and one where no sellers join given they expect the other sellers not to join. In such cases, we

select the equilibrium in which all sellers join, which is sometimes referred to as “favorable

beliefs” on the part of sellers.3

Some comments about our modelling assumptions are in order. First, to interpret x, one

could think of a more elaborate setting in which buyers are heterogeneous in their search

cost. There is some cutoff level such that all buyers with search cost below the cutoff discover

the rival seller (this is the fraction x) and all those with search cost above the cutoff (i.e.

1− x of buyers) do not search, i.e. they just know their original seller.4 In this context, one

can interpret the platform’s choice of x as representing its ability to shift everyone’s search

cost up or down by its design of the search process. Examples of a platform’s design choices

that affect x include how prominent they make buyer search, the ability to search based on

price or to do side-by-side comparisons, and whether the platform recommends a particular

seller to buyers based on price and other factors (e.g. Amazon’s buybox).

Second, there are two features of the model that are necessary to obtain an interest-

2For a monopoly platform, it is irrelevant whether discoverability x is set before or after (or the same time
as) its transaction fee f . The timing of these decisions will matter when we consider competing platforms.

3In Section A.1 of the Online Appendix we redo the baseline analysis in case sellers hold “unfavorable
beliefs,” so that they coordinate on the equilibrium in which none of them join whenever that equilibrium
exists. As we show there, while the platform’s profit is lower in the face of unfavorable beliefs, the baseline
characterization of optimal discoverability remains unchanged.

4When there are more than two sellers, this same interpretation works if we consider buyers engaging in
simultaneous search, so they search all sellers provided their search cost is below some cutoff.

5



ing tradeoff when choosing discoverability. Specifically, discoverability must result in more

transactions in total, but it must also make some transactions contested. Our stark formu-

lation of buyer demand has these features: with some probability, buyers are interested in

both products, so view them as independent, and with the complementary probability they

are just interested in one product, so they view competing products as identical.A more

realistic but less tractable setting might have buyers always interested in both products so

that when they are exposed to both, they buy more in total than if they are just exposed to

one, and how much more depends on the degree of substitutability they perceive between the

products. We will show the robustness of our main results to this alternative formulation.

Third, a key assumption implicit in our timing is that the platform commits to its choice

of x. This captures that it is harder for the platform to change its design choices (e.g. due to

technologicial commitments in designing its search, as well as possibly brand or reputation

concerns) than it is for sellers to list (or delist). Without commitment to x, since the

sellers’ listing decisions would be treated as if they are fixed, the platform will always choose

maximum discoverability (x = 1) given that doing so expands demand (and so transactions)

as much as possible.5

Finally, sellers are assumed to each set a single price, so we rule out price discrimination

across their different buyers (e.g. assuming some discoverability, seller 1 would sell to some

buyers who are initially captive to seller 1 and some buyers who are initially captive to seller

2). This reflects that sellers may find it difficult to distinguish between buyers. Indeed,

buyers may be able to disguise their identity to obtain the more attractive offer in case

sellers try to set differential prices based on whether buyers come via a given seller’s own

channel, or from the rival seller.6

3 Analysis and results

If neither seller joins the platform, then each makes profits

λ (v − c) . (1)

If only one seller joins the platform, that seller’s marginal cost is c − (b− f), instead of c

for the non-joining seller. Each seller just faces its captive buyers and prices at v. Thus, the

5We have redone our analysis of the baseline setting without commitment in Section A.2 of the Online
Appendix.

6In Online Appendix A.3, we extend the baseline analysis to the case sellers can effectively price dis-
criminate between their “own” captive buyers and those coming from the rival seller after discovery via the
platform. This does not change the optimal level of discoverability in a systematic way.
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joining seller’s profit is

λ (v + b− f − c)

while the profit of the non-joining seller is still λ (v − c).
Finally, consider the case both sellers join the platform. Given the sellers are symmetric

and face equal fees, to determine each seller’s expected profit, we just need to determine the

measure of captive buyers each seller has after the platform’s choice of x. This reflects that

given sellers have some fraction of captives and some fraction of buyers who compare the

two identical sellers, prices are determined by a mixed strategy pricing equilibrium. In such

an equilibrium, each seller’s expected profit will equal the profit it can guarantee if it just

sells to its captives.7

The captive buyers for seller i are now made up of seller i’s initial captives that did not

discover seller j (measure λ (1− x)), seller i’s captives that discovered seller j but view the

two sellers’ products as independent (measure λx (1− θ)) and seller j’s initial captives that

discovered seller i but view the two sellers’ products as independent (measure λx (1− θ)).
Thus, each seller’s expected profit is

(v + b− f − c) (λ (1− x) + 2λx (1− θ)) . (2)

This is increasing in the extent of discovery x if and only if θ < 1
2
, i.e. if and only if the two

sellers’ products are not too substitutable. This makes sense: sellers want to join a platform

that induces discovery only if the other participating sellers are not too close substitutes.

The condition for both sellers joining the platform to be an equilibrium is that (2) is no

less than (1), or equivalently

f ≤ b+ (v − c) x (1− 2θ)

1 + x (1− 2θ)
. (3)

When x = 0, this constraint reduces to f ≤ b. Without discoverability, there are no inter-

actions between the sellers and no network effects, so the platform just provides tools: each

seller adopts it if and only if it offers more value than it charges, i.e. b ≥ f .

When x > 0, if the two sellers’ products are not too substitutable (θ < 1
2
), then the

platform can charge f > b and still get both sellers to join given we have assumed sellers

coordinate on the equilibrium in which they both join (i.e. they hold “favorable beliefs”). In

this case, the maximum fee the platform can charge to get both sellers to join is increasing

7This is just a special case of the more general result from Lemma 2 in Myatt and Ronayne (2019) which
characterizes the expected profits of the sellers in the mixed strategy equilibrium when there are any number
of sellers and allowing for the fact that these sellers can be asymmetric (either in their costs or in their
measure of captives). We provide this more general characterization in Online Appendix A.4.
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in the amount of discoverability x. On the other hand, when x > 0 and the products are

sufficiently substitutable (θ ≥ 1/2), the platform must charge f < b if it wants both sellers

to join. Furthermore, more discoverability now decreases the maximum fee the platform can

charge to get both sellers to join.

The platform’s demand when it attracts both sellers consists of the 2λ (1− x) buyers

who are informed of only one product (and who buy only that product only), the 2λx (1− θ)
buyers who are informed of both products and view them as independent (they buy both),

and the 2λxθ buyers who are informed of both products and view them as substitutes (they

buy one product only). Thus, the platform’s profit when both sellers join is

Π (f, x) = f (2λ (1− x) + 4λx (1− θ) + 2λxθ) = 2λf (1 + x (1− θ)) . (4)

Clearly, the platform’s profit is always increasing in the extent of discovery, holding f and

the participation of both sellers fixed. This is natural: discovery expands the number of

transactions on the platform.

Substituting in the maximum fee the platform can charge while ensuring the sellers still

participate from (3) and defining

µ =
b

v − c
as the ratio of the value provided by tools to the value provided by the underlying product

being sold, we obtain the platform’s maximum profit as a function of x only8:

Π (x) = 2λ

(
µ+

x (1− 2θ)

1 + x (1− 2θ)

)
(1 + x (1− θ)) (v − c) . (5)

When products are not too substitutable (θ < 1
2
), since both the platform and the partic-

ipating sellers benefit from discovery, Π is increasing in x and the platform will naturally set

x∗ = 1, the maximum amount of discovery. However, when products are more substitutable

(θ > 1
2
), the platform faces a trade-off when choosing the amount of discovery x: on the

one hand, a higher x increases the number of transactions, but on the other hand it lowers

the participating sellers’ profits, so it also lowers the maximum transaction fee f that the

platform can extract from the sellers. This can lead to the optimal level of discovery to be

set less than one. Relegating the remaining analysis to the appendix, we obtain the following

proposition.

Proposition 1. Suppose each seller starts with a measure λ of captive buyers. The platform

8It is straightforward to confirm that the platform always prefers to have both sellers join. Indeed, the
platform’s profit with one seller joining is half of what it could get with both sellers joining and setting
x = 0, which is always an option it could choose when it induces both sellers to join.
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always finds it optimal to induce both sellers to join and its optimal level of discovery is given

by

x∗ =


1 if 0 < θ ≤ θ1 (µ)

1−
√

θ
(µ+1)(1−θ)
2θ−1

if θ1 (µ) ≤ θ ≤ µ+1
µ+2

0 if θ ≥ µ+1
µ+2

, (6)

where θ1 (µ) ∈
(

1
2
, µ+1
µ+2

)
is the unique solution in θ to

θ

(1− θ)3 = 4 (µ+ 1) .

The optimal level of discoverability x∗ is decreasing in θ and increasing in µ.

The proposition fully characterizes the platform’s optimal choice of discoverability, which

is just a function of the underlying parameters θ and µ. A greater level of substitutability

between products (i.e. higher θ) induces the platform to choose a lower level of discoverability

x∗, because discoverability leads to more intense competition between the sellers, and so

makes it harder to attract the two sellers to join the platform.

Meanwhile, an increase in the value offered by the platform’s tools for sellers (i.e. higher

µ) means the platform can charge a higher fee per transaction while keeping sellers willing

to participate. This in turn make it more profitable to increase the number of transactions

enabled, which the platform does by increasing discoverability. This is why x∗ is increasing in

µ. In short, the platform’s investment in tools and provision of discoverability are strategic

complements. Note, however, that even if µ = 0, the platform will set x = 1 and derive

positive profits if and only if θ < 1
2
. In other words, provided the sellers’ products are not

too substitutable, the platform can create positive value for sellers via discoverability and

extract positive profits.9

In Figure 1, we have mapped out the optimal x∗ when θ is on the horizontal axis and µ

is on the vertical axis. The figure show levels of x∗ from x∗ = 0 (lightest colour) to x∗ = 1

(darkest colour). The upward sloping relationship seen in the figure reflects that with higher

θ, one would require a higher µ to leave the level of x∗ unchanged.

One feature of the unit demand setting we used is that the lower prices resulting from

seller competition do not lead to an increase in overall demand. In Online Appendix A.6 we

use a less tractable elastic demand setting in which this effect is accounted for, and show

that the main comparative static results are very similar.

