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Crowdsourcing is a powerful tool for harnessing collective intelligence, but it faces challenges due to variability

in participant effort and submission quality. To mitigate this, some platforms have empowered requesters

by enabling them to reject unsatisfactory submissions and obtain full refunds. However, the optimal use

of such rejection designs remains underexplored. This paper establishes the efficiency and near-optimality

of the rejection design using an auction framework. We show that the rejection design incentivizes higher-

quality contributions from more capable crowdworkers and, in large-scale tasks, closely approximates the

theoretical best outcome under full information. Next, we examine the equilibrium between a platform and

a requester. Our analysis reveals a counterintuitive finding: adopting the rejection design creates a tripartite

win-win-win situation for the platform, the requester, and the crowdworkers. Additionally, we demonstrate

that the common industry practice of imposing a minimum acceptance rate with full refunds is suboptimal.

Instead, our proposed design, which charges a fee for rejections without enforcing acceptance thresholds,

better aligns incentives and effectively coordinates the system as if the platform and requester were a single

decision-maker. Based on these findings, we recommend platforms to adopt fee-based rejection strategies to

enhance performance and promote sustainable crowdsourcing ecosystems.
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1. Introduction

Crowdsourcing has emerged as a powerful tool for leveraging the collective intelligence of a diverse

audience across various fields (Boudreau and Lakhani 2013). A compelling example is NASA’s

initiative to address the risks posed by cosmic rays on the International Space Station. Through a

crowdsourcing campaign, NASA invited global participation to tackle this critical challenge.1 The

response was impressive, with over a thousand proposals submitted. The evaluation process yielded

four exceptional solutions, and their creators were awarded monetary prizes.

While initiatives like NASA’s demonstrate the potential of crowdsourcing, concerns regarding

the quality of submissions frequently arise, particularly outside of contest-driven settings. Many

crowdsourcing platforms, like Amazon Mechanical Turk, prioritize participation over selection by

1 The NASA Innovation Pavilion launched the Reducing Exposure to Galactic Cosmic Rays Challenge on April
30, 2015, which concluded on June 29, 2015. Additional details are available at https://www.nasa.gov/general/
reducing-exposure-to-galactic-cosmic-rays-challenge.
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accepting and compensating a large volume of submissions for tasks such as image tagging or

survey. This approach can cause “free-riding,” where participants invest minimal effort, knowing

that even low-quality work might be accepted (Gadiraju et al. 2015, Kennedy et al. 2020). In more

severe cases, some submissions may even originate from bots (Stokel-Walker 2018). The resulting

influx of unproductive submissions can impede progress (Acar 2019). Additionally, the expertise,

commitment, and motivation of participants vary considerably, leading to further inconsistencies

in submission quality (Malone et al. 2010). Therefore, while crowdsourcing offers an undeniable

advantage for harnessing global expertise and ideas, ensuring consistent quality remains a signifi-

cant challenge that necessitates strategic oversight and innovative management solutions.

Researchers have explored various methods to enhance the quality of outcomes in crowdsourcing

(see Daniel et al. 2018 for a review of quality control in crowdsourcing). These methods include

organizing contests where rewards are based on crowdworker performance (e.g., Terwiesch and Xu

2008, Boudreau et al. 2011, 2016, Ales et al. 2017, Körpeoğlu and Cho 2018, Wang et al. 2019, Mo

et al. 2021), and providing guidance through exemplars or feedback before or during tasks (e.g.,

Chan et al. 2021, Manshadi and Rodilitz 2022, Ta et al. 2021, Jian et al. 2019, Althuizen and Chen

2022, Koh and Cheung 2022, Sanyal and Ye 2024).

Figure 1 (Color online) An Example of Amazon Mechanical Turk Panel

Note. The requester can select demographic criteria. In this example, the cost for white males aged 40
and under is $0.42 per completion. Source: CloudResearch (https://www.cloudresearch.com/resources/blog/
mturk-panels-on-your-own-requester-account/). Accessed on April 4, 2025.

A common yet underexplored practice in crowdsourcing is the use of rejection design. This design

allows requesters to decline low-quality submissions, which encourages crowdworkers to deliver

better work. Unlike contest-based models that reward only the top performers, the rejection design

often accepts a broader range of submissions. To better illustrate the process, Figure 1 shows

the process of hiring crowdworkers on Amazon Mechanical Turk, where the requester specifies

the demographic criteria and the platform charges a service fee for hiring participants that meet

these requirements. After collecting the submissions, the requester has the option to preview each

https://www.cloudresearch.com/resources/blog/mturk-panels-on-your-own-requester-account/
https://www.cloudresearch.com/resources/blog/mturk-panels-on-your-own-requester-account/
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Figure 2 (Color online) An Example of Rejection Design from Amazon Mechanical Turk

Note. The requester can preview a worker’s submission and has the option to decide whether to accept it.
Source: Amazon Mechanical Turk Developer Guide (https://docs.aws.amazon.com/pdfs/AWSMechTurk/latest/
AWSMechanicalTurkRequester/amt-dg.pdf). Accessed on April 4, 2025.

Table 1 Pricing Structures Across Major Crowdsourcing Platforms

Platform Name Platform Type Pricing Structure
Prolific Survey 42.8% corporate, 33.3% academia/non-profit fees
Qualtrics Survey Varies by project needs
SurveyMonkey Survey Varies by project needs
Amazon Mechanical Turk Microtasking 20% fee
Clickworker Microtasking 40% fee
Appen Microtasking 20% fee
Fiverr Freelance 5.5% fee, plus $3 for orders under $100
Upwork Freelance 3-10% fee, varies by plan
Freelancer Freelance 3% fee or $3 minimum fee

Note: Major crowdsourcing platforms collect a commission from the total payment made by requesters to

crowdworkers. This commission can either be a fixed percentage, such as a “20% service fee” on rewards or bonuses,

or it may vary based on the specifics of the task.

submission and make decisions regarding acceptance, as shown in Figure 2. Similar to Amazon

Mechanical Turk, other survey platforms like Prolific and Credamo, as well as freelancer platforms

such as Upwork and Freelancer.com, also permit requesters to reject submissions that do not meet

specified criteria.

The widespread adoption of the rejection design on major platforms underscores its importance,

but its implementations vary significantly. In Table 1, we review the pricing strategies of major

crowdsourcing platforms.2 Most platforms take a fixed portion of the rewards or bonuses designated

2 Pricing information for these platforms can be found on their respective websites: Prolific, https:
//researcher-help.prolific.com/en/article/9cd998; Qualtrics, https://www.qualtrics.com/support/

https://docs.aws.amazon.com/pdfs/AWSMechTurk/latest/AWSMechanicalTurkRequester/amt-dg.pdf
https://docs.aws.amazon.com/pdfs/AWSMechTurk/latest/AWSMechanicalTurkRequester/amt-dg.pdf
https://researcher-help.prolific.com/en/article/9cd998
https://researcher-help.prolific.com/en/article/9cd998
https://www.qualtrics.com/support/survey-platform/distributions-module/online-panels/
https://www.qualtrics.com/support/survey-platform/distributions-module/online-panels/
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for crowdworkers. Only Qualtrics and Survey Monkey implement a granular pricing strategy that

varies based on task characteristics. Notably, none of these platforms explicitly incorporate costs

associated with rejection into their pricing models.

Despite its operational significance, the rejection design remains a source of contention. Critics

argue that it can provoke behaviors that undermine platform reputation. Research indicates that

rejection may prompt crowdworkers to avoid new requesters and choose only lower-risk tasks

(McInnis et al. 2016). Some crowdworkers have developed protective measures, such as browser

plugins that filter tasks and online forums where they propose improvements to platforms (Semuels

2018). In a worse case, those who experience rejection might voice their grievances on these forums.3

These dynamics raise several important questions that this paper seeks to address: (1) How

does the implementation of the rejection design influence the quality of submissions? (2) What

factors guide requesters and platforms in deciding to adopt the rejection design, and how do they

determine the most effective strategies for its use? (3) How does the rejection design influence every

party’s welfare?

