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Abstract

The gig economy offers flexible work opportunities where contractors enjoy the freedom to

control when and how they do their work. In this paper, we look at one particular form of

freedom: ability to work on multiple platforms, a practice termed multi-homing. We study

whether it is in the best interest of the platforms to allow multi-homing and what users have

to gain from it, if any. The answer depends on the characteristics of the market. With multi-

homing, a platform has less incentive to invest in supply capacity. It also has less incentive to

differentiate itself through scale, dampening the excessive competition between platforms. In

markets that exhibit economies of scale (e.g. ride-sharing, rental, e-commerce), the latter effect

is more prominent. In those markets, platforms have their cake and eat it too. By allowing

multi-homing, platforms extract more revenue from the market and also give their workers more

freedom, a key move that strengthens platforms’ case against regulators that its workers are free

from platform’s control. Although workers have more freedom, they are not better off financially.

In markets with multi-homing, the supply market is usually thin, and customers receive poor

service quality.

1 Introduction

The rise of the gig economy has driven a fundamental change in how workers do their jobs and what

channels they can access to offer their services. Many gig economy workers are free to choose when

they work and for whom they work. They can work on multiple competing platforms, a practice

commonly termed multi-homing. For example, drivers can search for rides simultaneously on Uber

and Lyft, rental places can be posted on AirBnb and Booking.com, and sellers can open their online

store on both eBay and Etsy.

While a firm can restrain its employees from working for other firms, platforms workers are

independent contractors and, therefore, there are limits to how much control a platform can exert
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on them. A platform that wants to impose exclusivity needs to either change the nature of its

relationship with the workers (e.g. classify them as employees), or implement indirect mechanisms

like switching costs that make it costly to multi-home. In most platforms, the switching costs are

not high. Workers can freely multi-home, and a considerable number of platform workers do. Some

estimate that approximately 40% of gig economy drivers use multiple platforms over the course of a

day (Davalos and Bennett 2022). Given its prevalence, we find it important to understand in what

ways a market with multi-homing workers differs from one with single-homing workers, and what

policy the users prefer.

Answering this question not only improves our understanding of how gig economy works, but

also puts together another piece of the puzzle in a long-standing question: Should gig economy

workers be classified as employees? This is a question that is being debated in many parts of the

world, including California, Massachusetts, and the United Kingdom, and is one that likely will

have the greatest impact on the future of the gig economy (Conger 2021, Browning 2022, Marshall

2021). Platforms such as Uber argue that if workers are to be reclassified as employees, they will no

longer enjoy the flexibility they have right now (Stein 2020), including the ability to use multiple

apps (Scheiber 2019). Surely, reclassification of workers has large direct economic implications for

platforms (see Reich (2020) for a detailed analysis) and in this paper we abstract away from those.

Instead, we aim to understand a question that is important for both the platforms and regulators:

do platform get hurt by multi-homing, and would they restrict workers from multi-homing if given

the option (e.g. after workers become employees)?

To study these questions, we build a mathematical model of a market with two platforms that

can each choose its price and wage, and also whether it will operate with dedicated or multi-homing

workers. In our model, we refer to the workers on the platform as servers. The servers choose

whether to work and select which platform to work for on a short-term basis. Customers care about

the prices they are charged and also the level of service quality in the platform from which they are

taking service, which itself depends on whether servers multi-home or not.

Contrary to the common contention that multi-homing is bad from platforms, we find that

there are various ways in which they benefit from it. More specifically, we find that multi-homing

influences (i) overall efficiency of the market, (ii) the platform’s incentive to invest in servers, and

(iii) the nature of competition between the platforms. Depending on the characteristics of market

the platforms operate in and relative strengths of these effects, platforms may prefer to operate with

multi-homing workers. Instead, we find that in most of those instances, it is the customers and the

servers who are worse off.
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The value a platform provides to the market depends significantly on the composition of those

two sides: An Uber rider can be matched with a closer ride if there is more driver supply; an Uber

driver can find more rides if there is more demand. Due to these reinforcing effects, platforms

generally operate more efficiently as they gain scale. Multi-homing allows servers to work for any

platform, giving them the possibility to find ride requests that are possibly closer to them, reducing

the service time associated with serving a customer. In markets where scale is beneficial, doing so

increases the overall efficiency of the market.

As servers are limited resources with fixed capacity, only a single platform can utilize them at any

given time. When servers multi-home, without an explicit control over servers, platforms are unable

to take full advantage of the servers they hire. When a platform increases its wage to attract more

servers to the market, some of that capacity is shared between the platforms. This disincentivizes

investment in server capacity. With lower wages, the service quality typically deteriorates.

Multi-homing also changes the nature of competition between platforms. There are advantages

to operating a large market (e.g., operating at a higher efficiency, which lends itself to lower costs).

When platforms operate with their dedicated workers, each platform is responsible for hiring its own

workers and building its own scale. Multi-homing combines the scale of two platforms and reduces

a platform’s ability to its own scale. Unable to get the full benefits of building scale, platforms

have less incentive to compete for market share. In markets where the outside option is costly and

platforms offer substitute services, the competition for scale is mostly destructive. In those cases,

multi-homing dampens the excessive competition between platforms and improves profits.

2 Literature Review

Our paper is at the intersection of two streams of work that are closely related: (i) the design and

management of service platform and (ii) competition under congestion or capacity limitations.

In recent years, there has been extensive study of two-sided platforms. Much of this work focuses

on understanding how a two-sided monopolistic platform should be managed in the presence of on-

demand workers. Some of the seminal papers on this are Gurvich et al. (2016), Cachon et al. (2017),

Castilllo et al. (2017), Taylor (2018), Wu et al. (2020). In our model, however, we focus on two

platforms competing in a market.

Similarly to us, papers like Ahmadinejad et al. (2019), Lian et al. (2022) look at competition

between platforms in the presence of multi-homing, however, they do not compare it with a single-

homing duopoly. Bakos and Halaburda (2020) look at how multi-homing affects the strategic
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interdependence between a platform’s optimal pricing decision across two sides of the market. They

consider a market where at least some agents multi-home, whereas we allow both sides of the market

to single-home.

Papers like Bryan and Gans (2019), Liu et al. (2019), Belleflamme and Peitz (2019), Zhang et al.

(2022) compare multi-homing with single-homing, however, they do not incorporate the effects on

congestion on the competition, a key characteristic of many platforms markets.

Some focus on competition between platforms where the customers’ utility from a service de-

pends on the scale of a platform (e.g. number of users on one or both sides of the market), but not

on utilization. Some seminal works in this area are (Rochet and Tirole 2003, Caillaud and Jullien

2003, Doganoglu and Wright 2006, Armstrong 2006). This is applicable to the analysis of social

media platforms or payment systems. In our system, one side of the market offers a service and

the other side receives a service, and it takes a nontrivial amount of time to complete the service.

Hence, the utility users get from participating in the platform depend on how busy they expect

servers to be.

Our paper is most closely related to those that explicitly study platform competition in the

presence of multi-homing. Among these papers, Tadepalli and Gupta (2020), Benjaafar et al.

(2020), Bernstein et al. (2021) also compare multi-homing with single-homing similar to us. Unlike

us, though, they limit their analysis to those markets that exhibit constant returns to scale. Liu

et al. (2017) compares multi-homing with single-homing in a market that exhibits economies of

scale. Unlike us, they treat price and wage as exogenous decisions.

Bai and Tang (2018) look at a similar problem for two types of markets: markets that exhibit

the "multi-homing effect" and markets that do not. The authors are interested in understanding

the conditions under which there is a market equilibrium where two platforms co-exist. Unlike us,

they do not compare the platforms’ and users’ utility under multi-homing with single-homing.