9More generally, in Online Appendix A.5 we show that the platform can derive positive profits when its
tools are worth less than seller tools that are available competitively in the outside market.
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Figure 1: The platform’s optimal level of discoverability x∗

4 Extensions

In this section we explore several interesting extensions of the baseline model.

4.1 Platform brings in its own buyers

Often platforms may have some of their own buyers: these could be buyers obtained

directly via the platform’s own marketing efforts or through selling to buyers itself (i.e.

being a reseller) as Amazon did before it opened up to third-party sellers. It is therefore

interesting to explore how optimal discoverability changes when the platform has its own

buyers.

Suppose the platform starts with its own measure ηλ of buyers, where η > 0 is the ratio

of the platform’s buyers to each seller’s captive buyers. We assume the platform’s buyers

are initally uninformed of the two sellers. By choosing x, the platform also determines the

fraction x of the platform’s buyers that discover the two sellers.

The effect of these platform buyers is to increase each seller’s captives by ηλx (1− θ),
since a fraction 1− θ of the platform’s buyers that become informed of both sellers will buy

from both sellers. Thus, modifying (3), the condition for each seller to join given that the
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other does becomes

f ≤
(
b+ (v − c) x (1− 2θ + η (1− θ))

1 + x (1− 2θ + η (1− θ))

)
. (7)

The platform’s demand when it attracts both sellers is the same as before, plus an additional

ηλ (θ + 2 (1− θ))x buyers that come directly from the platform. Thus, the platform’s profit

when both sellers join is now

Π (f, x) = (2λ (1 + x (1− θ)) + ληx (2− θ)) f. (8)

Combining (7) and (8), and using the definition of µ, implies the platform’s problem is to

choose x to maximize

Π (x) = λ (2 (1 + x (1− θ)) + xη (2− θ))
(
µ+

x ((1− 2θ) + η (1− θ))
1 + x ((1− 2θ) + η (1− θ))

)
(v − c) . (9)

Relegating the maximization problem to the appendix, we obtain the following results.

Proposition 2. Suppose each seller starts with a measure λ of captive buyers and the plat-

form starts with ηλ buyers of its own. The platform always finds it optimal to induce both

sellers to join and its optimal level of discovery is given by

x∗ =


1 if 0 < θ ≤ θ1 (η, µ)

1−
√

(2+η)θ
(2(1−θ)+η(2−θ))(µ+1)

2θ−1−η(1−θ) if θ1 (η, µ) ≤ θ ≤ θ2 (η, µ)

0 if θ ≥ θ2 (η, µ)

where

θ2 (η, µ) =
2 (1 + η) (µ+ 1)

(2 + η) (µ+ 2)
>

1 + η

2 + η

and θ1 (η, µ) ∈
(

1+η
2+η

, θ2 (η, µ)
)

is the unique solution in θ to

θ

(1− θ)2 (2 (1− θ) + η (2− θ))
= (2 + η) (µ+ 1) .

The optimal level of discoverability x∗ is decreasing in θ, increasing in µ and increasing in

η.

Proposition 2 shows that the bigger the installed base of buyers the platform starts with

(relative to the measure of the sellers’ initial captives), the higher level of discoverability it

will choose. This can be seen from the fact that when η = 0, we are back to the solution
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from the baseline (Proposition 1), and that θ1 (η, µ), θ2 (η, µ) and x∗ are all increasing in

η. Put differently, the darkest area in Figure 1 (with highest x∗) expands to the right as η

increases.10 The rationale for this result is that informed platform buyers are a net benefit for

the sellers, and they create more transactions for the platform. This increases the willingness

of sellers to pay to participate (i.e. the fee that the platform can charge), thereby increasing

the value of further expanding demand, which the platform does by increasing discoverability.

Thus, we expect platforms that already have a lot of buyers coming to them directly, will be

more likely to offer maximum discoverability. This also suggests that, over time, as sellers’

initially captive buyers keep coming back to the platform to discover potentially new sellers,

the platform will want to increase discoverability.

4.2 Two-part tariffs

We are interested in studying whether the platform would be better off charging sellers a

fixed fee as opposed to, or in addition to, variable transaction fees. To model this, suppose

that in addition to the transaction fee f , the platform can also charge each seller a fixed fee

F . Everything else is as in the baseline model.

The sellers’ payoffs are as in the baseline model except if they join the platform they also

pay the fixed fee F . Thus, for both sellers to join the platform to be an equilibrium, we

therefore must have

F + λ (f − b) (1 + x (1− 2θ)) ≤ λ (v − c)x (1− 2θ) (10)

and the platform’s profit with both sellers joining is

2F + 2fλ (1 + (1− θ)x) (11)

from (4). The platform maximizes (11) over (F, f, x) subject to the constraint (10) above.

It is easily seen that the constraint must be binding. Using that to write F as a function of

f and x, we obtain that the platform maximizes

2λ ((v − c)x (1− 2θ) + b (1 + x (1− 2θ)) + fθx)

with respect to f and x. Clearly, the last expression is increasing in f , so the platform will

set

f ∗ = v − c+ b,

10Apart from this feature, the figure remains qualitatively the same. This assumes η is not too large.
When η is high enough, θ2 (η, µ) > 1, and the platform always chooses a positive level of discoverability.
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which then leads to

x∗ = 1.

This implies

F ∗ = λ ((v − c)x∗ (1− 2θ)− (f ∗ − b) (1 + x∗ (1− 2θ)))

= −λ (v − c) .

With unrestricted two-part tariffs, the result shows that the platform chooses maximum

discoverability and charges the maximum transaction fee. It extracts the entire margin of

each seller’s product, and subsidizes the participation of sellers by paying each seller the

value of their outside option, which is equal to λ (v − c).
At first glance, one may think that with inelastic demand both transaction fees and

fixed fees work like transfers so it does not matter which is used by the platform. However,

this is not the case, because an increase in f is just passed through by the sellers to the

extent they compete, so doesn’t impact their profit as much as an equivalent increase in a

fixed fee that generates the same revenue for the platform. Specifically, in our model, each

seller’s net profit only reflects transactions with buyers for whom it doesn’t compete (captive

buyers and buyers who view the two sellers’ products as independent), whereas the platform

derives the transaction fee f from all transactions. Thus, the two sellers do not internalize

all transactions they generate on the platform when making their participation decisions,

which is why, provided there is some discovery, it always makes sense for the platform to

load up on the per transaction fee and offset it with a fixed subsidy to the maximum extent

possible.

A problem with the solution above is that it involves the platform paying each seller

their outside option as a fixed subsidy upfront. The sellers then derive zero net revenues

from their participation. In practice, this is unrealistic since it would lead to moral hazard

problems (e.g. sellers participate just to collect the subsidy but then not doing anything

to serve buyers) and the platform may also face a budget constraint. So it is reasonable

to assume that the subsidy the platform can offer to sellers is limited by some exogenously

given amount K ≥ 0, which means we have the additional constraint

F ≥ −K. (12)

The platform maximizes (11) over (F, f, x) subject to the constraint (10) above and the

additional constraint (12). Relegating the rest of the analysis to the appendix, we obtain

the following result.
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Proposition 3. Suppose each seller starts with a measure λ of captive buyers, and the

platform can charge a two-part tariff: a transaction fee f and a fixed fee F , subject to F ≥
−K. The platform always finds it optimal to induce both sellers to join. If K ≥ λ (v − c),

then the platform fully subsidizes the participation of the sellers by setting F ∗ = −λ (v − c),

extracts the entire margin by setting f ∗ = v− c+ b, and maximizes discoverability by setting

x∗ = 1. If instead 0 ≤ K < λ (v − c), then F ∗ = −K, f ∗ < v − c + b and the optimal level

of discovery is given by

x∗ =


1 if 0 < θ ≤ θ1 (µ, λ,K)

1−
√

θ
(µ+1)(1−θ)(1− K

λ(v−c))
2θ−1

if θ1 (µ, λ,K) ≤ θ ≤ θ2 (µ, λ,K)

0 if θ ≥ θ2 (µ, λ,K)

where

θ2 (µ, λ,K) =
µ+ 1

µ+ 2− K
λ(v−c)

∈
[

1

2
, 1

]
and θ1 (µ, λ,K) ∈

(
1
2
, θ2 (µ, λ,K)

)
is the unique solution to

θ

(1− θ)3 =
4 (µ+ 1)

1− K
λ(v−c)

The optimal level of discoverability x∗ is decreasing in θ and in λ and increasing in µ and in

K.

It is easily verified that setting K = 0 leads to the results in Proposition 1. The platform

wants to offer a subsidy, but if it cannot, it optimally chooses no fixed fee. This means

our baseline results still apply even if the platform can use two-part tariffs provided moral

hazard (or some other constraint) prevents the platform offering sellers fixed subsidies.

The reason the platform always chooses a subsidy here, if it can, reflects that the platform

wants to push the final price charged by the two sellers up to the monopoly price v, thereby

maximizing joint profit. The platform then extracts this profit subject to leaving each seller

only with its outside option. Since in this Bertrand setting, the only way to achieve the

monopoly price is to charge a transaction fee equal to the monopoly price, this leaves sellers

with zero profit, which given their positive outside option, implies sellers must receive a

subsidy to keep them willing to participate.11

11In more general models with imperfect competition, the platform may be able to induce the monopoly
price while still leaving sellers with positive profits. Then whether the fixed fee is positive or negative depends
on how these profits compare to the outside option, which is positive here. This is in contrast to traditional
vertical relationship models, where it is never necessary to subsidize via the fixed fee given the option option
is typically assumed to give zero profits.

14



The larger K, i.e. the more the platform can subsidize seller participation via a negative

fixed fee, the higher the optimal level of discoverability (until K ≥ λ (v − c), at which point

full discoverability is optimal). This makes sense: fixed subsidies are a way to compensate

sellers for the individual downside of discoverability, and maximum discoverability is better

from a joint profit perspective. Another way to understand the result is in terms of the

usual tradeoff in setting discoverability: a higher fixed subsidy allows the platform to charge a

higher transaction fee, which increases its profits from expanding the number of transactions,

and shifts the tradeoff towards a higher level of discoverability.