To address these questions, we introduce an analytical model that explores the dynamics among

a crowdsourcing platform, a requester, and a large pool of crowdworkers. This model explores

how the platform, acting as an intermediary that absorbs risks associated with recruitment and

reputation, strategically establishes a menu of service fees charged to the requester for each sub-

mission. The model notably distinguishes between two types of service fees: one incurred for the

submission accepted and another upon rejection. Influenced by the platform’s pricing strategy, the

requester decides not only the compensation for crowdworkers, but also an acceptance rate. We

demonstrate that the rejection design prompts crowdworkers to engage in a discriminatory all-pay

auction with single-unit demand. In this auction, crowdworkers “bid” their effort for the limited

chances to be accepted and compensated, with their probability of being accepted depending on

the quality ranking of their submissions.4 We employ this auction framework for its versatility,

which supports both contest scenarios—where only a few crowdworkers are declared winners (and

the rest are “rejected”)—and more inclusive tasks, such as online surveys, where a substantial

portion of submissions are accepted.

survey-platform/distributions-module/online-panels/; SurveyMonkey, https://help.surveymonkey.com/
en/surveymonkey/send/surveymonkey-audience/; Amazon Mechanical Turk, https://www.mturk.com/pricing;
Clickworker, https://www.clickworker.com/pricing/; Appen, https://success.appen.com/hc/en-us/
articles/202703165-Job-Costs-FAQ; Fiverr, https://www.fiverr.com/legal-portal/legal-terms/
payment-terms-of-service; Upwork, https://www.upwork.com/pricing/client; Freelancer, https:
//www.freelancer.com/feesandcharges.

3 Figure A.1 in Online Appendix A presents an example from Reddit, a social platform where users share and discuss
content within niche communities, illustrating a complaint from individuals who were rejected.

4 For more detailed definitions of discriminatory auction, all-pay auction, and single-unit demand, please refer to
Krishna (2009).
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Our analysis generates several intriguing findings. For crowdworkers, we focus on the optimal

responses of submission quality. The results indicate that the rejection design is efficient, meaning

that crowdworkers capable of providing higher-quality submissions at lower costs consistently sub-

mit superior work. We further explore the factors that influence the crowdworkers’ decisions. We

discover that varying the acceptance rate impacts crowdworkers differently. Specifically, it sets the

ceiling for submission quality across all crowdworkers. Furthermore, as the number of crowdwork-

ers increases, high-ability individuals are encouraged to reach this peak, while those with lower

abilities tend to produce submissions of lower quality. This observation aligns with the empirical

findings reported by Boudreau et al. (2016), which indicate that competition, driven by rankings,

motivates the most skilled participants to improve their performance, while it tends to demotivate

those with lower skills.

We next assess the optimality of the rejection design from the requester’s perspective by compar-

ing it with a theoretical supremum in full information scenario where crowdworkers have complete

visibility of each other’s capabilities. Although the full information scenario is typically impractical

for real-world applications, it provides a valuable benchmark for assessing the rejection design. Our

findings reveal that, initially, the rejection design yields a lower overall quality than this benchmark

due to uncertainties related to the unknown capabilities of others. However, our analysis indicates

that as the number of crowdworkers increases, this informational disadvantage diminishes, and the

outcome of the rejection design converges to the benchmark. This finding suggests the approximate

optimality of the rejection design. Furthermore, our findings highlight an important aspect: the

rejection design functions as an implicit communication channel. The requester can leverage it to

set expectations for submission quality, while crowdworkers can use this guidance to inform their

decisions about submission quality.

By analyzing the dynamics between the platform and the requester, we observe that the adop-

tion of the rejection design is largely influenced by potential costs the platform faces, such as the

marginal recruitment cost for each crowdworker and the reputation loss due to rejection. Adop-

tion is more likely when there is low reputation loss and low recruitment cost. Conversely, if the

reputation loss is too high, the platform tends to charge a higher service fee to deter the requester

from using the rejection design. Additionally, when the recruitment cost is also high, the platform

struggles to find a strategy that ensures nonnegative utility for both itself and the requester, poten-

tially leading to market exit. We also find that the crowdworkers’ ability range significantly affect

the adoption of the rejection design. A higher ability range may motivate the requester to pay

more, thus offsetting the platform’s costs. Moreover, if the requester can derive a higher quality-

invariant utility from each accepted submission, the platform can capitalize on this surplus to cover
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its recruitment cost, which further increases the likelihood of adopting the rejection design. These

insights are crucial for refining the platform’s pricing strategy.

In the final part of our analysis, we examine changes in welfare resulting from the adoption of

the rejection design. We discover that the platform benefits from additional revenue sources from

rejected submissions, contrasting with scenarios involving no rejection design. Moreover, compared

to the commonly adopted fixed minimum acceptance rate, our proposed rejection design allows

the platform to use service fees to curb the requester’s misuse of rejection and avoid unnecessary

costs. Surprisingly, we also discover that the rejection design addresses potential inefficiencies aris-

ing from separate decision-making by the platform and the requester. In the first-best scenario

where the platform and the requester are integrated, they reach identical conclusions regarding

the acceptance rate and crowdworker compensation compared to a situation where they operate as

separate entities. Therefore, the rejection design is unequivocally advantageous for the platform.

Interestingly, we find that the overall crowdworker welfare also increases with the adoption of the

rejection design. This counterintuitive outcome occurs because the rejection design, by eliminat-

ing free-riding behavior, encourages the requester to offer higher compensation for better quality

submissions. These findings further validate the effectiveness of the rejection design.

The contribution of our study is threefold. First, it enhances the literature on crowdsourcing

platforms by examining the rejection design, a widely practiced but scarcely explored aspect within

academic research. We analyze the effectiveness and efficiency of the rejection design, developing

optimal strategies for both requesters and platforms. Our findings deepen the understanding of

quality control in crowdsourcing and introduce a novel menu pricing strategy for crowdsourcing

platform. This new strategy not only aligns with real-world rejection policies but also offers insights

into a more adaptable rejection design. Second, this study contributes to the growing literature on

pricing strategies in the context of platform-based markets. Prior research has primarily focused

on media platforms (e.g., Lin 2020, Amaldoss et al. 2021, 2024), retail platforms (e.g., Zhang and

Chung 2020, Qiu and Rao 2024, Wang and Qiu 2024), and service platforms such as ride-sharing

(e.g., Guda and Subramanian 2019, Besbes et al. 2021, Garg and Nazerzadeh 2022). However,

pricing strategies within crowdsourcing platforms remain largely underexplored. To the best of

our knowledge, this study is the first to examine how pricing can be strategically designed for

crowdsourcing tasks—particularly through mechanisms such as rejection fees—to improve platform

efficiency and align incentives among stakeholders. Third, our research extends to the literature on

the application of auctions. In this paper, we demonstrate that crowdworker behavior in crowd-

sourcing tasks employing a rejection design can be effectively modeled through a discriminatory

all-pay auction with single-unit demand. We explore the efficiency of this auction type and identify

critical factors that influence auction outcomes. This analysis enhances the understanding of how
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auctions can be strategically used in studying crowdsourcing platform design, which broadens the

scope of auction theory in practical settings.

Our study presents significant implications. First, our analysis demonstrates the efficiency of the

rejection design from the crowdworkers’ perspective and its optimality from the requester’s view-

point. We show that the rejection design motivates high-ability crowdworkers to provide higher-

quality submissions and it also closely mirrors the theoretical supremum in full information sce-

narios when the crowdworker pool is large. These findings imply that the requester can effectively

use the rejection design as a powerful tool to improve crowdsourcing outcomes. Second, our results

indicate that crowdsourcing platforms could enhance their revenue models by charging requesters

a service fee for rejected submissions. Typically, major crowdsourcing platforms establish a fixed

minimum acceptance rate and offer refunds to requesters for rejected submissions. We argue that

these practices are suboptimal. Based on our analysis of the interaction between a platform and

a requester, we recommend a more sophisticated pricing strategy through our proposed rejection

design. Third, it is noteworthy that our findings also suggest an increase in the welfare of crowd-

workers under the rejection design, creating a win-win-win scenario for the platform, the requester,

and crowdworkers. This result provides crowdsourcing platforms with additional evidence to sup-

port the adoption of the rejection design.