Nikzad (2017) also looks at a similar setting as ours, where two platforms compete over prices

and wages in a market where customer waiting times depend on idle server capacity. While the

paper compares monopoly and competition, our work compares multi-homing duopoly with a single-

homing duopoly. By doing so, we identify a new competitive dynamic present in platform markets:

as platforms gain scale, they tend to operate more efficiently, and therefore platforms price compete

not only over market share, but also over scale. Multi-homing can dampen the excessive price

competition by reducing a platform’s ability to control its scale.

Li and Zhu (2021) use a dataset consisting of Groupon’s deal offerings to empirically analyze

how information sharing policies of a platform influence multi-homing behavior of its rival. They
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do not focus on pricing.

There are also papers in which the effects of economies of scale in a system are implicitly defined;

however, this is not a primary area of focus. In (Levhari and Luski 1978, Allon and Federgruen 2007),

firms compete in a market where customers form queues. Although the markets in these settings

exhibit economies-of-scale, the behavior of markets with varying levels of economies-of-scale is not

considered. Instead, we look at platform competition with varying levels of scale characteristics.

Another set of related papers examine how economies of scale influence competition between

firms in supply chain or other one-sided service settings. In this line of work, Johari et al. (2010)

examine the pricing and investment decision of firms when the congestion costs of customers decrease

in the firms’ investments. While their results are in line with our observations in our dedicated

model, they do not provide any results that are analogous to our multi-homing setting. In a similar

type of market, Cachon and Harker (2002) explores the trade-offs associated with the potential

outsourcing decisions of firms. They find that firms have a strong incentive to outsource production

in the presence of scale economies due to the effect of outsourcing on competitive incentives. There

is a fundamental difference between outsourcing and multi-homing, which sets us apart from this

line of work. When a firm outsources its production, its costs become insensitive to scale. With

multi-homing, platform’s costs remain sensitive to scale, but a platform’s ability to control its own

scale is limited. While a platform’s selection of price and wage indirectly influences its own scale, so

does the decision of other platforms. This means that a platform’s strategy always depends on its

competitors’ decisions and it cannot be reduced to a single dimension, e.g. a game of prices, posing

significant analytical complications.

3 Model

Consider a market with two profit-maximizing service platforms, a pool of customers and another

pool of potential servers. The two platforms are denoted by subscripts i and j, and all characteristics

defined on platform i apply analogously to platform j, unless otherwise noted. In this market,

customers look for a service that requires a non-negligible amount of work (e.g. transportation),

and the servers bring the capacity to the market to carry out the service in exchange for monetary

compensation. Platforms are tasked with matching customers with servers, and a platform collects

a commission from every transaction that occurs through its matching.
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3.1 Agents

Customers take into account explicit and implicit costs when choosing a platform. The explicit cost

associated with taking service from platform i is the amount paid for the service, pi. The implicit

cost is the disutility incurred by a customer in relation to the quality of service on the platform, gi.

In ride-sharing, this cost is analogous to the inconvenience of waiting for the service. We call the

sum of these two costs the “full price”, fi = pi + gi (see Cachon and Harker 2002).

Each platform can control the full price it charges customers, fi, and the wage it pays to servers

per unit of service time, wi. If platform i serves λi customers and the average time it takes to serve

a customer is τi, platform i earns a profit of

Πi = λi(pi − τiwi)

= λi (fi − gi − τiwi) .

Adopting a demand assumption frequently used in the platforms literature (Bai and Tang 2018,

Bernstein et al. 2021), we let the customer demand for platform i be linear, decreasing in its full

price and increasing in its competitor’s full price:

λi = 1− fi + bfj . (1)

The parameter b ∈ [0, 1] regulates the degree of differentiation of the services offered by the two

platforms. If b = 0, the platforms offer independent services and each platform operates as a

monopoly within its respective market. This is similar to a partially covered Hotelling model.

When b > 0, services are substitutes and the degree of differentiation decreases in b. At the extreme

b = 1, services are perfect substitutes. In this case, the total market size, λi + λj , is fixed and,

similar to a fully covered Hotelling model, the full prices simply shift the market share allocated to

each platform.

Following Lian et al. (2022), we assume that the supply market is sufficiently large and fully

elastic. Servers have a homogeneous outside option with a pay-off of w0 per unit time. They do not

incur an explicit cost for working on or switching between platforms (other than their opportunity

costs).

In the market, the service time associated with serving a customer is non-negligible. In ride-

sharing, it involves moving to a customer’s location, picking them up and dropping them off at a

new location. The time it takes to complete this work is not static and can change depending on

the size of the system. In a market with ample demand, it may be easier for servers to find nearby

customers, reducing the total time it takes to complete a service. In other systems, a large market
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can increase congestion and increase workload. If servers of platform i fulfill a demand of λi, we

let the average service time associated with that task be τi = λϕ−1
i where ϕ > 0. If ϕ < 1, the

marginal workload to serve each customer decreases in size. In other words, it takes less work to

serve an additional customer. We define this as a market with economies of scale. Alternatively,

if ϕ > 1, then serving each additional customer requires more work than before. This is a market

with diseconomies of scale. Markets with ϕ = 1 exhibit constant returns to scale. We let the

service capacity of individual servers (e.g. amount of service time a server can provide) be equal to

1 without loss of generality. In our analytical results, we will focus on those markets that exhibit

economies of scale, though our analysis can easily be extended to study diseconomies of scale. In

our numerical study, we provide results on both types of markets.

Customers care about how busy the servers are. Typically, it is easier to find an available server if

the servers are more idle. Consistent with this observation, we let customers’ disutility for platform

i’s service, gi, be linear, increasing in the average utilization of the servers that serve customers

for platform i with slope c ∈ R. That is, if platform i has µi many servers, these servers fulfill a

demand of λi and the average service time is τi, the customers’ implicit cost for taking service from

platform i is gi = cλiτi/µi.

Servers are paid for the duration they actively work and, therefore, they also care about their

utilization when anticipating earnings. They expect to earn more in markets where supply is small

and there is a lot of work to complete and adjust their entry accordingly. If µi many servers

collectively serve λi customers with an average service duration of τi and earn wi per unit time of

service, each server expects to earn
λiτiwi

µi
.

Platforms send service offers to the servers upon the arrival of a customer on the system; hence,

the servers also care about the timing of the offers. If two platforms pay different wages, a server

may prefer an immediately available offer from a lower-wage platform to waiting for a higher-wage

offer. A server accepts an offer if and only if the expected amount to be earned for the duration of

the service is higher than what the server would expect to earn during that same duration if the

server rejected the offer.

3.2 Operating policies

The platforms may individually adopt either of two available policies: a dedicated policy where the

platforms make exclusive arrangements with servers to restrict them from working for the other

platform, and a multi-homing policy where platforms allow multi-homing and the platforms operate
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with a combination of the two server pools. Given that there are only two platforms, if any of the

platforms requires exclusivity, this forces the other platform to operate in a similar fashion (e.g. if

platform i requires exclusivity and platform B does not, workers on platform j will not be able to

work for platform i without abandoning platform j altogether). If neither platform makes exclusive

arrangements, then the market operates with multi-homing servers. Throughout the text, we denote

the dedicated operating policy with superscript D and the multi-homing policy with superscript M.

Under the dedicated policy, each server works exclusively on a single platform. Any server

working for a platform only performs the work associated with serving that platform’s customers.

Therefore, in these markets, the average time it takes to serve a customer on platform i is τi = λϕ−1
i .

If µi many servers work for platform i, the implicit cost customers observe for taking a service from

platform i is gi = cλϕ
i /µi.

With multi-homing policy, a server can work for both platforms. Under the scenario where all

servers accept all jobs in the market, all servers collectively serve the whole market In the analysis

section, we will show that this is always the case when platforms adopt multi-homing. In these

markets, the average time it takes to serve a customer on either platform is τi = (λi + λj)
ϕ−1. If

there are µ many servers in the market, the implicit cost that a server observes for taking a service

from either platform is gi = c(λi + λj)
ϕ/µ.