4.3 Differential fees

The logic of two-part tariffs, in which the platform increases the transaction fee so as to

increase seller prices, but then offers a fixed subsidy to sellers to make them willing to join,

suggests that the platform can also do better if it can raise the fee it charges for transactions

on which sellers compete and lower the fee it charges for transactions on which sellers do

not compete. Indeed, in our model, charging f1 = b + v − c for transactions generated by

buyers who are aware of both sellers but choose only one, and f2 = b+ (v − c) 1−2θ
2−2θ

< f1 for

all other transactions (such that the sellers are just willing to participate), would replicate

the same outcome as with the optimal two-part tariff.

The problem with such a mechanism is that it requires the platform to distinguish between

buyers for whom the sellers must compete more intensely from buyers for whom the sellers

compete less (either because such buyers are only aware of one seller or because they view the

products as independent rather than substitutes). But even if the platform can implement

such a mechanism, each seller has no way to verify which of its own initial captive buyers

become aware of the rival seller, and so is subject to manipulation by the platform which

could overstate the fraction of transactions for which it earns a higher fee.

Taking into account these practical limitations, we focus on a more realistic second-best

mechanism which is only based on what the seller can also verify. We allow the platform

to charge each seller different transaction fees for selling to the buyers they brought to

the platform (their initially captive buyers) vs. for selling to buyers that discovered the

seller through the platform (the other seller’s initially captive buyers). Since each seller

knows which buyers it brings onto the platform, it can monitor the fees it pays are correct.

This is indeed a practice that has been used. For example, Teachable, an online platform

for instructors to sell courses to students charges instructors a lower fee for students that

come via their own Teachable-powered sites12 and a higher fee for students that come via

12At the time accessed, these fees varied between 5-10% of the revenue each instructor generated. See
https://teachable.com/pricing.
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Teachable’s discovery page13.

Intuitively, charging each seller a lower fee for transactions with buyers they brought to

the platform vs. buyers that discovered them through the platform should make sellers more

willing to participate and therefore allow the platform to increase the level of discoverability

in order to increase the number of transactions enabled. As we will see, this intuition does

not always hold.

To proceed, we allow the platform to charge each seller a transaction fee f0 for transac-

tions with the seller’s initial captive buyers and a potentially different transaction fee f1 for

transactions with buyers that are not part of the seller’s initial captive base.

Suppose both sellers join the platform (the payoffs from not joining are the same as in

the baseline). The set of captive buyers for a seller is made up of three components:

� λ (1− x) buyers on whom the seller incurs a marginal cost of c+ f0 − b and who only

consider that seller

� λx (1− θ) buyers on whom the seller incurs a marginal cost of c + f0 − b and who

consider both sellers

� λx (1− θ) buyers on whom the seller incurs a marginal cost of c + f1 − b and who

consider both sellers.

Each seller’s profit is then

(v + b− f0 − c) (λ (1− x) + λx (1− θ)) + (v + b− f1 − c)λx (1− θ) .

Indeed, the two sellers are symmetric, so each seller’s expected profit from setting any other

price in the support of its mixed strategy would have to be the same as the seller can obtain

simply by serving its captive buyers (which here incur different marginal costs).

The sellers’ profits are increasing in x for given fees if and only if

θ <
v + b− c− f1

(v + b− c− f0) + (v + b− c− f1)
.

In the baseline, sellers’ profit are increasing in x if and only if θ < 1
2
. Thus, the platform’s

ability to charge different fees makes it less likely for discoverability to be good for sellers’

profits whenever f0 < f1. The reason is that when f0 < f1, each seller makes a higher margin

on its own initially captive buyers (for whom it prefers less discoverability) vs. on buyers

13Teachable takes 30% of the instructors’ revenue when they sell courses via its discovery page which is
available at https://www.spotlightapp.io/.
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that discovered it through the platform (for whom it prefers more discoverability), so overall

each seller prefers less discoverability.

To determine the platform’s revenue, consider the λ buyers that are initially captive to

seller i. Out of these buyers, λ (1− x) remain captive to seller i and buy from that seller

only, so the platform makes f0λ (1− x) on them. Another fraction λx (1− θ) are informed

of both products and view them as independent, so they buy both and the platform makes

(f0 + f1)λx (1− θ) on them. And the remaining fraction λxθ are informed of both products

and view them as substitutes, so they buy one product only. Given that the sellers are

symmetric and therefore have the same price distributions in equilibrium, half of these buyers

will buy from seller i and half will buy from seller j, so the platform makes (f0+f1)λxθ
2

on

these buyers. Thus, in total, the platform’s profit when both sellers join is

λ (2f0 (1− x) + 2 (f0 + f1)x (1− θ) + (f0 + f1)xθ)

= λ (f0 (2− xθ) + f1x (2− θ)) .

The platform’s problem is to set x, f0 and f1 to maximize the above expression, subject

to the following three constraints:

0 ≤ f0 ≤ v + b− c

0 ≤ f1 ≤ v + b− c

(v + b− f0 − c) (1− x+ x (1− θ)) + (v + b− f1 − c)x (1− θ) ≥ v − c.

The first two constraints rule out negative transaction fees14 and ensure that buyers want to

participate at the competitive price. The third constraint ensures that each seller wants to

participate on the platform.

Relegating the calculations to the appendix, we obtain the following proposition.

Proposition 4. Suppose the platform can charge each seller a fee f0 for transactions with

its initially captive buyers and f1 for transactions with buyers it gains through discovery on

the platform. Then the platform always finds it optimal to induce both sellers to join and to

14Indeed, negative transaction fees are seldom used in practice because they create arbitrage-type problems
(e.g. some sellers might join just to buy from themselves and thereby collect the subsidy).
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set f1 > f0. The optimal level of discovery is given by

x∗ =



1 if 0 < θ ≤ 1
2

µ
(µ+1)θ

if 1
2
≤ θ ≤ 2

3+µ

1−
√

θ
2(µ+1)(1−θ)
θ

if 2
3+µ
≤ θ ≤ 2(µ+1)

2(µ+1)+1

0 if θ ≥ 2(µ+1)
2(µ+1)+1

(13)

when µ ≤ 1, and by

x∗ =


1 if 0 < θ ≤ θ0 (µ)

1−
√

θ
2(µ+1)(1−θ)
θ

if θ0 (µ) ≤ θ ≤ 2(µ+1)
2(µ+1)+1

0 if θ ≥ 2(µ+1)
2(µ+1)+1

(14)

when µ ≥ 1, where θ0 (µ) is the unique solution to

θ

(1− θ)3 = 2 (µ+ 1) .

Again, the optimal level of discoverability is decreasing in the degree of substitutability θ

between the sellers’ products. In terms of fees, the key result is that the platform always finds

it optimal to charge each seller a higher fee for transactions with buyers that are not part

of the seller’s initial captive base (f1) than for transactions with the seller’s initial captive

buyers (f0). The reason for this is that provided 0 < x < 1, a larger share of a seller’s

transactions that come from the rival seller’s buyers involve head-to-head competition (and

therefore which do not contribute to the seller’s expected profit), relative to the seller’s

transactions that come from its own initially captive buyers. Indeed, the share of “discovery

transactions” (i.e. transactions generated by the rival seller’s buyers) that result in head-to-

head competition is xθ
x−xθ

2

, whereas the share of transactions with a seller’s own buyers that

result in head-to head competition is xθ
1−xθ

2

< xθ
x−xθ

2

.

It is important to emphasize that this differential fee strategy only works if 0 < x < 1.15

For this reason, the range over which partial discoverability is optimal (i.e. 0 < x∗ < 1)

is now larger than in the baseline model where the platform could only charge a single fee.

The platform prefers partial discoverability because it allows it to exploit this profitable

differential fee strategy. This is illustrated in Figure 2, which is constructed with µ = 1: the

15If x = 0 or x = 1, then the platform does not gain anything from charging differential fees. Indeed, if
x = 0, then there is no discovery so f1 is irrelevant, whereas if x = 1, then all buyers are equivalent, so only
f0 + f1 matters.
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Optimal x* differential fees vs. baseline

𝑥𝑥∗ baseline

𝜃𝜃

𝑥𝑥∗ differential fees

𝑥𝑥∗

1

0
1

• To take advantage of differential fees requires 0 < 𝑥𝑥 < 1
• partial discoverability optimal over wider rangeFigure 2: The platform’s optimal level of discoverability x∗

black line represents x∗ (θ) in the baseline and the red line represents x∗ (θ) with differential

fees.

This also leads to the following corollary, which compares the optimal level of discover-

ability here to the one from the baseline.

Corollary 1. Denote by x∗b the optimal level of discoverability from the baseline, given by

(6), and by x∗df the optimal level of discoverability with differential fees, given by (13) when

µ < 1 and by (14) when µ > 1. For every µ > 0, there exists a unique θ3 ∈
[
θ1 (µ) , µ+1

µ+2

]
such that x∗df ≤ x∗b if θ ≤ θ3 and x∗df ≥ x∗b if θ ≥ θ3.

Corollary 1 implies that being able to set different fees leads to less discoverability when

θ is less than some threshold (denoted θ3 in the Corollary) and leads to more discoverability

when θ is more than that threshold. Moreover, the threshold always arises in the range

where there is partial discoverability in the baseline, as can be seen from Figure 2.

4.4 More than two sellers

So far we have focused on the case with only two sellers. Suppose now there are n ≥ 2

sellers: each seller brings a measure λ of buyers who are informed of the particular seller but

not any of the other sellers.

Compared to before, the only difference that arises to a seller’s payoff is the payoff it gets

from joining when it expects more than one other seller to also join. Specifically, if m−1 ≥ 1
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other sellers join, then each seller’s expected profit from joining is

((1− x)λ+mλx (1− θ)) (v − c+ b− f) . (15)

As before, 1−x of a seller’s λ initial captives do not discover other sellers, so remain captive.

The remaining fraction λx discover all other m − 1 sellers, with a fraction 1 − θ of these

viewing all sellers’s products as independent, so λx (1− θ) also remain captive from each

seller’s perspective. Likewise, each seller sells to the λx (1− θ) buyers it gets exposed to

from each of the other m− 1 sellers’ initial captives. So each seller ends up with

(1− x)λ+ λx (1− θ) + (m− 1)λx (1− θ)

captives, compared to λ original captives, thus leading to the result in (15).