2. Literature

Research on crowdsourcing primarily focuses on two main areas. The first encompasses downstream

processes, including post-crowdsourcing idea screening (Kornish and Jones 2021, Bell et al. 2024),

subsequent impacts such as how crowdsourcing-based product features or labels affect sales (Gu

et al. 2022, Nishikawa et al. 2017), the influences on shareholder value (Cao et al. 2024), and the

identification of potential biases in crowdsourced outcomes (Kwan et al. 2024). Our study, however,

contributes to the second stream, which addresses mechanism design within the crowdsourcing

tasks themselves. This research area aims to enhance the direct outcomes of crowdsourcing activ-

ities by examining optimal task design. In particular, our paper focuses on quality control within

crowdsourcing platforms, bridging two interconnected literatures: contest design and information

provision. We review relevant literature to situate our research within this broader scholarly con-

text, highlighting our study’s unique contributions and clarifying how it builds upon and diverges

from established methodologies.

Quality Control through Contest Design. Contests have a well-established role in incen-

tivizing high-quality outcomes by fostering structured competition that promotes innovation and

enhanced performance. Existing research extensively explores various contest design features,

including outcome disclosure (Hossain et al. 2019), player matching (Ridlon and Shin 2013), joint
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versus separate goal pursuit (Hu and Wang 2021), participant numbers (Tian et al. 2022), contest

duration (Chen et al. 2021), task complexity (Mo et al. 2021), submission visibility (Bockstedt

et al. 2022, Hofstetter et al. 2021), competitive intensity (Körpeoğlu and Cho 2018, Wang et al.

2019), and the structure of rewards and punishments (Kalra and Shi 2001, Thomas and Wang 2013,

Kamijo 2016, Liu and Lu 2023). Building on this extensive literature, our study specifically investi-

gates the unique dynamics introduced by the rejection design in crowdsourcing tasks. Analogous to

mechanisms discussed in prior studies, the rejection design intensifies competition by implementing

lower acceptance rates, incentivizing crowdworkers to provide higher-quality submissions to avoid

rejection. Additionally, our research connects closely with studies on compensation and reward

design in contests, as requesters must strategically set compensation levels that align with their

desired acceptance rate and balance cost and output quality.

We model the rejection design as a competitive contest where crowdworkers compete for limited

acceptance opportunities. We utilize the theoretical framework of all-pay auction to capture crowd-

workers’ strategic choices. In this scenario, crowdworkers possess private information regarding

their capabilities and employ Bayesian Nash equilibrium reasoning to determine optimal submission

quality levels. Providing certain level of submission quality in our context is similar to formulating

a bid in an auction. Unlike traditional auctions, where only winning bidders incur costs, in all-pay

auctions, all participants bear costs irrespective of success (Krishna 2009). This all-pay auction

framework is well-established in the literature for its efficacy in examining highly competitive envi-

ronments. Pioneering work by Moldovanu and Sela (2001) use this framework to model rank-order

contests with incomplete information. Subsequent studies, such as those by Kamijo (2016) and Liu

and Lu (2023), investigate how specific incentives, including top rewards and bottom punishments,

can significantly enhance the performance within teams. Building on these foundations, our analysis

explores strategic trade-offs faced by crowdworkers through a discriminatory all-pay auction with

single-unit demand, providing deeper insights into behavioral dynamics in crowdsourcing contests.

Quality Control through Information Providing. Another important dimension of ensur-

ing quality in crowdsourcing platforms is providing clear and targeted information to participants.

One prevalent strategy involves providing explicit guidance or exemplar information before tasks

commence, which clarifies requesters’ expectations and helps crowdworkers align their submis-

sions accordingly. In previous studies, Ta et al. (2021) demonstrate that task framing significantly

influences participants’ comprehension and performance, while Cao et al. (2024) study the signal

effects of contest design factors and firm marketing resources on crowdsourcing outcomes. Further,

Koh (2019), Althuizen and Chen (2022), and Koh and Cheung (2022) highlight both beneficial

and restrictive effects of presenting exemplars. Notably, Althuizen and Chen (2022) and Koh and
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Cheung (2022) point out that exemplar guidance may inadvertently constrain creativity. This

disadvantage restricts the use of exemplar in crowdsourcing tasks.

Providing real-time feedback during tasks represents another effective information approach

to quality control. Chan et al. (2021) and Sanyal and Ye (2024) indicate that various feedback

types—including positive, negative, peer-generated, or firm-directed—have distinct impacts on

crowdworker performance. Additionally, studies by Wooten and Ulrich (2017) and Jiang et al.

(2022) compare different feedback mechanisms (e.g., random versus direct feedback) and their effi-

cacy. Community development is also identified as a valuable mechanism for enhancing performance

through knowledge sharing and interaction. Prior studies by Bayus (2013), Huang et al. (2014),

Majchrzak and Malhotra (2016), Camacho et al. (2019), Hwang et al. (2019), and Jin et al. (2021)

underscore the benefits of fostering collaborative, interactive communities among crowdworkers.

These diverse informational strategies emphasize the crucial role that structured communication

plays in improving crowdsourcing quality. Although our rejection design does not involve explicit

guidance or real-time feedback, it inherently communicates requester standards through the accep-

tance rate. Our analysis suggests that this implicit message effectively informs crowdworkers about

expectations, which further guides their decisions about effort and submission quality. Thus, our

proposed rejection design bypasses complexities related to exemplar effects and leverages compet-

itive dynamics innovatively, presenting a novel mechanism to direct participant efforts without

traditional, explicit feedback methods.

3. Model

A typical crowdsourcing task begins with a requester publicly posting a clearly defined assignment

on an online platform. The platform then invites a large pool of crowdworkers to participate and

charges the requester a service fee. Crowdworkers independently complete the task in exchange

for compensation or other incentives. The requester subsequently collects, aggregates, and utilizes

these individual contributions to fulfill a broader objective.5

Built on this basic process, we develop a general framework to effectively capture various dynam-

ics among a crowdsourcing platform, a requester, and multiple crowdworkers in a real world sce-

nario. An important feature in our model is that the requester can determine an acceptance rate

before publishing a task.6 This rate specifies the maximum number of submissions the requester

can reject. As a result, the threat of rejection motivates crowdworkers to deliver higher-quality

contributions.

5 This procedure reflects standard industry practice. For further details on its benefits, protocols, and case studies, see
Qualtrics (https://www.qualtrics.com/experience-management/research/research-panels-samples/) and Sur-
veyMonkey (https://www.surveymonkey.com/market-research/resources/online-market-research-panels/).

6 In the extension, we examine scenarios in which different parties are responsible for determining the acceptance
rate.

https://www.qualtrics.com/experience-management/research/research-panels-samples/
https://www.surveymonkey.com/market-research/resources/online-market-research-panels/
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If rejection carries no costs, the requester might abuse it. Therefore, we also allow the platform

to mitigate this risk by presenting a menu of service fees regarding both the accepted and rejected

submissions. The service fee of rejection in our model serves dual purposes. First, the platform

generates additional revenue in scenarios where the requester strategically employs the rejection

design to enhance submission quality. Second, it compensates for the costs caused by recruitment

challenges and reputation damage arising from rejections.

The setting of our model is compatible with multiple different scenarios in practice. For example,

if the acceptance rate is set to one, the model reduces to the most basic case where rejection is not

allowed. If the acceptance rate is less than one and the service fee for rejection is zero, the model

aligns to many platforms’ practice (e.g., Amazon Mechanical Turk).