3.3 Timing of decisions

Figure 1 displays the sequence of events. For both models, decisions in the system occur in three

sequential stages. In the first stage, the platforms simultaneously choose whether to make exclusive

arrangements with the workers. The platforms observe the outcome, and then in the second stage,

both platforms simultaneously choose what price to charge to the customers and how much to pay

servers. In the third stage, after observing these terms, the servers decide which platform(s) to join,

if at all. After all decisions are completed, customers receive service and payments are made.

t = 1

Platforms choose

operating policiesy
x

Platforms observe

the policy outcome

t = 2

Platforms announce their

full prices and wagesy
x

Servers observe

the terms

t = 3

Servers make

participation decisionsy
x

Customers receive service

and payments are made

Figure 1: Sequence of events
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4 Analysis

In this section, we analyze the equilibrium behavior of our model. First, in Section 4.1, we define

the equilibrium characteristics. Then, we analytically study the equilibrium behavior of the market

for the special case where platforms offer fully substitute services (b = 1) in Section 4.2 and the

case without economies of scale (ϕ = 1) in Section 4.3.

4.1 Analysis of Equilibrium

It is known that games with economies of scale may not behave well and an equilibrium is not

guaranteed to exist (Cachon and Harker 2002). Our model is susceptible to similar challenges. We

find that there are cases in which the equilibrium does not exist or there are multiple equilibria.

In the analysis, we define these equilibrium conditions and characterize a particular type of market

where uniqueness is guaranteed.

Since the game we analyze has three sequential decision steps, we use backward induction to

solve for the equilibrium. First, in Section 4.1.1, we look at the servers’ entry decisions. Then,

in Sections 4.1.2 and 4.1.3, we first examine platform’s pricing and wage decisions, and then their

policy decisions.

4.1.1 Third Stage

In the third stage, prices, wages, and operating mode (dedicated or multi-homing) are fixed, and

the servers decide whether to work.

With dedicated policy, servers individually prefer to work for the platform that yields the highest

earnings, assuming that it pays higher than their outside option. Since the supply is fully elastic

and expected earnings decrease in supply, equilibrium is achieved when all servers earn exactly w0.

Proposition 1 characterizes the equilibrium supply and service quality of a platform as a function

of the decisions of the two platforms.

Proposition 1. When the market operates with dedicated policy, there exists a unique equilibrium

to the third stage game. In equilibrium, (i) the total number of servers working for platform i is

µD
i =

λϕ
i wi

w0
;

(ii) the customers’ implicit cost for taking service from platform i is

gDi = c
w0

wi
.
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The equilibrium supply of a platform is proportional to the total revenue it distributes to the

servers. In larger markets, there is more work to be completed and revenue to be earned. Therefore,

the size of the supply market scales positively with demand. It is also linear, increasing in wage

paid by the platform. With higher wages, servers earn more from each ride, which attracts more

interest. Interestingly, customers’ implicit cost is insensitive to the size of the demand. This is

due to the free-entry characteristic of the supply market. As demand grows, more servers enter the

market, thereby compensating for any direct effect of demand on utilization.

With multi-homing, a server may accept rides from both platforms, only from one platform or

none of the platforms. When the two platforms pay different wages, servers naturally like to take

service offers that pay more. However, they also prefer to take offers that are immediately available

rather than waiting for a better offer. Proposition 2 shows that as long as both platforms pay wages

above w0, then all participating servers accept any ride offers from either platform. Furthermore, a

platform that pays a wage below w0 cannot attract any servers. This behavior is analogous to the

supply market defined in Lian et al. (2022).

Proposition 2. When multi-homing is allowed, the dominant strategy of a participating server is

to accept all service offers that pay equal to or above w0. If a platform pays strictly below w0, no

server accepts offers from that platform.

Since participating servers accept all rides, servers of the two platforms that operate with a multi-

homing policy operate as one large pool. Similar to dedicated policy, the equilibrium is achieved

when all servers earn exactly w0. Proposition 3 characterizes equilibrium supply and service quality

of a platform as a function of the decisions of the two platforms.

Proposition 3. When the market operates with multi-homing policy, there exists a unique equilib-

rium to the third stage game. In equilibrium, (i) the total number of servers participating in the

market is

µM =
(λi + λj)

ϕ

w0
w;

(ii) the customers’ implicit cost for taking service from a platform is

gMi = c
w0

w

where w is the average wage earned by the servers:

w =
λiwi + λjwj

λi + λj
. (2)

.
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Since servers accept all incoming rides, there is no difference between the average utilization of

a server working on platform i and platform j. As a result, both platforms operate with the same

server workload. Furthermore, with multi-homing, service quality is a function of both platform’s

prices and wages, which means that a platform does not have full control over its service quality.

4.1.2 Second Stage

In the second stage, the platforms know the result of the first stage game, and each platform

simultaneously chooses the full price and the wage that maximize its profits, taking into account

the server decisions that are expected to occur in the third stage.

Analyzing the equilibrium in the second stage game is challenging because the platforms’ profit-

maximizing objective function is not always quasi-concave. As a result, a platform’s best-response

function may not necessarily be continuous, and an equilibrium to the second stage game may not

exist.

Another complication is the substitutability characteristics of the platforms’ wage investments.

With multi-homing, number of servers accepting rides from a platform depends on the total wages

paid in that market, but not on how much of that wage is paid by one particular platform. This

means platforms can profitably free-ride (e.g. choose a very low wage and send ride offers to servers

attracted to the market by higher-wage paying platform). Although this deviation is never an

equilibrium, it can be a dominant choice, resulting in market with no equilibrium.

In order to provide a structure to the game, we focus only on those equilibria where both

platforms serve non-zero customer and platforms pay wages that are strictly above the servers’

outside option pay-off, w0. We call these types of equilibria “full participation above minimum wage

equilibria”. This type of equilibria is expected to emerge when the supply is cheap (w0 is small) and

customers care significantly about the quality of the service (c is large). Propositions 4 and 5 show

that there exists at most one such equilibrium to the game.

Proposition 4. If the platforms operate with dedicated workers, there is a unique symmetric candi-

date full participation above minimum wage equilibrium to the second stage game. If an equilibrium

exists, the equilibrium price of each firm, fi = fj = f , is equivalent to the smallest solution to the

following implicitly defined function:

√
c
√
w0(1 + ϕ)(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf = 0.

The equilibrium wages, wi = wj = w, are uniquely defined in closed form by the following equation:

w =
√
c
√
w0(1− (1− b)f)

1−ϕ
2 .
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The equilibrium wages of the platforms are increasing in the servers’ outside option, w0, and

the service quality cost parameter, c. When it is expensive to hire servers or customers care a lot

about service quality, platforms naturally need to invest more in supply. In markets with economies

of scale, wages scale positively with the size of the market λi(f, f) = 1− f + bf . This is due to two

reinforcing effects. In a large market, platforms operate more efficiently and platforms can afford

paying more to the servers. At the same time, higher wages increase service quality and drive more

customers to the market. In markets with diseconomies of scale, the first effect works in reverse and

wages scale inversely with market size.

Proposition 5. If the platforms operate with multi-homing servers, any full participation above

minimum wage equilibrium to the second stage game is symmetric. There exists a unique candidate

full participation above minimum wage equilibrium. If the equilibrium exists, equilibrium price of

each firm, fi = fj = f , is equivalent to the smallest solution to the following implicitly defined

function:

(5 + b− bϕ+ ϕ)2
ϕ
2
−2√c

√
w0(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf = 0.

The equilibrium wages, wi = wj = w, are uniquely defined in closed form by the following equation:

w =
√
c
√
w02

−ϕ
2 (1− (1− b)f)

1−ϕ
2 .

The optimal wage under multi-homing satisfies the same properties as the dedicated model.

However, for any set of full prices, fi = fj = f , multi-homing gives strictly lower wages. To see why,

let us compare the partial derivative of a platform’s objective function with respect to its wage at

any symmetric set of decisions under the two policies.