Comparing (15) with the payoff λ (v − c) when not joining, a seller will want to join when

it expects m− 1 other sellers to do so iff

f ≤ b+
x (m (1− θ)− 1)

x (m (1− θ)− 1) + 1
(v − c) . (16)

As is clear from (15), there are positive network effects across sellers. The more sellers join,

the higher the payoff from joining for each seller (and therefore the higher f the platform can

charge). Note that we continue to adopt favorable beliefs, in that sellers always coordinate

on the highest number of available sellers joining that is an equilibrium given the fee f

charged.16

Suppose the platform attracts m sellers in total. Each of these sellers has λ (1− x) captive

buyers who are only informed of one product and buy that product only, so the platform

demand generated by these buyers is mλ (1− x). Meanwhile, there are a total of mλx buyers

who discover all sellers on the platform. Out of these, a fraction 1− θ view all products as

independent so buy all of them, while the remaining fraction only buy one product. The

platform demand generated by these informed buyers is mλx ((1− θ)m+ θ). Total demand

for the platform when m sellers join is thus

mλ (1 + x (m− 1) (1− θ)) . (17)

Since (16) and (17) are both increasing in m, the platform obtains its maximum payoff

by inducing all sellers to join (m = n) and setting f so (16) is binding when m = n. The

16In Online Appendix A.6, we explore less favorable beliefs. These lower the platform’s profit, as it has to
set a lower fee to attract all sellers to join, but as was the case for the baseline setting with two sellers, they
have no effect on the platform’s optimal choice of x∗.
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resulting platform profit is

Π (x) =

(
b+

x (n (1− θ)− 1)

x (n (1− θ)− 1) + 1
(v − c)

)
(nλ (1 + x (n− 1) (1− θ))) . (18)

Relegating the optimization problem over x to the appendix, we obtain the following

proposition.

Proposition 5. Suppose each of n sellers starts with a measure λ of captive buyers. The

platform always finds it optimal to induce all sellers to join and its optimal level of discovery

is given by

x∗ =


1 if 0 < θ ≤ θ1 (µ, n)

1−
√

θ
(µ+1)(1−θ)(n−1)

1−n(1−θ) if θ1 (µ, n) ≤ θ ≤ θ2 (µ, n)

0 if θ ≥ θ2 (µ, n)

, (19)

where θ1 (µ, n) ∈
(
1− 1

n
, θ2 (µ, n)

)
is the unique solution in θ to

θ

(1− θ)3 = n2 (n− 1) (µ+ 1)

and θ2 (µ, n) = (µ+1)(n−1)
(µ+1)(n−1)+1

.

It is straightforward to confirm that the comparative statics with respect to θ and µ

remain the same as in the baseline. The extent of discoverability x∗ is decreasing in θ and

increasing in µ.

More interesting is that θ1 and θ2 are increasing in n, and so is x∗ for the interior solution.

More sellers always increase the amount of discoverability the platform will choose. In part

this reflects that our model over-emphasizes the positive network effect across sellers due

to discoverability and de-emphasizes the negative substitution effect that can arise as more

and more sellers are added. Indeed, the only thing that matters for a seller’s expected

profit is the profit from captives, which always increases when more sellers join the platform.

Meanwhile, the number of sellers that compete for contested buyers turns out not to affect a

given seller’s equilibrium profit. With a more general demand function, each seller’s profits

from contested buyers would be decreasing in the number of participating sellers, so that

adding more sellers can lower each seller’s equilibrium profit. In Online Appendix A.7 we

use a less tractable setting with elastic demand, and show that adding more sellers always

reduces the optimal level of discoverability.

21



One way to interpret these different results is that our baseline demand specification

captures that each additional seller serves a unique product category, with buyers some-

times only wanting to buy from one such product category (and viewing them as perfect

substitutes), and other times wanting to buy from all of them. The result says the platform

should increase the level of discoverability as it adds more product categories. In contrast,

the alternative elastic-demand specification captures the idea of adding more sellers within

a given product category. In that case, we find the platform should decrease the level of

discoverability as it adds more sellers within a given product category.

Moreover, it is important to recall that in our model discoverability involves buyers seeing

all listed sellers. An alternative setting, would be that discoverability involves buyers seeing

a fixed number of sellers, say j ≥ 2 out of a total n participating sellers, where j < n. In

this case, 1− x of a seller’s λ initially captive buyers do not get to see any other seller, and

x of them get to observe j − 1 other randomly selected sellers. In Online Appendix A.8 we

show that the optimal level of discoverability x∗ in this case is the same as above in the case

there are j sellers on the platform to start with. Thus, for instance, if buyers only look at

most at two sellers, then the optimal level of discoverability is the same as in the baseline

no matter how many sellers join the platform.

4.5 Heterogeneous sellers

So far we have assumed all sellers are identical, each starting with the same measure

λ of captive buyers. In this section we analyze two different cases where the sellers are

not symmetric: in the first case we explore how asymmetry changes the optimal level of

discoverability, and in the second case we illustrate the possibility that a platform may

choose to only attract smaller sellers and leave larger sellers out by setting a high level of

discoverability.

4.5.1 Two asymmetric sellers

Consider first the case with two sellers but seller i has measure λi of initially captive

buyers, and assume λ1 ≥ λ2. This captures asymmetric sellers, with seller 1 having a larger

initial base of captive buyers than seller 2.

If seller i does not join the platform, then its profit is λi (v − c). If only seller i joins

the platform, its profit is λi (v + b− f − c), while the profit of the non-joining seller is

still λj (v − c). If both sellers join the platform, then seller i and seller j will compete

with different measures of captive buyers. The analysis in this case turns out to be more

complicated, given that the seller with fewer captives will act more aggressively and its profit
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will be higher than what it can obtain by just charging the monopoly price on its captives.

Despite this, as we show in the proof of Proposition 6 below, it is still the seller with more

captives (seller 1) that turns out to constrain the fee the platform can set to induce the two

sellers to participate in case x > 0. This is intuitive: that seller has a better outside option,

and discoverability brings more of its buyers to the other seller, than vice-versa.

The captive buyers for seller 1 are now made up of seller 1’s initial captives that did not

discover seller 2 (measure λ1 (1− x)), seller 1’s captives that discovered seller 2 but view the

two sellers’ products as independent (measure λ1x (1− θ)) and seller 2’s initial captives that

discovered seller 1 but view the two sellers’ products as independent (measure λ2x (1− θ)).
Thus, seller 1’s profit is

(v − c+ b− f) (λ1 (1− x) + (λ1 + λ2)x (1− θ))

= (v − c+ b− f) (λ1 + λ2) (β1 (1− x) + x (1− θ)) ,

where

β1 =
λ1

λ1 + λ2

≥ 1

2

is seller 1’s relative market share of initial captives. Comparing this with seller 1’s profit if

it doesn’t join, the platform must set

f ≤ b+ (v − c)
(

1− β1

β1 (1− x) + x (1− θ)

)
, (20)

to ensure seller 1 participates, which also ensures seller 2 participates.17

The platform’s demand when it attracts both sellers consists of the (λi + λj) (1− x)

buyers who are informed of only one product (and who buy only that product only), the

(λi + λj)x (1− θ) buyers who are informed of both products and view them as independent

(they buy both), and the (λi + λj)xθ buyers who are informed of both products and view

them as substitutes (they buy one product only). Thus, the platform’s profit when both

sellers join is

f ((λ1 + λ2) (1− x) + 2 (λ1 + λ2)x (1− θ) + (λ1 + λ2)xθ)

= f (1 + x (1− θ)) (λ1 + λ2) .

Note that the platform can set x = 0 and f = b to obtain b (λ1 + λ2), which is strictly higher

than bλ1, the maximum profit it can achieve by attracting one seller only. Thus, it is optimal

17To see this, note that the right-hand side of (20) is decreasing in β1, and the participation constraint for
seller 2 is identical other than β1 is replaced by β2 = λ2

λ1+λ2
< β1.
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for the platform to attract both sellers.

The platform will therefore set f and x to maximize the last expression above subject to

(20), which ensures both sellers participate.

Relegating the rest of the analysis to the appendix, we obtain the following proposition.

Proposition 6. Suppose seller i starts with a measure λi of captive buyers, where λ1 ≥ λ2.

The platform always finds it optimal to induce both sellers to join and the optimal level of

discovery is given by

x∗ =


1 if 0 < θ ≤ θ1 (µ, β1)

1−

√
2−θ− 1−θ

β1
(µ+1)(1−θ)

1− 1−θ
β1

if θ1 (µ, β1) ≤ θ ≤ θ2 (µ, β1)

0 if θ ≥ θ2 (µ, β1)

where

θ2 (µ, β1) =
µ+ 1

β1
− 1

µ+ 1
β1

∈ [1− β1, 1]

and θ1 (µ, β1) ∈ (1− β1, θ2 (µ, β1)) is the unique solution to

2− 1
β1

+
(

1
β1
− 1
)
θ

(1− θ)3 =
µ+ 1

β2
1

.

The comparative statics of x∗ with respect to µ and θ remain the same as before. More

interesting is that x∗ is decreasing in β1, the larger seller’s market share of initial captives.

Thus, the bigger the difference in initial market shares of captives, the less discoverability

the platform will provide. The reason is that the binding participation constraint that the

platform’s fee and level of discoverability must respect is that of the larger seller. And the

larger seller necessarily prefers less discoverability since it brings more buyers to the platform

than it stands to gain from discoverability. It is indeed easily verified that seller 1’s profits

are decreasing in discoverability whenever β1 > 1−θ, which must be the case for the interior

solution x∗ to hold.

4.5.2 Why a large seller may not participate on the platform

As shown in Proposition 6, with two sellers, even if asymmetric, it is always profitable

for the platform to attract both of them. With more than two sellers, if they are symmetric,

the platform also wants to attract all of them (as we saw in Section 4.4). However, with
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more than two sellers, if they are heterogeneous, the platform may be better off setting its

transaction fee and level of discoverability such that not all sellers participate.