In the following sections, we provide formal definitions and detailed explanations regarding the

utility functions of all parties involved.

3.1. Crowdworker

A group of crowdworkers are recruited through the platform to complete a crowdsourcing task.

Each crowdworker, labeled as i, strategically decides on the submission quality qi and earns a

compensation of w if the submission is accepted. We assume that crowdworkers are risk-neutral. The

cost for crowdworker i to provide a submission of quality qi is
qi
si
, where si represents crowdworker

i’s effectiveness in converting effort to quality.7 The utility of crowdworker i, denoted as UC
i , is

w− qi
si

if his submission is accepted and − qi
si

if rejected.

We assume si is heterogeneous and is independently drawn from a uniform distribution on [0, s̄],

where s̄ is a predetermined characteristic.8 A smaller si makes it difficult to enhance submission

quality regardless of the effort exerted. Conversely, a larger si allows a crowdworker to achieve

higher quality at a lower cost. We further assume that only crowdworkers themselves can observe

their own si, but the distribution of si is a common knowledge. For simplicity, we refer to s̄ as the

ability range hereafter.

The platform hires n crowdworkers. Let q−i,j denote the j-th highest submission quality among

the n− 1 crowdworkers excluding individual i. Suppose that the requester accepts only the top m

submissions (corresponding with an acceptance rate of π = m
n
) with relatively higher quality and

7 This setting is consistent with Liu et al. (2014), where the authors also consider a conversion of effort into quality.
Similar model specification can also be found in the tournament contract model (Bolton and Dewatripont 2004).

8 Lemmas B.1 and B.2 in Online Appendix B suggest that our analysis on the efficiency of the rejection design remains
robust across various distributions of crowdworker ability. Nevertheless, this simplification is essential for deriving
closed-form expressions for the equilibrium between the platform and the requester.
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rejects the rest. Crowdworker i’s submission will be accepted if and only if qi > q−i,m. Thus, the

utility function of crowdworker i is as follows:9

UC
i =

{
w− qi

si
if qi > q−i,m

− qi
si

if qi < q−i,m

.

This equation highlights the trade-off each crowdworker faces between exerting more effort to

ensure acceptance and minimizing effort to reduce costs.

3.2. Requester

The requester maximizes her utility by determining the acceptance rate π and the compensation

for crowdworkers w. The utility derived from accepted submissions is twofold. First, the requester

experiences diminishing marginal utility from the quality of each submission, modeled as qαi , where

0 < α < 1 ensures a concave utility function.10 We set α = 1
2
for the remainder of the analy-

sis for the purpose of tractability. This model setting aligns with classical economic theories of

diminishing marginal returns (Sundararajan 2004, Abhishek et al. 2016, Chellappa and Mehra

2018, Gu and Zhao 2024). To illustrate this practically, note that initial improvements in submis-

sion quality—such as transitioning from irrelevant or inaccurate responses to moderately accurate

ones—typically result in significant value enhancement for the requester. However, once submis-

sions have already reached a high-quality threshold, further incremental improvements contribute

relatively less additional value. For instance, in data-labeling tasks, improving labels from inaccu-

rate to generally accurate significantly enhances downstream analysis. However, further improve-

ments—from already accurate to nearly perfect labels—may not meaningfully increase overall

efficiency. In fact, overly detailed submissions might require additional effort to process without

correspondingly improving downstream performance. Therefore, in many real-world crowdsourcing

scenarios, requesters naturally experience diminishing returns as submission quality approaches

higher levels. Second, the requester also gains a quality-invariant utility from each accepted sub-

mission. For example, when the downstream analysis involves statistical inference, each accepted

submission contributes to the robustness of the analysis. In such cases, part of the utility is driven

by the quantity of submissions rather than their individual quality. We denote this component of

utility as a. In the extreme case where the requester utility comes solely from submission quality,

we have a= 0.

The cost associated with each accepted submission comprises the crowdworker’s compensation

w and the platform service fee c1. Conversely, while rejected submissions yield no utility for the

9 We omit qi = q−i,m as the event has zero probability measure.

10 This method of modeling diminishing marginal utility aligns with Currarini et al. (2009) and Leung (2020).
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requester, she still incurs a service fee c2 for each. The requester’s utility from crowdworker i’s

submission is defined as

UR
i =

{√
qi + a−w− c1 if qi > q−i,m

−c2 if qi < q−i,m

.

The total utility of the requester is represented as the sum of the utilities derived from each

crowdworker’s submission, expressed as UR =
∑n

i=1U
R
i .

3.3. Platform

The platform optimizes its utility by strategically deciding the menu of service fees, charging c1 for

each accepted submission and c2 for each rejection. The platform incurs costs related to recruitment

efforts and potential reputation damage. The recruitment cost, denoted as h, is incurred for every

crowdworker regardless of whether their submission is accepted or not. In contrast, the reputation

loss, denoted as r, only occurs for each rejected submission because individuals who are rejected may

use social media to express their dissatisfaction, potentially harming the platform’s reputation. This

configuration underscores an important role of crowdsourcing platforms as efficient intermediaries

that mitigate risks associated with the recruitment process and dissatisfaction from crowdworkers.

The utility derived by the platform from crowdworker i’s submission is defined as follows:

UP
i =

{
c1 −h if qi > q−i,m

c2 −h− r if qi < q−i,m

.

The total utility of the platform is then calculated as the sum of the utilities derived from each

crowdworker, expressed as UP =
∑n

i=1U
P
i .

3.4. Timeline of the Game and Notations

Figure 3 Timeline of the Game

The platform
chooses c∗1 and c∗2

The requester
chooses π∗ and w∗

Crowdworkers decide on
submission quality q∗i

Figure 3 outlines the timeline of the game. The sample size requirementm and ability range s̄ are

assumed predetermined. The game begins with the platform’s decision on the menu of service fees

for both acceptance (c∗1) and rejection (c∗2). Following this, the requester determines the acceptance

rate π∗ and the compensation w∗ for crowdworkers. Finally, a group of crowdworkers, having been

recruited by the platform, decides on the quality of their submissions q∗i .

Table 2 presents a summary of the key notations employed in our model. In the following section,

we provide a formal analysis of the game.
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Table 2 Key Model Notation

Notation Meaning
Crowdworker type and decision
si Crowdworker ability
qi Submission quality

Requester decision
π Acceptance rate
w Compensation for crowdworkers

Platform decision
c1 Service fee for accepted submissions
c2 Service fee for rejected submissions

Pre-determined parameter
a Constant part of requester’s marginal utility from accepted submissions
s̄ Ability range
m Required number of participants for the crowdsourcing task
r Reputation damage on the platform due to a rejection
h Marginal recruitment cost

4. Analysis and Results

In this section, we present the equilibrium results of our model. Using backward induction, we first

derive the strategy for the crowdworkers, followed by the requester, and finally the platform. We

provide proof details in Online Appendix C.

4.1. Crowdworker Decision

We focus on symmetric equilibria, where all crowdworkers adopt the same decision rule initially,

with their subsequent behaviors varying solely due to their individually distinct abilities si. We

assume that si is private information. The crowdworkers also know that the requester selects the

top m submissions for acceptance after assessing the submission quality from n= m
π
crowdworkers.

We solve for crowdworker decisions using the framework of discriminatory all-pay auction with

single-unit demand. In this model, m items are available, each representing a chance for accep-

tance, with each crowdworker eligible to secure only one opportunity. Crowdworkers incur costs

through bidding for the opportunity regardless of acceptance, where their bids represent the cost

for achieving a certain submission quality. Since crowdworkers can observe only their own types,

each of them solves maxqi
E[UC

i ]. Following Krishna (2009), we derive the crowdworkers’ optimal

responses and present the following lemma.