∂

∂wi
ΠD

i (fi, fj , wi, wj)

∣∣∣∣ fi = fj = f
wi = wj = w

=
cw0(1− (1− b)f)

w2
− (1− (1− b)f)ϕ,

∂

∂wi
ΠM

i (fi, fj , wi, wj)

∣∣∣∣ fi = fj = f
wi = wj = w

=
cw0(1− (1− b)f)

2w2
− 2ϕ−1(1− (1− b)f)ϕ.

These equations show us the effect of a small wage hike on the profits of platform i. In both

equations, the first terms on the right-hand side capture the marginal profit gain resulting from

improved service quality. The second term is profit loss due to rising direct server costs. When

choosing an optimal wage, the platform strikes a balance between these two terms. Whether a

policy generates higher or lower wages then depends on the relative sizes of these terms. With

multi-homing, the ratio of the first term to the second term is always smaller in magnitude. This

primarily occurs due to the presence of 2 in the denominator of the first term, which signifies that
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a platform operating with multi-homing servers gets less returns to its service quality from paying

higher wages. This is due to the capacity-sharing nature of multi-homing. With multi-homing,

the servers platforms attract to a market (with a wage hike) divide their capacity between the two

platforms; whereas with dedicated, platforms utilize the full capacity of each server they attract to

the market.

On the pricing side, a platform considers a balance between earning sufficiently high margins

and having a sufficiently large market. For a set of symmetric full prices, f , and wages, w, we have

∂

∂fi
ΠD

i (fi, fj , wi, wj)

∣∣∣∣ fi = fj = f
wi = wj = w

= (1− (1− b)f)−
(
f − w(1− (1− b)f)ϕ−1 − cw0

w

)
−w(1− ϕ)(1− (1− b)f)ϕ−1.

(3)

The first two terms capture the effects of price increase that are not directly related to system

efficiency. They correspond to the change in revenue associated with charging higher prices and

operating a smaller market, respectively. The third term is the increase in server expenses due to

the lower efficiency associated with operating a smaller market. The direction and magnitude of

this term are directly related to the scale characteristics of the system. Due to economies of scale,

a larger system operates more efficiently and charging higher prices decreases the size of the market

and therefore the revenue.

With multi-homing, we have

∂

∂fi
ΠM

i (fi, fj , wi, wj)

∣∣∣∣ fi = fj = f
wi = wj = w

= (1− (1− b)f)−
(
f − 2

ϕ−1
w(1− (1− b)f)ϕ−1 − cw0

w

)
−w(1− ϕ)(1− b)2ϕ−2(1− (1− b)f)ϕ−1.

(4)

Multi-homing exhibits the same three effects. However, there are two differences. Comparing

the second terms of Equations (3) and (4), we see that markets with and without multi-homing

attain different profit margins, which influences pricing dynamics. More specifically, in markets

with economies (diseconomies) of scale, multi-homing servers operate more (less) efficiently, and

as a result, multi-homing generates larger (smaller) margins, which incentivizes platforms that

allow multi-homing to set lower (higher) prices. Comparing third terms, we see that multi-homing

also influences competitive dynamics through its effect on platform’s ability to control the level of

efficiency in the system. With a dedicated policy, the efficiency of a platform depends on its own

customer market. With multi-homing, since all servers serve all customers, a platform’s efficiency

depends on the total size of the market. This distinction becomes important from a competitive

perspective, because a platform’s demand is more responsive to the platform’s price than the total

13



demand is:
∂λi(fi, fj)

∂fi
= −1,

∂ (λi(fi, fj) + λj(fi, fj))

∂fi
= −(1− b),

Especially in markets where platforms offer substitute products and the outside option is costly

(b large), a platform with multi-homing servers cannot significantly influence its efficiency through

prices. In markets with economies-of-scale, this means that platforms have less to gain from cutting

their prices and gaining more market share. This can be advantageous for platforms. Not only

can they charge higher prices, but they can also do so without any loss of efficiency. Through this

dynamic, multi-homing dampens price competition between platforms and incentivizes platforms

to operate at elevated prices.

Although Propositions 4 and 5 define the equilibrium characteristics of markets with economies

of scale, the results naturally extend to markets with diseconomies of scale. Only minor difference

is that, in markets with diseconomies of scale, the equilibrium full prices are equal to the largest

root of the given implicitly defined price function.

4.1.3 First Stage

In the first stage, the platforms choose whether to operate with a dedicated or multi-homing policy,

anticipating the implications of their decisions in the second and third stages. Let ΠD
i = ΠD

j = ΠD

be the equilibrium payoffs of the platforms in the game if the outcome of the first decision stage

is dedicated and ΠM
i = ΠM

j = ΠM be the payoff if the outcome of the first decision stage is

multi-homing.

In the first decision stage, the platforms choose the policy that maximizes the profits they expect

to earn. If they expect to earn more with a dedicated policy, then the platforms are better off with a

(D,D) outcome (e.g. both platforms choose to operate with dedicated workers). Instead, if platforms

expect to earn more with a multi-homing policy, they are better off with a (M,M) outcome.

However, in both cases, the equilibrium is not necessarily unique. Since one platform choosing

dedicated forces the competitor to operate with dedicated workers as well, platforms generate the

same profits in scenarios (D,D), (D,M), (M,D). This leaves (D,D) as a potential equilibrium,

even when platforms could perform better with multi-homing servers. Fortunately, as Proposition

6 shows, there exists a unique Pareto optimal outcome for the first stage game. Under the Pareto

optimal equilibrium, both platforms make symmetric decisions and choose the policy that will give

the highest pay-off under the assumption that their competitor will do the same.
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Proposition 6. Assuming that the second stage dedicated and multi-homing games have equilibrium

solutions, a Pareto optimal outcome of the first stage game is (D,D) if ΠD ≥ ΠM. Otherwise, if

ΠD < ΠM, then the Pareto optimal outcome of the game is (M,M).

A viable first stage equilibrium does not always exist. If platforms need to distribute a lot of

revenue to attract servers to the market and customer demand for service is small, platforms may

not achieve profitability. Alternatively, there exist cases where the market can be profitable, but the

competitive forces in the market prevent such an equilibrium from arising. An interesting example

of this is a scenario where a candidate equilibrium fails due to one platform deviating to a "free-

riding" solution. In this scenario, one platform chooses to pay lower wages and operate a smaller

market, and by doing so, capitalize on the scale built by a competing platform. This deviation

cannot sustain a profitable equilibrium and instead leads to non-existence of a full participation

above minimum wage multi-homing equilibrium.

4.2 Fully substitute services

In this section, we analyze the equilibrium characteristics of the game when platforms offer services

that are perfect substitutes. This is the case where b = 1 in the platform’s demand function in

Equation (1). Following our structure in Section 4.1, we go after the unique symmetric full partici-

pation above minimum wage equilibrium of the game. Proposition 7 characterizes the equilibrium

decisions and earnings of the platforms.

Proposition 7. (i) Platforms prefer to operate with multi-homing servers if and only if there are

economies of scale, that is, ϕ < 1. (ii) If platforms operate with dedicated workers, the equilibrium

full prices, wages and profits in the market are

fD
i = fD

j = 1 + (1 + ϕ)
√
cw0aϕ−1,

wD
i = wD

j =
√
cw0,

ΠD
i
∗
= ΠD

j
∗
= 1− (1− ϕ)

√
cw0.

(iii) If platforms operate with multi-homing servers, the equilibrium full prices, wages and profits in

the market are
fM
i = fM

j = 1 +
3

2

√
2ϕcw0aϕ−1,

wM
i = wM

j =
√
2−ϕcw0.

ΠM
i

∗
= ΠM

j
∗
= 1.
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Proposition 7 tells us that in markets where platforms offer fully substitute service, platforms

prefer operating with multi-homing servers if and only if the market exhibits economies of scale

(ϕ < 1). In these markets, multi-homing dampens the competition among the platforms and allows

platforms to operate with increased efficiency.