In particular, the previous analysis with asymmetric sellers shows that it is the larger

seller (in terms of their initial captives) that constrains the platform’s transaction fee because

it benefits less from joining the platform. This is consistent with real world observations:

larger and more established brands are the ones least likely to participate on large market-

places (e.g. Amazon.com), preferring to sell through their own channels instead.

In what follows we confirm that in a setting with three sellers, such that λ1 > λ2 = λ3,

it may be optimal for the platform to set its fee and level of discoverability such that the

larger seller 1 does not participate in equilibrium. Denote

β =
λ1

λ1 + 2λ2

.

First, it can never be optimal for the platform to induce only one seller to join because

that implies no discovery, so the most the platform could obtain is bλ1. The platform could

do strictly better setting x = 0 and the same f = b, so all sellers are willing to join, yielding

b (λ1 + 2λ2) for the platform. Second, it can never be optimal to induce the large seller

to join together with only one small seller. We prove this result as part of Proposition

7 below. The reason is essentially the same as above. The large seller is the least likely

to wish to participate on the platform when other sellers are present, and given Bertrand

competition for buyers who view the products as substitutes, having two small sellers join is

actually better for the large seller than having just one small seller due to the possibility of

discovery. So if the large seller participates, then the second small seller is even more willing

to participate, and the platform certainly benefits from having three rather than two sellers

via an increased number of transactions.

Taking these two results into account, the platform’s optimal strategy is either to induce

all three sellers to join, or only induce the two small sellers to join. If the platform induces

all three sellers to join, it is easily verified that the binding constraint on the platform’s

optimal fee is once again the participation of the large seller (we show this in the proof of

Proposition 7 below), so the platform’s profits in this case are

max
x
{f (λ1 + 2λ2) (1 + x (1− θ))}

subject to λ1 (v − c) ≤ (v − c+ b− f) (λ1 (1− x) + (λ1 + 2λ2)x (1− θ)) ,
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which is equal to

max
x

{
(λ1 + 2λ2) (v − c)

(
µ+ 1− 1

1− x+ x(1−θ)
β

)
(1 + x (1− θ))

}
.

Meanwhile, if the platform only induces the two small sellers to join, then the analysis is

the same as in the baseline model, so the platform’s profits in this case are

max
x

{
2λ2 (v − c)

(
µ+ 1− 1

1 + x (1− 2θ)

)
(1 + x (1− θ))

}
.

Consider the tradeoff between these two options. The total number of buyers is larger

when attracting all three sellers (λ1 + 2λ2 instead of 2λ2), but the transaction fee can be

higher when attracting just the two small sellers:

(v − c)
(
µ+ 1− 1

1 + x (1− 2θ)

)
> (v − c)

(
µ+ 1− λ1

1− x+ x(1−θ)
β

)

which is true if and only if

β >
1

2
.

Thus, the large seller has to be at least as large as the two small sellers combined in order for

the maximum transaction fee that can be charged with two small sellers to be higher than

that charged with all three sellers. In this case, the size disparity between the large seller

and the two small sellers is so big that for the same level of discoverability, the platform

must charge a lower transaction fee if it wants to attract all three sellers than when it wants

to attract only the two small sellers.

By contrast, if the large seller is close in size to each of the small sellers (1
2
< β ≤ 1),

then there is no tradeoff and the platform always prefers to induce all three sellers to join,

consistent with the results from Section 4.4 with multiple sellers: profits are increasing in

the number of (equal) sellers that join.

The following proposition confirms this by focusing on the specific case when tools have

no value (b = 0), so the only valuable service that the platform can provide is discovery.

Proposition 7. Suppose there are three sellers, one large of size λ1 and two identical

smaller sellers, each of size λ2 < λ1. Suppose also b = 0. When θ ≥ 1
2
, the platform strictly

prefers to induce all three sellers to join if β < 1− θ and is indifferent between two or three

sellers joining (with zero resulting profits) when β ≥ 1−θ. When θ < 1
2
, the platform prefers

to induce all three sellers to join if β ≤ 1
1+2θ

and prefers to induce only the two small sellers
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to join if β > 1
1+2θ

. If it is optimal to induce only the two small sellers to join, the optimal

level of discoverability is as in the baseline. If it is optimal to induce all three sellers to join,

the optimal level of discoverability is higher than in the baseline, strictly so if 1
2
≤ θ < 1−β.

Figure 3: Parameter region where two sellers join and where three sellers join

This case is represented in Figure 3 which shows the combination of (θ, β) where the

platform prefers to host the two small sellers only and where the platform prefers to host

all three sellers when µ = 0. (In case, the platform is indifferent, we assume it chooses the

option which would also be implied by the limit as µ → 0 from above). In particular, note

that for any θ, there exists a threshold such that the platform prefers to induce all three

sellers to join when β is below that threshold and prefers (strictly only if θ < 1
2
) to induce

only the two small sellers to join when β is above that threshold. This is an artifact of the

assumption that µ = 0, so the platform has no valuable tools to offer aside from discovery.

Indeed, this implies that when the large seller becomes sufficiently large relative to the two

small sellers (i.e. β becomes large), the platform prefers to drop the large seller because

attracting it means choosing almost no discovery and therefore vanishingly small profits in

the absence of valuable tools.

In general however, with µ > 0 so the platform offers valuable tools, if the large seller

becomes sufficiently big relative to the small sellers, then the platform once again strictly

prefers inducing all three sellers to join (which it can always do by setting x equal or close to

zero), for the simple reason that the large seller is too big to leave out and it can be served

profitably with tools. For the platform to prefer inducing only the two small sellers to join,

λ1 has to be in some intermediate range relative to λ2 (given θ). This is confirmed in Figure

3, which also shows the platform’s optimal choice of sellers as a function of θ and β when
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µ = 0.1. As µ increases, the region in Figure 3 where the platform prefers to only induce the

two sellers to join shrinks, and we note that for any µ ≥ 0.2, there is no θ and β for which

the platform ever prefers only selling to the two small sellers.

4.6 Competing platforms

So far we have assumed there is a single monopoly platform. In this subsection we

consider two extensions to handle competing platforms, the first to provide the simplest

and more direct extension of our baseline setting to competing platforms, and the second

to illustrate how it is possible to sustain an equilibrium where the platforms endogenously

differentiate themselves by offering different levels of discoverability, and thereby attracting

different sellers. In each case, the model will have two identical platforms, with the idea the

platforms first determine if they want to invest in offering some level of discoverability (which

incurs some arbitrarily small fixed costs to provide). Then after observing each other’s choice

of x, they simultaneously set their fees f1 and f2. The sellers, then decide which platform to

join, if any. Note if platform i chooses not to invest in any discoverability, then by default it

has xi = 0.

4.6.1 Symmetric platform competition

Suppose there are two platforms 1 and 2, and two symmetric sellers with λ1 = λ2 = λ.

Proposition 8. If θ < 1
2
, then the only possible equilibrium is that both sellers join the same

platform i, and in this equilibrium we have xi = 1, xj = 0, fi = (v + b− c) 1−2θ
2−2θ

, fj = 0. If

θ ≥ 1
2
, then in equilibrium we have f1 = f2 = 0, x1 = x2 = 0, and each seller joins either

platform.

Comparing this to the baseline with a monopoly platform and two symmetric sellers, we

have that the equilibrium level of discoverability is lower under platform competition. The

reason is that when platforms compete, they focus on maximizing the payoff to sellers in

order to attract them, and sellers generally prefer less discoverability than the platforms.

4.6.2 Endogenous platform differentiation

Consider again the setting from Section 4.5.2 and Proposition 7, but now allow for our

setting with competing platforms. Then we claim the following holds.

Proposition 9. Suppose there are three sellers, one large of size λ1 and two identical

smaller sellers, each of size λ2 < λ1. Suppose also b = 0. When θ < 1
2

and provided
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λ1 >
2(1−θ)λ2

θ
, there is an equilibrium where platform 1 attracts the two small sellers, setting

f ∗1 = (v − c)
(

1− 1
2(1−θ)

)
and x∗1 = 1, and platform 2 attracts the large seller, setting f ∗2 = 0

and x∗2 = 0. (There is another equivalent equilibrium with the roles of the two platforms

reversed).

This result shows the possibility for the co-existence of two competing platforms, one that

attracts the larger seller by not offering discoverability, and one that attracts the multiple

smaller sellers by offering maximum discoverability.

5 Conclusion

We have provided a framework for analyzing to what extent platforms will want to allow

buyers who are brought in by participating sellers to discover rival sellers. While we explored

many different extensions of the simple baseline setting in the paper, there remain many more

avenues to explore in future work.

Further analysis of competing platforms seems warranted, although this remains challeng-

ing. For instance, it would be interesting to explore other types of heterogeneity between

sellers, to understand how different seller characteristics drive their preferences over plat-

forms that offer different levels of discoverability. In our analysis of competing platforms, we

assumed a seller would only go to one platform or the other, bringing all its buyers onto the

chosen platform. Another possibility would be to allow the seller to determine the portion of

its initially captive buyers it brings onto each platform, or possibly to both. Extending our

analysis to a dynamic setting where the sellers’ initial capitives become loyal to the platform

after some time would possibly provide a rationale for platforms to increase the extent of

discoverability they offer over time.

6 Appendix

We provide the remaining details for the proofs of each proposition.

6.1 Proof of Propositions 1 and 2

We prove directly Proposition 2, which is more general. The proof of Proposition 1

follows automatically simply by setting η = 0 (i.e. the platform starts with no buyers of its

own).
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Factoring out the constant term λ (v − c), the derivative of (9) with respect to x is

(2 (1− θ) + η (2− θ)) (µ+ 1)− (2 + η) θ

(1 + x ((1− 2θ) + η (1− θ)))2 . (21)

If θ ≤ 1+η
2+η

, then (21) is increasing in x and is non-negative when evaluated at x = 0, so we

must have x∗ = 1. If θ > 1+η
2+η

, then (21) is decreasing in x, so the SOC holds. Setting (21)

equal to zero and solving for x implies the unconstrained solution

x (θ) =
1−

√
(2+η)θ

(2(1−θ)+η(2−θ))(µ+1)

2θ − 1− η (1− θ)
.