Lemma 1. (Optimal Crowdworker Submission Quality) The optimal submission quality for

crowdworker i is given by:

q∗i =ws̄(1−π)Isi/s̄((1−π)n+1, πn). (1)



14 Rejection Design for Crowdsourcing Platforms

In Equation 1, Ix(z1, z2) = Betax(z1, z2)/Beta(z1, z2) represents the regularized incomplete beta

function, where Beta(z1, z2) =
∫ 1

0
xz1−1(1− x)z2−1dx defines the beta function, and Betax(z1, z2) =∫ x

0
xz1−1(1 − x)z2−1dx defines the incomplete beta function. The lemma describes the optimal

response in terms of submission quality within the Bayesian Nash equilibrium framework. When

π= 1, crowdworkers are assured of acceptance, thus the optimal response is to provide zero quality

as it minimizes the cost. Conversely, when 0< π < 1, the submission quality increases with both

the compensation w and the ability range s̄. This aligns with the intuitive understanding that

higher rewards and better abilities synergistically ensure that crowdworkers are both motivated

and capable of producing quality work. This lemma also reveals that crowdworkers consider the

acceptance rate and expected ability ranking when determining the quality of their submissions.

The properties of crowdworker optimal response are further elucidated in subsequent propositions.

The next proposition demonstrates that the rejection design, characterized by an acceptance rate

potentially less than one, promotes efficiency.11

Proposition 1. (Efficiency of Rejection Design) If the acceptance is not assured, crowdworkers

with higher abilities consistently provide submissions with higher quality, that is, ∂qi
∂si

> 0.

Figure 4 Optimal Submission Quality Across Different Acceptance Rate
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Note. w= 1, n= 100, s̄= 1.

This proposition is particularly intriguing as it shows that the acceptance rate itself effectively

communicates the requester’s expected quality standards. We observe that crowdworkers who are

capable of providing superior submissions at a lower cost are more likely to do so and hence their

11 In an auction, efficiency is defined as the object being awarded to the participant who values it the most (Krishna
2009). In our context, it refers to the acceptance being allocated to higher-ability crowdworkers.
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submissions are more likely to be accepted. This suggests the efficiency of the rejection design.

An explanation for this behavior is that crowdworkers initially estimate their competitive standing

based on their own types si within the recruited group. A higher perceived ranking indicates a

higher competence and hence incentivizes the crowdworker to submit higher-quality work. This

dynamic is further illustrated in Figure 4, which shows that submission quality monotonically

increases with ability across various acceptance rates.

Proposition 1 indicates that adopting the rejection design benefits both the crowdworkers and

the requester. From the crowdworkers’ perspective, the rejection design ensures fair competition

by aligning their abilities with the task requirements. Those with higher abilities are consistently

encouraged and more likely to be accepted. From the requester’s viewpoint, this design helps

identify and support the most suitable crowdworkers, motivating them to provide higher-quality

submissions. As a result, free-riding, a common concern on crowdsourcing platforms, is no longer a

dominant strategy under the rejection design. This dual perspective significantly boosts the overall

effectiveness and efficiency of crowdsourcing. In addition to these benefits, the rejection design also

enhances the welfare of both the platform and the crowdworkers, which will be discussed later in

Propositions 5 and 6.

In the following propositions, we explore the characteristics of crowdworkers’ optimal strategies.

We first examine how the requester’s strategic decision regarding the acceptance rate influences

these optimal strategies.

Proposition 2. (Submission Quality and Acceptance Rate) There exists a least upper bound,

ws̄(1−π), for submission quality. A lower acceptance rate results in a higher least upper bound for

submission quality.

This proposition focuses on the optimal responses from higher-ability crowdworkers—those with

a higher si, whose optimal responses of submission quality tend to be closer to ws̄(1−π). When the

requester chooses a higher acceptance rate, these crowdworkers might provide lower-quality sub-

missions since they know that they can secure a payoff with minimal concern about being rejected

for lower-quality submissions. In an extreme scenario, where the requester accepts every submission

and sets π= 1, q∗i becomes zero, which creates a completely free-riding situation due to the absence

of rejection as a deterrent. Conversely, introducing a lower acceptance rate through the rejection

design could intensify competition, forcing higher-ability crowdworkers to deliver higher-quality

submissions to ensure acceptance. While this leads to more rejections, the accepted submissions

are of high quality. It is crucial to note, however, that even the most capable crowdworkers will

not improve their quality beyond ws̄(1 − π), as there is no incentive for others to exceed this

quality level due to ability limits. Hence, for those high-ability crowdworkers, making additional
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effort becomes ineffective in enhancing the likelihood of acceptance. This finding underscores the

importance of strategically selecting an acceptance rate.

Proposition 2 reveals two significant implications. First, if the requester aims to maintain a cer-

tain level of quality among accepted submissions, reducing the acceptance rate could be an effective

strategy. This approach would increase the likelihood of being rejected, thereby motivating the

remaining participants to provide higher-quality submissions. Second, using the acceptance rate

as an incentive has its limitations, as it does not indefinitely increase the submission quality from

high-ability crowdworkers. Additionally, it could demotivate a significant portion of crowdworkers.

Therefore, indiscriminately lowering the acceptance rate may not always yield benefits. It is impor-

tant to determine an optimal acceptance rate that strikes a balance between individual submission

quality and the overall number of accepted submissions.

In addition to the acceptance rate, the expected ability ranking also significantly influences the

optimal responses of crowdworkers. Its impact is further elucidated in the following proposition.

Proposition 3. (Submission Quality and Ability Ranking) As the number of crowdworkers

increases, a distinct pattern emerges based on their ability. For crowdworkers with low ability,

specifically those for whom si < s̄(1−π), the submission quality converges to zero. Conversely, for

those with high ability, where si > s̄(1−π), their submission quality converges to ws̄(1−π).

Figure 5 Optimal Submission Quality Across Different Sample Sizes
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Note. w= 1, π= 0.7, s̄= 1.

Another critical factor influencing submission quality is the ability ranking among crowdwork-

ers. Proposition 3 shows that crowdworkers assess the order statistic of their ability relative to all
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participants.12 Figure 5 provides a visualization that helps elucidate this phenomenon. It shows

that crowdworkers with higher abilities are more likely to produce high-quality submissions in

crowdsourcing tasks that have more crowdworkers, whereas those with lower abilities may not.

This effect arises because the number of crowdworkers in the task influences the uncertainty in

individual assessments of ability rankings. More crowdworkers lead to reduced uncertainty in such

assessments. Consequently, the probability of acceptance becomes more sharply defined around the

ability threshold of s̄(1− π). In the extreme case where the number of crowdworkers approaches

infinity, uncertainty is completely eliminated. As a result, individuals with si > s̄(1− π) consis-

tently deliver a submission quality of ws̄(1−π), while others contribute zero submission quality. A

significant implication of this finding is that the rejection design becomes more effective for larger

crowdsourcing tasks. It motivates those with si > s̄(1−π) to submit higher-quality submissions due

to a higher certainty of acceptance. Conversely, although those with si < s̄(1− π) might produce

lower quality submissions in larger samples, their increased likelihood of being rejected helps main-

tain the overall quality of accepted work. This property highlights the scalability of the rejection

design.

4.2. Requester Decision

As the crowdworker types are unobservable to the requester, her optimal response aims to maximize

her expected utility, EUR =E [
∑n

i=1U
R
i ], which is derived in the following lemma.

Lemma 2. (Requester Expected Utility) The requester obtains the following expected utility

EUR =
m

π

√
ws̄(1−π)

∫ 1

0

√
Ix

(
(1−π)

m

π
+1,m

)
Ix

(
(1−π)

m

π
,m

)
dx︸ ︷︷ ︸

utility from submission quality

+ ma︸︷︷︸
quality-invariant utility

− mw︸︷︷︸
compensation

−mc1 −
m

π
(1−π)c2︸ ︷︷ ︸

platform service fee

. (2)

In Equation 2,m represents the predefined number of submissions required for the task. Deriving

closed-form solutions for the first term in Equation 2, which represents the total utility derived from

submission quality, presents significant challenges. Therefore, our analysis begins by examining

an ideal benchmark scenario where crowdworker types are public information. In this scenario,

rejection is still available. The only difference is in the accessibility of information. In the subsequent

lemma, we calculate the submission quality derived from the benchmark scenario, which we later

use as a benchmark to assess the efficacy of the rejection design.