The stability of such an equilibrium requires that the equilibrium wages be above w0. That is,

a necessary condition for this equilibrium to be stable is

√
2−ϕc ≥

√
w0.

This means that the equilibrium we define here is applicable to those markets where there are

sufficiently strong economies of scale, the demand intercept is large, customers care about service

quality and servers’ outside options are not too high.

Proposition 8. When platforms offer fully substitute services, in equilibrium, platforms operating

with multi-homing policy (i) charge higher full price; (ii) pay less wage; (iii) attract less supply to

the market; (iv) offer inferior service quality.

Proposition 8 shows that multi-homing’s benefits to the platforms come at the expense of other

stakeholders. Multi-homing leads to higher full prices charged to the customer and a smaller supply

attracted to the market. This is consistent with our earlier observation that multi-homing dampens

excessive price competition between platforms and incentivizes underinvestment in supply capacity.

4.3 No economies of scale

In this section, we analyze a market that does not exhibit economies of scale. This is true if ϕ = 1.

Similarly, we solve for the unique symmetric full participation above minimum wage equilibrium of

the game. Proposition 9 characterizes the equilibrium decisions and the earnings of the platforms.

Proposition 9. (i) Platforms always prefer to operate with dedicated workers, except at b = 1,

in which case the platforms are indifferent between the two policies. (ii) If platforms operate with

dedicated workers, the equilibrium full prices, wages and profits in the market are

f∗
i = f∗

j =
1 + 2

√
cw0

(2− b)
,

w∗
i = w∗

j =
√
cw0,

ΠD∗
=

(1− 2(1− b)
√
cw0)

2

(2− b)2
.
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(iii) If platforms operate with multi-homing servers, the equilibrium full prices, wages and profits in

the market are

f∗
i = f∗

j =
2 + 3

√
2
√
cw0

2(2− b)
,

w∗
i = w∗

j =

√
cw0

2
,

ΠM∗
=

(2− 3
√
2(1− b)

√
cw0)

2

4(2− b)2
.

Proposition 9 tells us that in markets that do not exhibit economies of scale, platforms prefer

to operate with dedicated workers. In these markets, multi-homing’s efficiency and competition

dampening effects disappear. The only remaining effect is the supply underinvestment, which works

against platforms’ interests. Hence, platforms have nothing to gain from multi-homing.

The stability of such an equilibrium requires that the equilibrium wages be above w0:√
c

2
≥

√
w0.

Consistent with our earlier observation, this means that the equilibrium we define is applicable to

those markets where customers care about service quality and servers’ outside options are not too

high.

Proposition 10. In markets that exhibit constant returns to scale, in equilibrium, platforms oper-

ating with multi-homing policy (i) charge higher full price; (ii) pay less wage; (iii) attract less supply

to the market; (iv) offer inferior service quality.

By Proposition 10, the demand and supply markets are larger with dedicated policy. Hence,

stakeholders have nothing to gain from multi-homing in markets that do not exhibit economies of

scale.

5 Numerical Study

In this section, we numerically evaluate the game and analyze the equilibrium behavior of the

model over a wide range of parameters. Throughout the numerical study, unless we explicitly vary

a parameter, we assign them the following values: w0 = 0.1, c = 0.5, b = 0.5, ϕ = 0.9.

In Figure 2, we plot how the optimal policy chosen by the platforms changes with respect to

a change in the substitutability of services offered, b, and the economies of scale exhibited in the

market, ϕ. Consistent with our observation in Section 4.2, platforms prefer multi-homing only if

the market exhibits sufficiently strong economies of scale. In such markets, the efficiency of multi-

homing and its dampening effects on competition dominate the downsides. The latter effect is
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stronger when platforms offer substitute services, making multi-homing more attractive when b is

high.

Figure 2: The platform’s best policy across the (ϕ, b) space.

To verify the validity of this observation for a wider range of scenarios, we numerically check

across the parameters b ∈ {0.1, 0.2, ..., 0.9}, w0 ∈ {0.1, 0.2, ..., 0.9}, c ∈ {1, 2, ..., 5} and ϕ ∈

{0.5, 0.6, ..., 1.5} when platforms prefer a multi-homing policy. In all instances, we identify a

ϕ̃ ∈ [0, 1] such that the platforms prefer multi-homing if and only if ϕ < ϕ̃.

In Figure 2, most of the variation in optimal policies appears to occur in the vicinity of ϕ = 0.9.

Around that region, we also want to understand how the cost of attracting supply influences the

optimal policy. To this end, we plot the outcome of the game in the (w0, c) space in Figure 3. Since

multi-homing dampens competition and reduces the need to invest in a large supply, it is naturally

more advantageous when supply is expensive. In fact, if supply is very costly, multi-homing can be

the only option for platforms to generate a profitable equilibrium. If supply is cheap and customers

care a lot about service quality, then platforms are better off operating dedicated workers. In

such cases, multi-homing disincentivizes investment in supply capacity. As a result, platforms offer

inferior service quality, which hurts their margins.

Now, we turn our attention to other stakeholders. We do not have a utility model for the

customers and all servers in our model earn their outside options. Therefore, we cannot obtain

meaningful results by evaluating those agents’ utilities. Instead, we use the total demand and the

total number of servers on the market as proxies for the collective utility of those agent groups.

In a large set of scenarios, multi-homing leads to a smaller customer and server market. Figure
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Figure 3: The platform’s best policy across the (w0, c) space.

4 illustrates an exception to this. When it is expensive to hire servers, service substitutability is

low and customers care little about service quality, customers benefit from multi-homing. In these

markets, high supply costs and lack of concern for quality incentivize platforms to operate with

a smaller market. Multi-homing, through its efficiency benefits, can help platforms earn higher

margins. When that efficiency is very strong, the benefits can spill over to customers. These

are also the regions in which platforms operating with multi-homing policy set their prices more

competitively, leading to lower equilibrium full prices.

6 Conclusion

In the freelance economy, it is becoming a norm rather than an exception for servers to work on

multiple platforms. Despite its prevalence, though, multi-homing in the digital economy and its

implications for the stakeholders are not well understood. Our aim with this paper was to shed

light on the following question: How does a market with multi-homing workers differ from one where

platforms have dedicated workers and who does multi-homing benefit?

There are upsides and downsides to working with multi-homing workers. We find that the

upsides are present only in those markets that exhibit strong economies of scale. In these markets,

multi-homing promotes efficient allocation of servers to tasks that are close to them, allowing them to

operate more efficiently. At the same time, by reducing platforms’ ability to fully control their scale,

multi-homing dampens competition between the platforms. These dynamics can push platforms to
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Figure 4: Equilibrium demands across (w0, c) space at b=0.1

prefer multi-homing.

However, in other markets, platforms may be better off with dedicated workers. With multi-

homing, the servers’ capacity is shared between platforms. With less to gain from building a large

supply, a platform can get away with investing less in servers and free-riding on the servers attracted

to the market by the competing platform. This tragedy of the commons can result in markets with

a small supply market and poor service quality.

The potential benefits of multi-homing generally do not always spill over to customers and

servers. Customers and servers like to work on large platforms since they are more efficient. The

dedicated policy incentivizes investment in supply and promotes price competition between plat-

forms, generally working to the advantage of customers and workers. Though the dedicated policy

does a good job of aligning platforms’ incentives with customers and servers, it is not always very

efficient. Especially in markets where supply is very expensive, platforms operating with a dedi-

cated policy cannot easily gain scale. In these markets, multi-homing helps platforms operate more

efficiently by combining the scales of the two platforms. In instances like these, where the efficiency

of multi-homing allows the platform to operate in an otherwise unattractive market, the benefits of

multi-homing spill over to the customers and the servers. In other situations, though, multi-homing

leads to a weaker supply market and higher full prices charged to the customers.
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Appendix

Proof of Proposition 1. If there are µi many servers participating on platform i, the average

earning of a server on platform i is
λiτiwi

µi
=

λϕ
i wi

µi
.