Given x (θ) is decreasing in θ for θ > 1+η
2+η

, and given x
(

1+η
2+η

)
> 1 and x (θ) < 0 for θ

sufficiently high, the constrained solution is given by x∗ in Proposition 2 where θ1 (η, µ) is

the unique solution to x (θ) = 1 and where θ2 (η, µ) = 2(1+η)(µ+1)
(2+η)(µ+2)

> 1+η
2+η

is the unique solution

to x (θ) = 0. It is easily verified that 1+η
2+η

< θ1 (η, µ) < θ2 (η, µ).

Setting η = 0, we obtain the results in Proposition 1. Note that θ2 (0, µ) = µ+1
µ+2

< 1, but

with η > 0, we can have θ2 (η, µ) > 1.

6.2 Proof of Proposition 3

Recall the problem is to maximize (11) over (F, f, x) subject to the constraints (10) and

(??). Since platform profits are increasing in F and f , we must have

F + λ (f − b) (1 + x (1− 2θ)) = λ (v − c)x (1− 2θ) .

Using this to replace F in the platform’s profits and (12), the problem becomes to choose f

and x to maximize

2λ ((v − c+ b)x (1− 2θ) + b+ fθx) .

subject to

λ (v − c)x (1− 2θ)− λ (f − b) (1 + x (1− 2θ)) ≥ −K.

If the constraint is not binding, then f ∗ = v − c + b and x∗ = 1, which is valid iff

λ (v − c) ≤ K. So assume 0 ≤ K < λ (v − c), and the constraint is binding. Solving the

binding constraint for f implies

f = (v − c) x (1− 2θ)

(1 + x (1− 2θ))
+

K

λ (1 + x (1− 2θ))
+ b.
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Substituting this into the platform’s profit, after factoring out the constant 2λ (v − c), the

problem is to choose x to maximize

x (1− 2θ) (1 + x (1− θ))
1 + x (1− 2θ)

+
θxK

λ (v − c) (1 + x (1− 2θ))
+ µ (1 + x (1− θ)) .

It is easily verified that if θ ≤ 1
2
, this is increasing in x, so the platform sets x∗ = 1

regardless of K. Assume therefore θ > 1
2
. The derivative in x is

(1− 2θ) (1 + 2x (1− θ) + x2 (1− θ) (1− 2θ)) + µ (1− θ) (1 + x (1− 2θ))2 + θK
λ(v−c)

(1 + x (1− 2θ))2 ,

which is decreasing in x for θ > 1
2
, so the SOC holds. This derivative is zero when the

numerator equals zero, which gives the unconstrained solution

x (θ) =

1−
√

θ
(µ+1)(1−θ)

(
1− K

λ(v−c)

)
2θ − 1

.

This is the same as x (θ) in the baseline except µ + 1 > 1 is replaced by µ+1

1− K
λ(v−c)

> 1, with

the expressions for the cutoffs adjusted accordingly.

6.3 Proof of Proposition 4

The sellers’ participation constraint can be rewritten as

f1x (1− θ) + f0 (1− xθ) ≤ (v − c)x (1− 2θ) + b (1 + x (1− 2θ)) .

Suppose the sellers’ participation constraint is not binding at the optimum. Then we must

have

f0 = f1 = v + b− c,

otherwise the platform could profitably increase either f0 or f1. But then the sellers’ partic-

ipation constraint is equivalent to

v − c ≤ 0,

which is not possible.

So the sellers’ participation constraint must be binding at the optimum, i.e. we must

have

f1x (1− θ) + f0 (1− xθ) = (v − c)x (1− 2θ) + b (1 + x (1− 2θ)) .
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We can use this to express f1 as a function of f0. After factoring out the constant λ, the

platform’s profits can then be written as

−f0
θ (1− x)

1− θ
+

(2− θ)
1− θ

((v − c+ b)x (1− 2θ) + b) ,

which the platform maximizes over (f0, x) subject to

0 ≤ f0 ≤ v + b− c

and

0 ≤ (v − c) 1− 2θ

1− θ
+ b

1 + x (1− 2θ)

x (1− θ)
− f0

(1− xθ)
x (1− θ)

≤ v + b− c.

Since the last expression of platform profits is decreasing in f0, we must either have

f0 = 0

or

(v − c) 1− 2θ

1− θ
+ b

1 + x (1− 2θ)

x (1− θ)
− f0

(1− xθ)
x (1− θ)

= v + b− c.

Suppose first f0 = 0. Then the platform is maximizing profit

(2− θ)
1− θ

((v − c+ b)x (1− 2θ) + b)

over x subject to

0 ≤ (v − c)x (1− 2θ) + b (1 + x (1− 2θ))

x (1− θ)
≤ v + b− c.

Clearly, the platform will set x such that (v − c+ b)x (1− 2θ) + b > 0. So the only relevant

constraint is
(v − c)x (1− 2θ) + b (1 + x (1− 2θ))

x (1− θ)
≤ v + b− c,

which is equivalent to
µ

1 + µ
≤ xθ

where b = µ (v − c). There are three cases:

1. If

θ <
µ

µ+ 1
,

then the constraint cannot be satisfied, so we can’t have f0 = 0.
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2. If µ
µ+1
≤ θ ≤ 1

2
, then x∗ = 1 and the platform’s maximum profits conditional on f0 = 0

are

(2− θ)
1− θ

((v − c+ b) (1− 2θ) + b)

=
(2− θ) (1− 2θ)

1− θ
(v − c) + 2 (2− θ) b.

3. If θ ≥ max
{

µ
µ+1

, 1
2

}
, then x∗ = µ

(µ+1)θ
and the platform’s maximum profits conditional

on f0 = 0 are

(2− θ)
1− θ

(
(v − c+ b)

µ (1− 2θ)

(µ+ 1) θ
+ b

)
= b

2− θ
θ

.

Now suppose f0 > 0, so we must have

f1 = (v − c) 1− 2θ

1− θ
+ b

1 + x (1− 2θ)

x (1− θ)
− f0

(1− xθ)
x (1− θ)

= v + b− c,

which is equivalent to

f0 = b− (v − c) xθ

1− xθ
< v − c+ b.

The platform’s profits as a function of x are then

−
(
b− (v − c) xθ

1− xθ

)
θ (1− x)

1− θ
+

(2− θ)
1− θ

((v − c+ b)x (1− 2θ) + b)

= (v − c)
(
−
(
µ− xθ

1− xθ

)
θ (1− x)

1− θ
+

(2− θ)
1− θ

((1 + µ)x (1− 2θ) + µ)

)
= (v − c)

(
1 + 2µ+ 2 (1 + µ)x (1− θ)− 1

1− xθ

)
.

The platform maximizes these profits subject to f0 ≥ 0 (all other constraints are satisfied),

which is equivalent to

x ≤ µ

θ (1 + µ)
.

The derivative of the last expression of platform profits above with respect to x is

(v − c)
(

2 (1 + µ) (1− θ)− θ

(1− xθ)2

)
,

so the second derivative is clearly negative, which means the SOC holds. The unconstrained
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optimal x is then

x∗ =
1−

√
θ

2(1+µ)(1−θ)

θ
.

There are three cases.

1. If θ
2(1+µ)(1−θ) ≥ 1, which is equivalent to

θ ≥ 2 (µ+ 1)

2 (µ+ 1) + 1
,

then the optimal solution conditional on f0 > 0 is x∗ = 0, which implies f0 = b and

the platform’s profits are 2b.

2. If

0 ≤
1−

√
θ

2(µ+1)(1−θ)

θ
≤ min

{
1,

µ

θ (1 + µ)

}
,

which is equivalent to

θ

(1− θ)3 ≥ 2 (µ+ 1) and
2

3 + µ
≤ θ ≤ 2 (µ+ 1)

2 (µ+ 1) + 1
,

then the optimal solution conditional on f0 > 0 is

x∗ =
1−

√
θ

2(µ+1)(1−θ)

θ
,

which implies f0 = b− (v − c) x∗θ
1−x∗θ and the platform’s profits are

(v − c)
(

1 + 2µ+ 2 (1 + µ)x∗ (1− θ)− 1

1− x∗θ

)
.

3. If
1−

√
θ

2(µ+1)(1−θ)

θ
≥ min

{
1,

µ

θ (1 + µ)

}
,

which is equivalent to

θ

(1− θ)3 ≤ 2 (µ+ 1) or θ ≤ 2

3 + µ
,
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then the optimal solution conditional on f0 > 0 is

x∗ = min

{
1,

µ

θ (1 + µ)

}
,

which implies f0 = b− (v − c) x∗θ
1−x∗θ and the platform’s profits are

(v − c)
(

1 + 2µ+ 2 (1 + µ)x∗ (1− θ)− 1

1− x∗θ

)
.

The platform compares the best solution conditional on f0 = 0 to the best solution

conditional on f0 > 0. We distinguish two cases: µ ≤ 1 and µ ≥ 1. Let θ0 (µ) denote the

unique solution to
θ

(1− θ)3 = 2 (µ+ 1) .

Suppose first µ ≤ 1. Then we have

µ

µ+ 1
≤ θ0 (µ) ≤ 1

2
≤ 2

3 + µ
≤ 2 (µ+ 1)

2 (µ+ 1) + 1
.

So:

� if θ ≤ µ
1+µ

, then there is no solution with f0 = 0, so the optimal solution is

x∗ = 1

f0 = b− (v − c) θ

1− θ
f1 = v + b− c

and yields platform profits

(v − c) (2− θ)
(

2 (1 + µ)− 1

1− θ

)
.

� if µ
µ+1
≤ θ ≤ 1

2
, then the solution with f0 > 0 has x∗ = µ

θ(1+µ)
, which implies f0 = 0.

So this is weakly dominated by the solution conditional on f0 = 0, which has

x∗ = 1

f1 =
(v − c) (1− 2θ)

1− θ
+ 2b
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and yields platform profits

(v − c) (2− θ)
(

2 (1 + µ)− 1

1− θ

)

� If 1
2
≤ θ ≤ 2

3+µ
, then the solution with f0 > 0 has x∗ = µ

θ(1+µ)
, which implies f0 = 0.

So this is weakly dominated by the solution conditional on f0 = 0, which has

x∗ =
µ

(µ+ 1) θ

f1 =
b (µ+ 1)

µ

and yields platform profits

(v − c)µ2− θ
θ

.