12 Order statistics are frequently used to infer unobservable rankings. For example, Chung (2013) employ this approach
to estimate applicant quality based on data from enrolled students.
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Lemma 3. (Full Information Benchmark) Suppose that n crowdworkers are recruited and only

m< n submissions will be accepted. Assume that every crowdworker’s ability is observable to all

other players. Let sm denote the m-th highest ability among all crowdworkers involved in the task.

To ensure acceptance, the crowdworker i provides a submission quality of qi = wsm if and only if

si ≥ sm. Otherwise, he provides zero quality when si < sm. Denote π = m
n
. Then, the supremum of

the requester’s expected total utility from submission quality is m
√
ws̄(1−π).

This lemma outlines a scenario where crowdworker ability is public information. In real-world

settings, it is nearly impossible to encounter as crowdworkers typically do not observe each other’s

type. Most crowdsourcing tasks today are distributed through digital platforms where users remain

anonymous to one another. Even when profiles are accessible, reliably discerning information about

strangers is still a significant challenge. However, this scenario serves as a benchmark. By comparing

the utility derived from submission quality between our model and this benchmark, we can better

understand how information asymmetry causes efficiency losses. We further quantify the difference

using the ratio τ = Q/Q̄, where Q = m
π

√
ws̄(1−π)

∫ 1

0

√
Ix((1−π)m

π
+1,m)Ix((1− π)m

π
,m)dx is

the first term in Equation 2, and Q̄=m
√
ws̄(1−π) is the largest expected total utility that can

be derived from a full information scenario. A larger τ indicates that the rejection design more

closely approaches the efficiency of the benchmark. We derive the following proposition.

Proposition 4. (Approximate Optimality of Rejection Design) Although information asymme-

try introduces efficiency loss in the rejection design (i.e., τ < 1), this loss decreases as the number

of crowdworkers increases (i.e., limn→∞ τ → 1).

Table 3 Efficiency Difference between Rejection Design and the
Theoretical Supremum

π= 20% π= 40% π= 60% π= 80% π= 99.9%
n= 100 0.078 0.048 0.032 0.021 0.006
n= 200 0.053 0.032 0.022 0.014 0.003
n= 500 0.033 0.020 0.013 0.008 0.001
n= 1000 0.023 0.014 0.009 0.006 0.001
n= 2000 0.016 0.010 0.006 0.004 0.000
n= 5000 0.010 0.006 0.004 0.003 0.000

Note. To measure the closeness of the quality-related utility derived from

submissions between the two scenarios, we calculate the relative difference

(Q̄−Q)/Q̄. A smaller value of this metric indicates greater closeness.

Proposition 4 reveals a particularly insightful and significant finding of our research. It shows

that although the efficiency of the rejection design is initially lower than that of the full information

benchmark, this gap diminishes substantially as the number of crowdworkers increases. This pattern

highlights the scalability of the rejection design and its ability to approach benchmark efficiency in
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Figure 6 Average Submission Quality Across Different Mechanisms
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expansive crowdsourcing settings. This finding resonates with the conclusions drawn in Green and

Stokey (1983), where the authors demonstrated that the efficiency of a tournament improves with

an increasing number of contestants. The intuition is the same as in Proposition 3, where a larger

sample size reduces uncertainty and polarizes the likelihood of acceptance for submission quality

on different sides of ws̄(1−π).

To emphasize the practical implications of our findings, we further show that the improved

efficiency of the rejection design does not require an infinitely large number of crowdworkers to

become evident. A series of numerical simulations demonstrate that even with moderate increases

in crowdworker number, the efficiency of the rejection design rapidly approaches the benchmark.

As depicted in Figure 6, the average submission quality obtained through the rejection design

increasingly aligns with the benchmark across various acceptance rates. Furthermore, in Table 3, we

report the relative differences between our model and the full information benchmark. We present

the differences across five distinct acceptance rates. Notably, these differences diminish rapidly as

the number of crowdworkers increases.

These simulations not only underscore the relevance of our findings for real-world applications but

also suggest an effective simplification for analyzing the requester’s utility derived from submission

quality in Equation 2. Building on Proposition 4, we substitute the first term in Equation 2

with m
√
ws̄(1−π) for analytical purposes. This approximation shares the same intuition with

a deterministic fluid model for large sample sizes, where a complex, often stochastic system is

approximated using continuous, average-based behavior, ignoring the randomness or granularity of

individual particles. This approach is commonly used in the revenue management literature (e.g.,

Talluri and Van Ryzin 2004, Gallego and Topaloglu 2019). Another similar approach can also be
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found in Olszewski and Siegel (2016), where the authors propose an approximation method in large

scale contests. The method matches the position of a prize within the prize distribution by the

position of the type within the type distribution to which the prize is allocated. By adopting this

approximation, the requester’s expected utility in Equation 2 simplifies to

EUR =m
√
ws̄(1−π)+ma︸ ︷︷ ︸

utility from submissions

− mw︸︷︷︸
compensation

−mc1 −
m

π
(1−π)c2︸ ︷︷ ︸

platform service fee

. (3)

Based on this new requester utility function, we derive the requester’s optimal strategy for choosing

the acceptance rate π∗ and crowdworker compensation w∗ in the following lemma.

Lemma 4. (Requester’s Optimal Strategy) If 0 ≤ c2 <
s̄
4
, the requester chooses the acceptance

rate at π =
2
√
c2√
s̄

and the compensation for crowdworkers at w = s̄−2
√
s̄c2

4
. If c2 ≥ s̄

4
, the requester

sets π= 1 and w= 0.

The selection of the acceptance rate is influenced by both the ability range, s̄, and the platform’s

pricing strategy on rejection, c2. If the task cannot acquire sufficiently capable crowdworkers, which

is represented by a smaller ability range s̄, or if the cost of rejection c2 is too high—specifically,

c2 ≥ s̄
4
—the requester will choose not to reject any submissions, resulting in a scenario where all

submissions are accepted. This occurs because the cost of using rejection as an incentive mechanism

exceeds the potential payoff gained from improved submission quality. Conversely, if the cost of

rejection is low such that 0≤ c2 <
s̄
4
, the requester is likely to use the rejection design. This lemma

also underscores an important consideration: the cost of rejection should not be overlooked. If it

were, the optimal strategy for a requester would involve recruiting a vast number of crowdworkers

and setting a very low acceptance rate, which could potentially overburden the platform.

We note that when the requester sets π = 1, she also offers zero compensation. According to

Lemma 1, crowdworkers receive zero utility in this case and are therefore indifferent between

entering and exiting. When such indifference arises, we assume that crowdworkers choose to enter.

This is because the requester can introduce a small, positive utility increment to the entry option,

such that the crowdworkers’ utility from entry becomes strictly greater than that from exit. This

infinitesimal advantage effectively breaks the indifference and leads crowdworkers to prefer entry.13

13 This approach is well-supported by industry practices. For instance, Schwann’s Food Services does not employ a
survey rewards program. Instead, they rely on a panel of brand-loyal members, achieving a 30-45% response rate on
general customer surveys among these participants (Source: https://www.qualtrics.com/experience-management/
research/reward-your-research-panel/). Additionally, a tutorial by SurveyMonkey indicates that, in some
instances, offering no compensation can still lead to favorable outcomes (Source: https://www.surveymonkey.com/
mp/survey-prizes-pros-and-cons/).

https://www.qualtrics.com/experience-management/research/reward-your-research-panel/
https://www.qualtrics.com/experience-management/research/reward-your-research-panel/
https://www.surveymonkey.com/mp/survey-prizes-pros-and-cons/
https://www.surveymonkey.com/mp/survey-prizes-pros-and-cons/
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4.3. Platform Decision

The platform optimizes its expected utility by setting service fees for both accepted and rejected

submissions, subject to the constraint that the requester’s expected utility remains nonnegative,

which is formulated as maxc1,c2 E[
∑n

i=1U
P
i ] s.t. EUR > 0. We first derive the utility function of the

platform through the following lemma.