Since the supply market is fully elastic, an equilibrium is achieved when servers earn exactly w0

on average:

λϕ
i wi

µi
= w0.

Hence, in equilibrium, the number of servers working on platform i is

µi =
λϕ
i wi

w0
.

The customers’ implicit cost for taking service from platform i is

gi = c
λϕ
i

µi
= c

λϕ
i

λϕ
i wi

w0

=
w0

wi
.

Proof of Proposition 2. First, let us note that since servers have an outside option that pays

w0 per unit of time, a necessary condition for a platform to be able to attract servers is to pay at

least w0. If a platform pays strictly less than w0, then that platform cannot attract any servers.

Let us now show that, in equilibrium, all participating servers accept all rides from both plat-

forms. Without loss of generality, assume that platform i pays lower wages than platform j,

w0 ≤ wi < wj . Since the market is fully elastic, all servers in equilibrium earn exactly w0 per

unit time of service (if not, some servers would leave or exit the market, breaking that equilibrium).

Now consider a server’s decision-making when the server receives a ride offer from platform i.

Let us say that the terms of the offer is to pay wi per unit time of service for a duration of τi. For the

duration of τi, the best a server can expect to earn in equilibrium is τiw0 no matter what strategy it

follows. If server accepts ride from platform i, the server expects to earn from that service is τiwi.

Since wi ≥ w0, server’s decision to accept ride from platform i is a weakly dominating strategy.

Since this is true for any marginal server, all servers are weakly better off accepting rides from both

platforms.
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Proof of Proposition 3. By Proposition 1, a server participating in the market accepts service

from both platforms. If there are µ many servers participating in the market, the average earnings

of a server is

λiτiwi + λjτjwj

µ
=

λi(λi + λj)
ϕ−1wi + λj(λi + λj)

ϕ−1wj

µ
= (λi + λj)

ϕ−1λiwi + λjwj

µ
.

Similar to Proposition 1, an equilibrium is achieved when servers earn exactly w0 on average:

(λϕ−1
i + λϕ−1

j )
λiwi + λjwj

µ
= w0.

Therefore, in equilibrium, the number of servers working in the market is

µ = (λi + λj)
ϕ−1λiwi + λjwj

w0
.

The customers’ implicit cost for taking service from platform i is

gi = c
(λi + λj)ϕ

µ
= c

(λi + λj)ϕ

(λi + λj)ϕ−1 λiwi+λjwj

w0

= c(λi + λj)
w0

λiwi + λjwj
.

Proof of Proposition 4. Platform i has a profit function:

ΠD
i = λi

(
fi − wiλ

ϕ−1
i − c

w0

wi

)
.

Platform chooses the full price and the wage that maximizes its profits subject to the constraint

that the utilization of servers does not exceed 100%. Formally, the constraint is

λiτi
µi

=
w0

wi
≤ 1. (5)

Total utilization, as defined in the inequality above, is monotone decreasing in wi. Hence, for a

given full price fi, Equation (5) defines a lower bound on the wage selected by platform i.

Let us consider platform’s problem as a sequence of optimization problems, where the platform

chooses a wage first and then a full price. Within the feasible region (e.g. region where platforms

have non-negative demand and supply), for any selection of fi, platform’s problem is concave in wi:

∂2

∂w2
i

ΠD
i = −2cw0

λi

w3
i

< 0.

Ignoring the constraint on utilization, the wage that maximizes platform’s objective function is

uniquely defined by the equation

∂

∂wi
ΠD

i = λi

(
c
w0

w2
i

− λϕ−1
i

)
= 0. (6)
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For a fixed full price, the optimal wage of the platform i will be the maximum of the solution

to (6) and the lower bound imposed by Equation (5):

w∗
i = max


√
c
√
w0√

λϕ−1
i

, w0


=


√
c
√
w0√

λϕ−1
i

, w0 < cλ1−ϕ
i ,

w0 , w0 ≥ cλ1−ϕ
i .

(7)

Plugging this into platform’s objective:

ΠD
i =


λi

(
fi − 2

√
c
√
w0

√
λϕ−1
i

)
, w0 < cλ1−ϕ

i ,

λi

(
fi − w0λ

ϕ−1
i − c

)
, w0 ≥ cλ1−ϕ

i .

=

 (1− fi + bfj)
(
fi − 2

√
c
√
w0

√
(1− fi + bfj)ϕ−1

)
, w0 < c(1− fi + bfj)

1−ϕ,

(1− fi + bfj)
(
fi − w0(1− fi + bfj)

ϕ−1 − c
)

, w0 ≥ c(1− fi + bfj)
1−ϕ.

(8)

The first case in (8) corresponds to the interior case, where the utilization of the servers on platform

is strictly below 100%. The second case is a boundary case where the utilization of servers is 100%.

Since we are interested in full participation above minimum wage equilibria and a platform’s

optimal wage is equal to the minimum wage in the boundary case, we can restrict our search for a

candidate equilibrium point to the region where the interior case holds. Such a region is defined by

the inequality

w0 < c(1− fi + bfj)
1−ϕ.

The condition above defines an upper bound on the full prices chosen by platform i. There is

also a natural restriction on how low a platform can set its price. In a full participation equilibrium

where both platforms earn non-negative profits, a platform’s choice of full price needs to be strictly

larger than 0, since otherwise platform’s margin from each customer will be strictly negative.

Furthermore, since the region defined by these upper and lower bounds are strict inequalities,

conditional on the equilibrium being a full participation above minimum wage one, best response

function of each platform will be characterized by the First Order Condition:

∂ΠD
i

∂fi
=

√
c
√
w0(ϕ+ 1)

√
(1− fi + bfj)ϕ−1 + 1 + bfj − 2fi = 0

The Second Order Condition shows that the objective function is concave when ϕ ≥ 1, but not

necessarily when ϕ < 1:

∂2ΠD
i

∂f2
i

= −
√
c
√
w0

(
ϕ2 − 1

)√
(1− fi + bfj)ϕ−1

2(1− fi + bfj)
− 2 < 0 , ∀ϕ ≥ 1
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For ϕ < 1, we can show that the function is concave-convex by taking the third derivative of

the objective function with respect to fi and showing that it is positive:

∂3ΠD
i

∂f3
i

=

√
c
√
w0(ϕ− 3)(ϕ− 1)(ϕ+ 1)

√
(1− fi + bfj)ϕ−1

4(1− fi + bfj)2
> 0.

Both concave and concave-convex functions have a single interior maximum. This means that

for all ϕ values, the first and second order conditions define the interior maximizer. In a symmetric

equilibrium, the optimal prices are then defined by the following set of equations:

√
c
√
w0(ϕ+ 1)

√
(1− (1− b)f)ϕ−1 + 1 + b− f = 0,

−
√
c
√
w0

(
ϕ2 − 1

)√
(1− (1− b)f)ϕ−1

2(1− (1− b)f)
− 2 < 0.

(9)

While any full participation above minimum wage equilibria is defined through the set of equa-

tions above, the existence and uniqueness of such equilibria are not guaranteed. To show uniqueness,

first note that the left-hand side of the first equation above is convex when ϕ < 1:

∂2

∂f2

(√
c
√
w0(ϕ+ 1)

√
(1− (1− b)f)ϕ−1 + 1 + b− f

)
=

(b− 1)2
√
c
√
w0(ϕ− 3)(ϕ− 1)(ϕ+ 1)(1− (1− b)f)ϕ−3

4
√

(1− (1− b)f)ϕ−1
> 0.

This means that there are at most two points where the first equation is satisfied: one point

where the equation crosses 0 from above and another where the equation crosses 0 from below.