� if 2
3+µ
≤ θ ≤ 2(µ+1)

2(µ+1)+1
, then the solution with f0 > 0 has

x∗ =
1−

√
θ

2(µ+1)(1−θ)

θ

f0 = b− (v − c) x∗θ

1− x∗θ
f1 = v − c+ b

and yields platform profits

(v − c)
(

1 + 2µ+ 2 (1 + µ)x∗ (1− θ)− 1

1− x∗θ

)
.

We know that x∗ =
1−

√
θ

2(µ+1)(1−θ)
θ

maximizes this last expression, so it must be higher

than when it is evaluated at x∗ = µ
(µ+1)θ

, where it is equal to (v − c) (2−θ)µ
θ

. The latter

is the optimal platform profit that can be obtained conditional on f0 = 0 (because

θ ≥ 2
3+µ

> 1
2
). So the optimal solution is the one above, with f0 > 0.

� if θ ≥ 2(µ+1)
2(µ+1)+1

, then the solution conditional on f0 > 0 is

x∗ = 0

f0 = b,
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with indeterminate f1 and yielding platform profits

2b.

This dominates the solution with f0, which yields (2−θ)b
θ

, because θ ≥ 2(µ+1)
2(µ+1)+1

> 2
3
.

Now suppose µ ≥ 1. Then we have

2

3 + µ
≤ 1

2
≤ θ0 (µ) ≤ µ

µ+ 1
<

2 (µ+ 1)

2 (µ+ 1) + 1
.

So:

� if θ ≤ θ0 (µ), then there is no solution with f0 = 0, so the optimal solution has

x∗ = 1

f0 = b− (v − c) θ

1− θ
f1 = v + b− c

yielding platform profits

(v − c) (2− θ)
(

2 (µ+ 1)− 1

1− θ

)
.

� if θ0 (µ) ≤ θ ≤ µ
µ+1

, then there is no solution with f0 = 0, so the optimal solution has

x∗ =
1−

√
θ

2(µ+1)(1−θ)

θ

f0 = b− (v − c) x∗θ

1− x∗θ
f1 = v + b− c

yielding platform profits

(v − c)
(

1 + 2µ+ 2 (1 + µ)x∗ (1− θ)− 1

1− x∗θ

)
.
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� if µ
µ+1
≤ θ ≤ 2(µ+1)

2(µ+1)+1
, then the optimal solution with f0 > 0 is

x∗ =
1−

√
θ

2(µ+1)(1−θ)

θ

f0 = b− (v − c) x∗θ

1− x∗θ
f1 = v + b− c,

yielding platform profits

(v − c)
(

1 + 2µ+ 2 (1 + µ)x∗ (1− θ)− 1

1− x∗θ

)
.

We know that x∗ =
1−

√
θ

2(µ+1)(1−θ)
θ

maximizes this expression, so it must be higher than

when it is evaluated at x = µ
(µ+1)θ

, where it is equal to (v − c)µ (2−θ)
θ

. The latter is the

optimal profit that can be obtained conditional on f0 = 0 (because θ ≥ µ
µ+1
≥ 1

2
). So

the optimal solution is the one above, with f0 > 0.

� if θ ≥ 2(µ+1)
2(µ+1)+1

, then the solution conditional on f0 > 0 is

x∗ = 0

f0 = b,

with indeterminate f1 and yielding profits

2b.

This dominates the solution with f0, which yields (2−θ)b
θ

, because θ ≥ 2(µ+1)
2(µ+1)+1

> 2
3
.

6.4 Proof of Corollary 1

Recall the optimal level of discoverability in the baseline is

x∗b =


1 if 0 < θ ≤ θ1 (µ)

1−
√

θ
(µ+1)(1−θ)
2θ−1

if θ1 (µ) ≤ θ ≤ µ+1
µ+2

0 if θ ≥ µ+1
µ+2

,
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with θ1 (µ) ∈
(

1
2
, µ+1
µ+2

)
the unique solution in θ to

θ

(1− θ)3 = 4 (µ+ 1) .

Consider first the case µ ≥ 1, so the optimal level of discoverability with differential fees

is

x∗df =


1 if 0 < θ ≤ θ0 (µ)

1−
√

θ
2(µ+1)(1−θ)
θ

if θ0 (µ) ≤ θ ≤ 2(µ+1)
2(µ+1)+1

0 if θ ≥ 2(µ+1)
2(µ+1)+1

,

where θ0 (µ) is the unique solution to

θ

(1− θ)3 = 2 (µ+ 1) ,

so

θ0 (µ) < θ1 (µ)

Note that
1−

√
θ

2(µ+1)(1−θ)

θ
>

1−
√

θ
(µ+1)(1−θ)

2θ − 1

is equivalent to

1−
(
2−
√

2
)
θ

1− θ

√
θ

2 (µ+ 1) (1− θ)
> 1.

The LHS is increasing in θ. Furthemore, it is easily verified that the inequality holds for

θ = µ+1
µ+2

< 2(µ+1)
2(µ+1)+1

and does not hold when θ = θ1 (µ). Thus, there exists θ3 ∈
[
θ1 (µ) , µ+1

µ+2

]
,

such that the inequality holds for θ > θ3 and does not hold for θ ≤ θ3. This implies the

result for this case.

Now consider the case µ ≤ 1, so the optimal level of discoverability with differential fees

is

x∗df =



1 if 0 < θ ≤ 1
2

µ
(µ+1)θ

if 1
2
≤ θ ≤ 2

3+µ

1−
√

θ
2(µ+1)(1−θ)
θ

if 2
3+µ
≤ θ ≤ 2(µ+1)

2(µ+1)+1

0 if θ ≥ 2(µ+1)
2(µ+1)+1

,

Note that

µ

(µ+ 1) θ
>

1−
√

θ
(µ+1)(1−θ)

2θ − 1
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is equivalent to
θ (1− µ) + µ

θ
√

θ
(µ+1)(1−θ)

< (µ+ 1) ,

and the LHS of the last inequality is decreasing in θ. Furthermore, we still have

1−
√

θ
2(µ+1)(1−θ)

θ
>

1−
√

θ
(µ+1)(1−θ)

2θ − 1

iff
1−

(
2−
√

2
)
θ

1− θ

√
θ

2 (µ+ 1) (1− θ)
> 1

and the LHS of the last inequality is increasing in θ. And

µ

(µ+ 1) θ
=

1−
√

θ
2(µ+1)(1−θ)

θ

when θ = 2
3+µ

. Define

f (θ) =


µ

(µ+1)θ
if θ ≤ 2

3+µ

1−
√

θ
2(µ+1)(1−θ)
θ

if θ ≥ 2
3+µ

.

We have

f (θ) <
1−

√
θ

(µ+1)(1−θ)

2θ − 1
= 1

when θ = θ1 (µ) and

f (θ) >
1−

√
θ

(µ+1)(1−θ)

2θ − 1

when θ = µ+1
µ+2

.

So we can conclude there exists θ3 ∈
[
θ1 (µ) , µ+1

µ+2

]
such that f (θ) >

1−
√

θ
(µ+1)(1−θ)
2θ−1

iff

θ > θ3, which implies the result for this case as well.

6.5 Proof of n-firm case

To show the result, we can define the function X (θ) = n2 (n− 1) (1− θ)3 (1 + µ), which

is strictly decreasing in θ with X
(
1− 1

n

)
> 1− 1

n
. This implies 1− 1

n
< θ1 and X (θ2) < θ2,

implying θ2 > θ1.As a result for θ ≤ θ1, x∗ = 1 and for θ > θ2, x∗ = 0.
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6.6 Proof of Proposition 6

Let the measure of captives that seller i obtains be denoted λ′i. To handle this case we

use the result in Lemma 2 of Myatt and Ronayne (2019) to determine each seller’s expected

profit.18 Their result covers the case of two sellers i and j with λ′i > λ′j captives and the

same marginal costs c. Seller i is the less aggressive seller as it has more captives, meaning

p+
i > p+

j in their notation. Then seller j’s expected profit is

(
λ′j + φ

) (
p+
i − c

)
=
λ′j + φ

λ′i + φ
λ′i (v − c) > λ′j (v − c) ,

while seller i’s expected profit is λ′i (v − c), where φ is the measure of buyers informed of

both sellers and view them as substitutes.

Following the same logic for the mesaure of captives of seller 1 in the main text, the

captive buyers for seller i in general are

λ′i = λi (1− x) + λix (1− θ) + λjx (1− θ) .

Given λ1 > λ2, we have λ′1 > λ′2. Moreover, φ = (λi + λj)xθ.

Thus, seller 1’s profit is

(v − c+ b− f) (λ1 (1− x) + (λ1 + λ2)x (1− θ))

= (v − c+ b− f) (λ1 + λ2) (β1 (1− x) + x (1− θ))

and seller 2’s profit is

(v − c+ b− f)
λ2 (1− x) + (λ1 + λ2)x

λ1 (1− x) + (λ1 + λ2)x
(λ1 (1− x) + (λ1 + λ2)x (1− θ))

= (v − c+ b− f) (λ1 + λ2)
(1− β1) (1− x) + x

β1 (1− x) + x
(β1 (1− x) + x (1− θ)) ,

where β1 ∈
[

1
2
, 1
]

is defined in the main text.

Seller 1 participates iff (20) and seller 2 participates iff

f ≤ b+ (v − c)
(

1− (1− β1) (β1 (1− x) + x)

((1− β1) (1− x) + x) (β1 (1− x) + x (1− θ))

)
.

18For completeness, we’ve restated the relevant part of Lemma 2 of Myatt and Ronayne in the Online
Appendix A.4, which is much more general than the result stated here.
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Since β1 ≥ 1
2
, we have

β1

β1 (1− x) + x (1− θ)
≥ (1− β1) (β1 (1− x) + x)

((1− β1) (1− x) + x) (β1 (1− x) + x (1− θ))
,

so the binding constraint is (20) of seller 1. Clearly f will be set at the maximum value

allowed by the constraint, so the platform maximizes

(λ1 + λ2) (v − c)

(
µ+ 1− 1

1− x+ x(1−θ)
β1

)
(1 + x (1− θ)) .

over x.