Lemma 5. (Platform Utility) The platform obtains the following expected utility

EUP =mc1 +
m

π
(1−π)c2︸ ︷︷ ︸

platform service fee

− m

π
(1−π)r︸ ︷︷ ︸

reputation loss

− m

π
h︸︷︷︸

hiring cost

. (4)

The platform’s utility comprises three parts. The first part derives from charging service fees for

both accepted and rejected submissions. The second part is the disutility resulting from reputation

loss associated with each rejected crowdworker. The third part involves hiring costs incurred for

each crowdworker, regardless of whether they are accepted or not. The determination of c2 involves

several trade-offs. As Lemma 4 suggests, imposing a higher service fee on rejections leads to a

higher acceptance rate and lower compensation for crowdworkers. These factors introduce complex

dynamics into the platform’s utility. For instance, lower compensation might diminish the incen-

tive for crowdworkers to submit high-quality work, subsequently reducing the requester’s utility.

Consequently, the platform cannot set excessively high c1 and c2 without risking the requester’s

exit from the market. Moreover, a higher acceptance rate yields mixed effects on the platform’s

utility. While it decreases the need to recruit many crowdworkers and reduces the number of rejec-

tions, which lowers both the reputation loss and the recruitment cost, it also diminishes revenue

derived from service fees on rejected submissions. These intricate effects underscore the need for a

carefully considered service fee structure. To deepen our understanding of the decisions made by

the platform and the requester, we analyze the equilibrium of the game in the following lemma.

Lemma 6. (Equilibrium Analysis) The equilibrium of the requester and the platform is given as

follows

1. If h + r < s̄
4
and h ≤ (a+r)2

s̄
+ a−r

2
+ s̄

16
, the platform sets c∗1 = a + h + r −

√
s̄(h+ r) + s̄

4

and c∗2 = h+ r. Correspondingly, the requester chooses π∗ = 2
√
h+r√
s̄

and w∗ =
s̄−2

√
s̄(h+r)

4
. The

platform and the requester obtain EUP =
m(4a−4

√
s̄(h+r)+4r+s̄)

4
and EUR = 0, respectively.

2. If h+ r≥ s̄
4
and h≤ a, the platform sets c∗1 = a and c∗2 ≥ s̄

4
. The requester chooses π∗ = 1 and

w∗ = 0. The platform and the requester obtain EUP =m(a−h) and EUR = 0, respectively.

3. In other cases, the platform is unable to obtain nonnegative utility. Hence, the platform would

not accept the requester’s task.
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This lemma delineates three distinct scenarios that influence the strategic decisions of both

the platform and the requester. In the first scenario, where both the recruitment cost and the

reputation loss are low, the platform sets a low service fee for rejected submissions. Consequently,

the requester chooses an acceptance rate below one to exploit the low cost of rejection. This fee

structure serves a dual purpose: it compensates for the recruitment costs and the reputation loss

associated with rejected crowdworkers, and it strategically encourages the use of rejection. In the

second scenario, characterized by significant reputation loss from rejection, the platform imposes a

higher fee on rejections to offset this loss. The increase in rejection cost discourages the requester

from using the rejection design, leading to a strategy of universal acceptance to circumvent this

cost. In the final scenario, when both the recruitment cost and the reputation loss are high, the

platform is unable to establish service fees that maintain nonnegative utilities for both itself and

the requester. Consequently, neither party enters the market.

Figure 7 (Color online) Effects of Reputation Loss and Hiring Cost on the Adoption of Rejection Design
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Figure 7 illustrates optimal strategies across scenarios characterized by varying levels of the

ability range (s̄) and the quality-invariant utility derived from each accepted submission (a). The

figure highlights regions in which the adoption of the rejection design is optimal, which locates

in the bottom-left corner where both reputation loss and recruitment cost are relatively low. As

reputation loss increases beyond a certain threshold, the optimal strategy transitions to a scenario

where rejection is not utilized and hence rejection-related cost is eliminated. In this scenario, the

platform’s primary challenge shifts to identifying a feasible pricing strategy capable of covering

recruitment costs. Consequently, the boundary separating the no-entry scenario (red area) and the

scenario without rejection (blue area) emerges as a clearly defined straight line. Beyond this line, the



Rejection Design for Crowdsourcing Platforms 23

platform can no longer sufficiently cover its recruitment cost. In contrast, the boundary delineating

the scenario that employs rejection (blue area) and the no-entry scenario lies slightly higher than

this straight line. This difference indicates that the rejection design enables the platform to capture

additional surplus, thus increasing its capacity to absorb higher recruitment cost. In other words,

the implementation of the rejection design provides platforms with greater flexibility against cost

fluctuations.

This visualization, in conjunction with Lemma 6, further reveals two critical insights regarding

the equilibrium dynamics under different values of s̄ and a. First, a higher quality-invariant benefit

a enables the platform to leverage its first-mover advantage to extract more revenue from the

requester, thus facilitating market entry even with heightened recruitment cost and reputation loss.

This effect is evidenced by the upward shift in the upper boundaries of the blue and green areas in

the figure. Second, when the task demands higher abilities, the platform is more likely to encourage

rejection despite higher associated reputation loss, because higher-ability crowdworkers produce

superior submissions when motivated by the rejection design. This dynamic allows the requester

to bear a higher rejection fee, which allows the platform to cover more costs. This relationship is

depicted by the rightward expansion of the blue area in the figure.

4.4. The Impact of Rejection Design on Each Party’s Welfare: Win-Win-Win

To further evaluate the impact of the rejection design on the welfare of all parties, we derive the

following propositions.

Proposition 5. (Platform Welfare) The rejection design generates higher platform welfare

compared to the scenario of universal acceptance.

As the first mover, the platform can leverage the service fee c2 to influence the requester’s

decision on whether to employ rejection. Consequently, the platform is guaranteed not to be worse

off compared to a scenario without a rejection design. Surprisingly, however, the rejection design

actually enhances the platform’s welfare. This increase is primarily because the rejection design

enables the requester to derive a higher surplus from submission quality. It is important to note

that the requester’s welfare remains unchanged as the platform consistently uses its first-mover

advantage to maximize its benefits, which is often at the expense of the requester’s welfare. However,

the requester still benefits from improved submission quality.

Proposition 6. (Crowdworker Welfare) The rejection design generates higher overall crowd-

worker welfare compared to the scenario of universal acceptance.

This proposition may seem counterintuitive at first. Common reasoning might suggest that rejec-

tion would disadvantage crowdworkers, as those with rejected submissions incur costs without
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compensation. However, our analysis reveals that overall crowdworker welfare actually increases

under the rejection design. The underlying mechanism is that the risk of being rejected motivates

crowdworkers to exert more effort, competing for the chance to have their submissions accepted.

Consequently, the requester is inclined to offer higher compensation to encourage superior sub-

mission quality. This dynamic effectively eliminates the problem where “bad money drives out

good”. As a result, more capable crowdworkers benefit from higher surpluses, while less capable

crowdworkers who exerting minimal effort, experience only marginal changes in their surplus.

Propositions 5 and 6 together underscore the effectiveness of the rejection design over scenarios

where rejection is not an option. In addition to its efficiency on promoting increased effort among

capable crowdworkers (Proposition 1) and approximating the theoretical full information bench-

mark in large sample (Proposition 4), the rejection design also significantly enhances social welfare.

First, it boosts the welfare of both the crowdworkers and the platform. Second, although it does not

incluence the requester’s welfare, it enhances the quality of submissions in the crowdsourcing task.

These benefits explain the phenomenon that many leading crowdsourcing platforms have adopted

the rejection design.

5. Discussions

In this section, we examine two alternative scenarios. In practice, many crowdsourcing platforms

set a fixed minimum acceptance rate for all tasks and provide full refunds for rejected submissions.