We can eliminate one of these solutions by showing that the following set of equations cannot

simultaneously hold in Mathematica:

√
c
√
w0(ϕ+ 1)

√
(1− (1− b)f)ϕ−1 + 1 + b− f = 0,

−
√
c
√
w0

(
ϕ2 − 1

)√
(1− (1− b)f)ϕ−1

2(1− (1− b)f)
− 2 < 0,

∂

∂f

(√
c
√
w0(ϕ+ 1)

√
(1− (1− b)f)ϕ−1 + 1 + b− f

)
> 0.

This means the only possible equilibrium is one where the expression on the left-hand side of

the equality constraint in Equation (9) crosses 0 from above. Since that expression is convex, this

solution corresponds to the smallest solution of that equality.

Proof of Proposition 5. Platform i has a profit function:

ΠD
i = λi

(
fi − wi(λi + λj)

ϕ−1 − c(λi + λj)
w0

λiwi + λjwj

)
.
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Platform chooses the full price and the wage that maximizes its profits subject to the constraint

that the utilization of servers does not exceed 100%. Formally, the constraint is

(λi + λj)
w0

λiwi + λjwj
≤ 1. (10)

Total utilization, as defined in the inequality above, is monotone decreasing in wi. Hence, for a

given full price fi, Equation (10) defines a lower bound on the wage selected by platform i.

Let us consider platform’s problem as a sequence of optimization problems, where the platform

chooses a wage first and then a full price. Within the feasible region (e.g. region where platforms

have non-negative demand and supply), for any selection of fi, platform’s problem is concave in wi:

∂2

∂w2
i

ΠM
i = −2c(λi + λj)λ

3
iw0

(λiwi + λjwj)3
< 0.

Ignoring the constraint on utilization, the wage that maximizes platform’s objective function is

uniquely defined by the equation

∂

∂wi
ΠM

i = λi

(
c(λi + λj)λiw0

(λiwi + λjwj)2
− (λi + λj)

ϕ−1

)
= 0. (11)

For a fixed full price, the optimal wage of the platform i will be the maximum of the solution

to (11) and the lower bound imposed by Equation (10):

w∗
i = max

{√
c
√
λi
√
w0 − λjwj

√
(λi + λj)ϕ−2

λi

√
(λi + λj)ϕ−2

,
(λi + λj)w0 − λjwj

λi

}

=


√
c
√
λi

√
w0−λjwj

√
(λi+λj)ϕ−2

λi

√
(λi+λj)ϕ−2

, w0λ
ϕ < cλi,

(λi+λj)w0−λjwj

λi
, w0λ

ϕ ≥ cλi.

(12)

Plugging this into platform’s objective:

ΠM
i =

 −2
√
c
√
λi
√
w0(λi + λj)

√
(λi + λj)ϕ−2 + fiλi + λjwj(λi + λj)

ϕ−1 , w0λ
ϕ < cλi,

−cλi + fiλi + (λi + λj)
ϕ
(

λjwj

λi+λj
− w0

)
, w0λ

ϕ ≥ cλi.

=



−2
√
c
√
w0

√
1− fi + bfj

√
(2− (1− b)(fi + fj))ϕ

+wj(1− fj + bfi)(2− (1− b)(fi + fj))
ϕ−1

+fi(1− fi + bfj) , w0(2− (1− b)(fi + fj))
ϕ < c(1− fi + bfj),

(c− fi)(−1− bfj + fi)− w0(2− (1− b)(fi + fj))
ϕ

+wj(1− fj + bfi)(2− (1− b)(fi + fj))
ϕ−1 , w0(2− (1− b)(fi + fj))

ϕ ≥ c(1− fi + bfj).

(13)

The first case in (8) corresponds to the interior case, where the utilization of the servers on platform

is strictly below 100%. The second case is a boundary case where the utilization of servers is 100%.

Since we are interested in full participation above minimum wage equilibria and a platform’s

optimal wage is equal to the minimum wage in the boundary case, we can restrict our search for a
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candidate equilibrium point to the region where the interior case holds. Such a region is defined by

the inequality

w0(2 + (b− 1)(fi + fj)
ϕ < c(1− fi + bfj).

When ϕ < 1, the condition above defines an upper bound on the full prices chosen by platform

i. There is also a natural restriction on how low a platform can set its price. In a full participation

equilibrium where both platforms earn non-negative profits, a platform’s choice of full price needs

to be strictly larger than 0, since otherwise platform’s margin from each customer will be strictly

negative.

Furthermore, since the region defined by these upper and lower bounds are strict inequalities,

conditional on the equilibrium being a full participation above minimum wage one, best response

function of each platform will be characterized by the First Order Condition:

∂ΠM
i

∂fi
= wj((b− 1)ϕ(1− fj + bfi) + (b+ 1)(1− (1− b)fj))(2− (1− b)(fi + fj))

ϕ−2

+

√
c
√
w0(−bϕ+ ϕ+ 2)

√
(2− (1− b)(fi + fj))ϕ−2√

1− fi + bfj
+ 1 + bfj − 2fi

+
(b− 1)

√
c
√
w0(−bfjϕ+ fiϕ+ fi + fj)

√
(2− (1− b)(fi + fj))ϕ−2√

1− fi + bfj
= 0

For ϕ < 1, we can show that the function is concave-convex by taking the third derivative of

the objective function with respect to fi and showing that it is positive for all set of full prices and

wages where both platforms participate (e.g. non-negative demands):

∂3ΠM
i

∂f3
i

=
3
√
c
√
w0(2− (1− b)(fi + fj))

ϕ/2

4(1− fi + bfj)5/2
+

3(b− 1)2
√
c
√
w0(ϕ− 2)ϕ(2− (1− b)(fi + fj))

ϕ
2
−2

4
√

1− fi + bfj

−1

4
(b− 1)3

√
c
√
w0(ϕ− 4)(ϕ− 2)ϕ

√
1− fi + bfj(2− (1− b)(fi + fj))

ϕ
2
−3

+4(b− 1)2wj(ϕ− 2)(ϕ− 1)((b− 1)ϕ+ 3)(2− (1− b)(fi + fj))

+4(b− 1)2wj(ϕ− 2)(ϕ− 1)((1− b)(ϕ− 3)(1− fi + bfj))

+
3(b− 1)

√
c
√
w0ϕ(2− (1− b)(fi + fj))

ϕ
2
−1

4(1− fi + bfj)3/2
> 0.

Both concave and concave-convex functions have a single interior maximum. This means that

for all ϕ values, the first and second order conditions define the interior maximizer. In a symmetric

equilibrium, the optimal prices are then defined by the following set of equations:

(5 + b− bϕ+ ϕ)2
ϕ
2
−2√c

√
w0(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf = 0,

√
c
√
w02

ϕ
2
−3

(
b2(3ϕ− 2) + 2bϕ− 5ϕ+ 6

)
(1− (1− b)f)

ϕ−3
2 − 2 < 0.

(14)
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Note here that while any full participation above minimum wage equilibria is defined through

the set of equations above, the existence and uniqueness of such equilibria is not guaranteed. To

show uniqueness, first note that the left-hand side of the first equation above is convex when ϕ < 1:

∂2

∂f2

(
(5 + b− bϕ+ ϕ)2

ϕ
2
−2√c

√
w0(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf

)
= −(b− 1)2

√
c
√
w02

ϕ
2
−4(ϕ− 3)(ϕ− 1)(b(ϕ− 1)− ϕ− 5)(1− (1− b)f)

ϕ−5
2 > 0.

This means that there are at most two points where the first equation is satisfied: one point

where the equation crosses 0 from above and another where the equation crosses 0 from below.

We can eliminate one of these solutions by showing that the following set of equations cannot

simultaneously hold in Mathematica:

(5 + b− bϕ+ ϕ)2
ϕ
2
−2√c

√
w0(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf = 0,

√
c
√
w02

ϕ
2
−3

(
b2(3ϕ− 2) + 2bϕ− 5ϕ+ 6

)
(1− (1− b)f)

ϕ−3
2 − 2 < 0,

∂

∂f

(
(5 + b− bϕ+ ϕ)2

ϕ
2
−2√c

√
w0(1− (1− b)f)

ϕ−1
2 + 1− 2f + bf

)
> 0.