If θ ≤ 1 − β1, then 1 − x + x(1−θ)
β1

is increasing in x, so the profit expression above is

increasing in x, which means x∗ = 1. Now suppose θ > 1− β1. The derivative of the profit

expression above in x is

(λ1 + λ2) (v − c)

(µ+ 1) (1− θ)−
2− θ − 1−θ

β1(
1− x+ x(1−θ)

β1

)2

 .

Since 2−θ− 1−θ
β1
≥ 0 and we have assumed θ > 1−β1, the last expression above is decreasing

in x, so the second-order condition holds. From this, we directly conclude:

� If

θ ≥
µ+ 1

β1
− 1

µ+ 1
β1

,

then x∗ = 0.

� If

µ+ 1

β2
1

≥
2− 1

β1
+
(

1
β1
− 1
)
θ

(1− θ)3

then x∗ = 1.

� Otherwise,

x∗ =
1−

√
2−θ− 1−θ

β1

(µ+1)(1−θ)

1− 1−θ
β1
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6.7 Proof of Proposition 7

As argued in the main text, it can never be optimal for the platform to induce only one

seller to join. Furthermore, it can never be optimal for the platform to induce the large seller

to join together with only one small seller. Indeed, if this was the case, the large seller must

prefer joining together with a small seller than its outside option, i.e. we would have

(v − c+ b− f) ((1− x)λ1 + (λ2 + λ1)x (1− θ)) ≥ (v − c)λ1

Meanwhile, the condition for the second small seller to prefer not joining when the other two

sellers have joined is

(v − c+ b− f) ((1− x)λ2 + (λ1 + 2λ2)x (1− θ)) < (v − c)λ2.

It can be easily verified that these two conditions are incompatible, so there cannot be an

equilibrium with one large seller and one small seller joining for any (f, x). Nor would the

platform want to force the outcome in which only one large seller and one small seller join.

Indeed, from the analysis above, the maximum transaction fee it could charge would be

f = b+ (v − c)

(
1− 1

(1− x) + x (1− θ) λ2+λ1
λ1

)
.

At this fee, we know that the second small seller would also be willing to join. The platform’s

profits with one large seller and one small seller are

f (λ1 + λ2) (1 + x (1− θ)) ,

whereas with all three sellers participating, the platform would make

f (λ1 + 2λ2) (1 + x (1− θ)) ,

which is strictly larger.

Thus, there are only two possibilities for the platform’s optimal strategy: either all three

sellers join the platform or only the two small sellers join.

In the case where only the two small sellers join, the platform sets x as in the baseline,

except here we have assumed b = µ = 0, so

x∗2 =

{
1 if 0 < θ ≤ 1

2

0 if θ ≥ 1
2

,
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The platform’s optimal fee and resulting profits for this case are

f ∗2 =

{
(v − c) 1−2θ

2(1−θ) if 0 < θ ≤ 1
2

0 if θ ≥ 1
2

Π∗2 =

{
λ2 (v − c) (1−2θ)(2−θ)

1−θ if 0 < θ ≤ 1
2

0 if θ ≥ 1
2

.

In the case where all three sellers join the platform, the large seller’s profit is

(v − c− f) (λ1 (1− x) + (λ1 + 2λ2)x (1− θ)) ,

while the two small sellers each make a profit equal to

(v − c− f) (λ2 (1− x) + (λ1 + 2λ2)x (1− θ)) .

For the large seller to participate we must have

f ≤ (v − c)
(

1− λ1

λ1 (1− x) + (λ1 + 2λ2)x (1− θ)

)
For the small sellers to participate we must have

f ≤ (v − c)
(

1− λ2

λ2 (1− x) + (λ1 + 2λ2)x (1− θ)

)
.

Since λ1 > λ2, the binding constraint must be that of the large seller, so for f to be optimal,

it must be that

f = (v − c)

(
1− 1

1− x+ x(1−θ)
β

)
.

Platform profits are then

f (λ1 + 2λ2) (1 + x (1− θ))

= (λ1 + 2λ2) (v − c)

(
1− 1

1− x+ x(1−θ)
β

)
(1 + x (1− θ))

In this case, the optimal level of discoverability is

x∗3 =

{
1 if 0 < θ ≤ 1− β
0 if θ ≥ 1− β

.
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And the platform’s profits are

Π∗3 =

{
(λ1 + 2λ2) (v − c) (1−β−θ)(2−θ)

1−θ if 0 < θ ≤ 1− β
0 if θ ≥ 1− β

.

Thus, when θ ≥ max
{

1
2
, 1− β

}
, we have Π∗3 = Π∗2 = 0, and when θ ≤ min

{
1
2
, 1− β

}
,

we have Π∗3 ≥ Π∗2 iff λ2 ≥ θλ1. If 1− β ≤ θ < 1
2

(which can only happen when β > 1
2
), then

Π∗2 > Π∗3. And if 1
2
≤ θ < 1− β (which can only happen when β > 1

2
), then Π∗3 > Π∗2. From

this we can conclude:

� If θ ≥ 1
2
, then Π∗3 > Π∗2 for all β < 1− θ and Π∗3 = Π∗2 = 0 for all β ≥ 1− θ.

� If θ < 1
2
, then Π∗2 > Π∗3 iff β > 1

1+2θ
.

6.8 Proof of Proposition 8

Let’s first look for an equilibrium in which both sellers join the same platform, say

platform 1 (the same analysis applies with the roles of the two platforms reversed). The

payoff to each seller when they both join platform i is

(v + b− fi − c) (λ (1− xi) + 2λxi (1− θ)) .

This payoff is increasing in xi if θ ≤ 1
2

and decreasing in xi if θ > 1
2
. Thus, for platform 1 to

attract the two sellers in the fee-setting stage, we must have x1 ≥ x2 if θ ≤ 1
2

and x1 ≤ x2 if

θ > 1
2
. And working backwards to the discovery-setting stage, if θ ≤ 1

2
, then we must have

x1 = 1 (otherwise platform 2 could profitably deviate to x2 = 1 and attract the two sellers

in the second stage) and x2 = 0 (otherwise platform 2 would make negative profits). And if

θ > 1
2
, then by a similar logic we must have x1 = x2 = 0.

So the equilibrium with both sellers joining platform 1 always exists. It entails

(x1, x2) =

{
(1, 0) if θ ≤ 1

2

(0, 0) if θ > 1
2

and

(f1, f2) =

{ (
(v + b− c)

(
1−2θ
2−2θ

)
, 0
)

if θ ≤ 1
2

(0, 0) if θ > 1
2

Now let’s look for an equilibrium in which the two sellers are split between the two

platforms, say seller 1 is on platform 1 and seller 2 is on platform 2. Seller i’s profits are
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then

λ (v + b− fi − c)

and platform i’s profit is λfi.

Suppose first θ ≥ 1
2
. Then for platform i, setting xi > 0 is a dominated strategy because

the payoff to each seller when both join platform i is (v + b− fi − c) (1− xi + 2xi (1− θ)),
which is decreasing in xi. So there is no advantage to set xi > 0, and indeed there is a

disadvantage given the fixed cost ε involved in doing so. This implies in equilibrium we must

have x1 = x2 = 0 in the first stage. Which in turn implies that in the second stage the only

possible equilibrium is f1 = f2 = 0.

Now suppose θ < 1
2
. In this case, the payoff to each seller when both join platform i is

(v + b− fi − c) (1− xi + 2xi (1− θ)), which is increasing in xi. Thus, if xi ≥ xj, the only

possible equilibrium in the fee-setting stage is that both sellers join platform i. This means

there is no possible equilibrium in which the two sellers split across the two platforms in this

case.

So the equilibrium with the two sellers splitting between the two platforms exists iff

θ ≥ 1
2
. If it exists, it involves x1 = x2 = 0 and f1 = f2 = 0.

6.9 Proof of Proposition 9

Consider the proposed equilibrium in Proposition 9. The first thing to note is if the large

seller ever joins the same platform as the other two sellers, the highest expected profit it can

get on a platform charging f with discoverability x is (λ1 (1− x) + (λ1 + 2λ2)x (1− θ)) (v − c− f).

When the condition in the proposition holds (i.e. λ1 >
2(1−θ)λ2

θ
), the amount the large seller

gets is decreasing in x, and so is strictly less than what it gets with x = 0, i.e. λ1 (v − c− f),

which is less than λ1 (v − c), the amount the larger seller gets if it doesn’t join either plat-

form. Thus, there is no way for either platform to attract the large seller together with the

two small sellers other than to set x = 0 and f = 0. This is what platform 2 does in the

proposed equilibrium.

The payoff for a small seller on platform 1 when the other small seller also joins is

(λ2 (1− x1) + 2λ2x1 (1− θ)) (v − c− f). Note this is increasing in x1 provided θ < 1
2
, so

platform 1 can charge the most when it sets x1 = 1. In this case, each small seller gets

expected profit of 2λ2 (v − c− f1) (1− θ). This compares to its next best alternative which

is (v − c)λ2 if it goes to platform 2 or does not join either platform. So we require

2λ2 (v − c− f1) (1− θ) ≥ (v − c)λ2
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or

f1 ≤
(

1− 1

2 (1− θ)

)
(v − c) = f ∗1 .

We require θ ≤ 1
2

so that f ∗1 ≥ 0. Under this condition, platform 2 cannot attract the small

sellers even though it sets f2 = 0 given it sets x2 = 0. Thus, given x1 = 1 and x2 = 0 in the

first stage, the equilibrium in the second stage is indeed f1 = f ∗1 and f2 = 0, with the two

small sellers going to platform 1 and the large seller going to platform 2.

If platform 1 were to set some lower (still positive) x1 in the first stage, it would earn

strictly lower profit given the amount the small sellers are willing to pay to join is increasing

in x and the large seller does not join unless x1 = 0 and f1 = 0.

Lastly, we need to rule out that platform 2 could make a positive profit by incurring the

small fixed cost ε in order to set some 0 < x2 ≤ 1, and competing. As discussed above, with

0 < x2 ≤ 1, platform 2 cannot attract all three sellers. Also, because x2 ≤ 1 and θ < 1
2
,

it cannot attract the two sellers and make positive profits to cover ε. And it also can not

attract the larger seller only and make positive profits because it offers no tools so cannot

charge f2 > 0.
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