This means that the only possible equilibrium is one in which the expression on the left-hand side

of the equality constraint in Equation (14) crosses 0 from above. Since that expression is convex,

this solution corresponds to the smallest solution of that equality.

To show that the only possible equilibrium is a symmetric one, let us look at the optimal wage

decision by the two platforms. We have

∂

∂wi
ΠM

i = λi

(
c(λi + λj)λiw0

(λiwi + λjwj)2
− (λi + λj)

ϕ−1

)
= 0,

∂

∂wj
ΠM

j = λj

(
c(λi + λj)λjw0

(λiwi + λjwj)2
− (λi + λj)

ϕ−1

)
= 0.

(15)

In a full participation equilibrium, both conditions can only be satisfied if λi = λj , implying

fi = fj = f . Now, let us look at the optimal price decision keeping wages fixed, and also plug in

the symmetric prices and the optimal wi + wj we get through the expression above:

∂

∂fi
ΠM

i = wi2
ϕ−2(1− bϕ+ b+ ϕ)(1− (1− b)f)ϕ−1 + 1 +

cw0(−bwi + (b+ 3)wj + wi)

(wi + wj)2
+ (b− 2)f =

= 2ϕ−2(1− (1− b)f)ϕ−1(−b(wi(ϕ− 2) + wj) + wiϕ− 3wj) + 1 + (b− 2)f = 0,

∂

∂fj
ΠM

j = wj2
ϕ−2(1− bϕ+ b+ ϕ)(1− (1− b)f)ϕ−1 + 1 +

cw0(−bwj + (b+ 3)wi + wj)

(wi + wj)2
+ (b− 2)f =

= 2ϕ−2(1− (1− b)f)ϕ−1(−b(wj(ϕ− 2) + wi) + wjϕ− 3wi) + 1 + (b− 2)f = 0.

(16)

Equations together imply

−b(wi(ϕ− 2) + wj) + wiϕ− 3wj = −b(wj(ϕ− 2) + wi) + wjϕ− 3wi = 22−ϕ(a+ (b− 1)f)2−ϕ,
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which can hold if and only if wi = wj = w. Hence, in any full participation above minimum wage

equilibria, the optimal full prices and wages chosen by the two platforms are symmetric.

Proof of Proposition 6. Since dedicated is a dominant solution, both platforms operate with

the same policy in the second stage game, regardless of their decision in the first stage. This means

that if both platforms choose to operate with multi-homing, they earns multi-homing profits. In all

other scenarios, including in which exactly one platform operates with multi-homing, both platforms

earn profits equivalent to the two platforms operating with dedicated policy.

Regardless of the pay-offs, the outcome (D,D) is a Nash equilibrium. That’s because a platform

has nothing to gain from deviation from that solution. That’s due to the dominant nature of

dedicated policy. As long as at least one platform chooses to operate with dedicated workers, the

other platform is essentially forced. However, it can be a Pareto inferior outcome.

If ΠD ≥ ΠM, then (D,D) is both a dominating and Pareto optimal outcome. However, if

ΠM > ΠD, then (D,D) is Pareto inferior. Each platform is weakly better by choosing multi-

homing, regardless of the opponent’s decision. In that case (M,M) is the dominating and Pareto

optimal outcome of the game.

Proof of Proposition 7. The FOC that define the equilibrium full prices and wages in a dedicated

equilibrium are given in Proposition 4. We can solve them in explicit form when b = 1. In the

interior case, the equalities transform to

1 + (ϕ+ 1)
√
cw0 − f = 0, w =

√
cw0,

giving the solution,

f = 1 + (1 + ϕ)
√
cw0, w =

√
cw0.

Plugging the solution back into platform’s objective, we get

ΠD = 1− (1− ϕ)
√
cw0.

An interior equilibrium exists if and only if the interior equilibrium utilization is strictly below

100%. That holds true when
w0

w
=

√
w0√
c

< 1.

The FOC that define the equilibrium full prices and wages in a multi-homing equilibrium are

given in Proposition 5. We can solve them in explicit form when b = 1. In the interior case, the

equalities transform to

1 + 3
2

√
2ϕcw0 − f = 0, w =

√
2−ϕcw0,
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giving the solution,

f = 1 + 3
2

√
2ϕcw0, w =

√
2−ϕcw0.

Plugging the solution back into platform’s objective, we get

ΠM = 1.

An equilibrium is interior if and only if the interior equilibrium utilization is strictly below 100%.

That holds true when
w0

w
=

√
w0√
2−ϕc

< 1.

Notice that

ΠD = 1− (1− ϕ)
√
cw0 < 1 = ΠM ⇐⇒ ϕ < 1.

Proof of Proposition 8. Let fD and wD be the equilibrium full prices and wages under a dedi-

cated policy when b = 1. Let fM and wM be same for multi-homing policy. Similarly, let µD, µM,

gD, gM define the equilibrium supplies and service quality cost in the market respectively. The

expressions for the equilibrium full price and wage are defined in Proposition 7. We have

fD = 1 + (1 + ϕ)
√
cw0 < 1 +

3

2

√
2ϕcw0 = fM,

wD =
√
cw0 >

√
2−ϕcw0 = wM,

µD = 2
wD

w0
>

2ϕwM

w0
= µM

⇐⇒ 2
√
c
√
w0 > 2ϕ/2

√
c
√
w0,

gD =
w0

wD <
w0

wM = gM.

Proof of Proposition 9. The FOC that define the equilibrium full prices and wages in a dedicated

equilibrium are given in Proposition 4. We can solve them in explicit form when ϕ = 1. In the

interior case, the equalities transform to

1 + (b− 2)f + 2
√
c
√
w0 = 0, w =

√
cw0,

giving the solution,

f =
1+2

√
c
√
w0

2−b , w =
√
cw0.

Plugging the solution back into platform’s objective, we get

ΠD =

(
1 + 2(b− 1)

√
c
√
w0

)2
(b− 2)2

.
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An interior equilibrium exists if and only if the interior equilibrium utilization is strictly below

100%. That holds true when
w0

w
=

√
w0√
c

< 1.

The FOC that define the equilibrium full prices and wages in a multi-homing equilibrium are

given in Proposition 5. We can solve them in explicit form when ϕ = 1. In the interior case, the

equalities transform to

1 + (b− 2)f +
3
√
c
√
w0√

2
= 0 , w =

√
cw0
2 ,

giving the solution,

f =
1+

3
√
c
√
w0√

2

2−b , w =
√

cw0
2 .

Plugging the solution back into platform’s objective, we get

ΠM =

(
2 + 3

√
2(b− 1)

√
c
√
w0

)2
4(b− 2)2

.

An equilibrium is interior if and only if the interior equilibrium utilization is strictly below 100%.

That holds true when
w0

w
=

√
2w0√
c

< 1.

Notice that

ΠD =

(
1 + 2(b− 1)

√
c
√
w0

)2
(b− 2)2

≥
(
2 + 3

√
2(b− 1)

√
c
√
w0

)2
4(b− 2)2

= ΠM

for all those equilibria with full participation.

Proof of Proposition 10. Let fD and wD be the equilibrium full prices and wages under a

dedicated policy when ϕ = 1. Let fM and wM be same for multi-homing policy. Similarly, let µD,

µM, gD, gM define the equilibrium supplies and service quality cost in the market respectively. The

expressions for the equilibrium full price and wage are defined in Proposition 9. We have

fD =
1 + 2

√
c
√
w0

2− b
<

1 +
3
√
c
√
w0√

2

2− b
= fM,

wD =
√
cw0 >

√
cw0

2
= wM,

µD = 2
(1− (1− b)fD)wD

w0
>

2(1− (1− b)fM)wM

w0
= µM,

gD =
w0

wD <
w0

wM = gM.
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