We explore this scenario in subsection 5.1. Furthermore, we explore the first-best scenario in which

the platform and the requester are integrated in subsection 5.2.

5.1. The Common Practice Scenario: a Minimum Acceptance Rate

In practice, many crowdsourcing firms specify a minimum acceptance rate and refund the requester

for rejected submissions, so the requester does not incur any cost for the rejected submissions. In

our rejection design, we allow the requester to decide the acceptance rate without any restriction,

while the platform influences the requester’s decision by charging a fee for the rejected submissions.

In the following proposition, we compare our rejection design with this common practice.

Proposition 7. (Fee-Based Rejection Design V.S. Minimum Acceptance Rate Enforced Rejec-

tion Design) Influencing the acceptance rate through pricing/fees yields greater benefits for the

platform than imposing a fixed minimum acceptance rate and providing a full refund for rejected

submissions.

While many crowdsourcing platforms commonly implement a fixed minimum acceptance rate

and offer full refunds for rejected submissions, we argue that this mechanism is suboptimal. The
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dominant strategy for the requester, in this case, is to consistently adhere to the minimum accep-

tance rate. This fosters free-riding behavior as it allows requesters to incentivize higher submission

quality through rejection without incurring any costs. As a result, the platform is left unable to

cover the recruitment cost and the reputation loss associated with rejected crowdworkers. In con-

trast, by imposing a service fee on rejected submissions, the platform can transfer these costs to the

requester, effectively aligning the cost of each task with its underlying recruitment and reputational

risks. An implication of this approach is the important role of c2, the service fee on rejections, in

rebalancing the power dynamics between the platform and the requester. The platform can not

only generate additional revenue through this fee, but also use it as a strategic deterrent against

excessive or unwarranted use of rejection, which helps the platform mitigate the reputational harm

that may arise from perceived unfair treatment of crowdworkers.

5.2. The First Best Scenario: System Integration

In this section, we explore a first-best scenario where the platform and the requester operate

as a fully integrated entity, henceforth referred to as the integrated platform. Such integration

implies that all transaction costs, if present, are internalized, which removes potential inefficiencies

caused by separate decision-making processes. In this idealized setting, the integrated platform’s

decision variables are limited to determining the optimal acceptance rate π and the appropriate

compensation w for crowdworkers. The expected utility for the integrated platform, denoted as

EU I , is expressed as follows:

EU I =ma+m
√
ws̄(1−π)︸ ︷︷ ︸

utility from submissions

− mw︸︷︷︸
compensation

− m

π
(1−π)r︸ ︷︷ ︸

reputation loss

− m

π
h︸︷︷︸

hiring cost

.

We solve for the best response for the integrated platform in the following lemma.

Lemma 7. (Equilibrium Analysis in the First-Best Scenario) The best response of the integrated

platform is given as follows

1. If h + r < s̄
4
and h ≤ (a+r)2

s̄
+ a−r

2
+ s̄

16
, the integrated platform sets π∗ = 2

√
h+r√
s̄

and w∗ =
s̄−2

√
s̄(h+r)

4
. Its expected utility is EU I =

m(4a−4
√

s̄(h+r)+4r+s̄)

4
.

2. If h+ r ≥ s̄
4
and h≤ a, the integrated platform sets π∗ = 1 and w∗ = 0. Its expected utility is

EU I =m(a−h).

3. In other cases, the integrated platform is unable to obtain nonnegative utility. Hence, the

platform would not enter the market.

Analogous to our main model, this first-best setting delineates three distinct equilibria, deter-

mined by varying degrees of reputation loss and recruitment cost. Interestingly, we observe that
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the equilibrium outcomes in this first-best scenario coincide precisely with the requester’s equilib-

rium decisions described earlier in Lemma 6. We formalize this surprising finding in the following

proposition.

Proposition 8. (Coordination) Fee-based rejection design can coordinate the platform and

requester to achieve the first best performance.

Proposition 8 reveals an insightful and somewhat counterintuitive finding. It shows that the

rejection design through enforcing a fee for rejected submissions can coordinate the system, yielding

identical utility and decisions for all involved parties, irrespective of whether the platform and

the requester act independently or as an integrated entity. Both the independent and integrated

setups lead to the same acceptance rate and crowdworker compensation. This equivalence arises

because both players, if possible, employ rejection strategically to incentivize crowdworkers to

exert greater effort. The requester benefits directly from improved submission quality, while the

platform simultaneously benefits by capturing a larger portion of the requester’s surplus. Thus,

their incentives regarding acceptance decisions align under this rejection design.

Propositions 7 and 8 offer guidance for the design of crowdsourcing platforms. Rather than man-

dating a minimum acceptance rate, as is commonly practiced, platforms should grant requesters

full discretion in setting their own acceptance thresholds. At the same time, platforms can guide

these decisions by implementing a service fee for rejected submissions. This rejection-based pricing

mechanism not only discourages misuse but also enables platforms to achieve first-best perfor-

mance.

6. Managerial Implication

Our findings offer valuable insights and practical implications for both requesters and crowdsourcing

platforms, highlighting opportunities to enhance effectiveness, efficiency, and profitability through

strategic implementation of the rejection design.

Managerial Implications for Requesters. Our analysis demonstrates that implementing a

rejection design effectively motivates high-ability crowdworkers to invest more effort, which signif-

icantly improves the quality of submissions. Specifically, when the crowdworker pool is sufficiently

large, the rejection design approximates the optimal outcomes achievable under full information

scenarios. Therefore, requesters can strategically utilize rejection as a mechanism to communicate

quality expectations implicitly and to incentivize participants to deliver higher-quality submissions.

By carefully selecting acceptance rates and providing appropriate compensation, requesters can

balance submission quality and costs, ultimately achieving superior crowdsourcing outcomes.
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Managerial Implications for Crowdsourcing Platforms. Our results also have direct impli-

cations for crowdsourcing platforms, particularly in terms of pricing/fee strategy. Traditional prac-

tices on major platforms typically involve establishing fixed minimum acceptance rates and issuing

full refunds for rejected submissions. However, our analysis reveals this approach to be suboptimal,

as it fails to adequately cover recruitment and reputation-related costs incurred by the platform.

Instead, we recommend that platforms remove any restriction on the acceptance rate and incor-

porate a service fee for rejected submissions. This approach not only compensates platforms for

the costs associated with rejected submissions but also discourages requesters from excessive or

unjustified rejection, promoting healthier market behavior.

Moreover, we find that the rejection design positively affects overall crowdworker welfare, an

outcome that supports the adoption of this approach by platforms. By enhancing crowdworker

satisfaction and motivating higher-quality submissions, platforms can cultivate a more engaged

and productive workforce. This, in turn, fosters sustainability and profitability. Thus, our findings

advocate for platforms to embrace and refine rejection-based pricing strategies and align their

operational practices with the broader objectives of stakeholder satisfaction and market efficiency.

7. Conclusion

This paper explores the rejection design on crowdsourcing platforms. While multiple quality control

methods within these platforms have been examined, the rejection design has received surpris-

ingly little attention in academic literature. In practice, while many major crowdsourcing platforms

have adopted this design, the policies governing its use vary significantly, highlighting a lack of

consistent understanding regarding its application. In this paper, we develop a model that cap-

tures the dynamics between crowdworkers, the requester, and the platform. We employ an auction

framework to analyze the actions of crowdworkers when confronted with the possibility of being

rejected. Building on this, we further explore the equilibrium between the requester and the plat-

form across various scenarios. Our theoretical insights provide a foundational understanding of

business practices on crowdsourcing platforms and offer strategic guidance for developing pricing

strategies tailored to different crowdsourcing scenarios.

First, we assess the efficiency and optimality of the rejection design. Our analysis reveals that,

when faced with the risk of rejection, higher-ability crowdworkers typically produce higher-quality

submissions. Furthermore, we discover that, from the requesters’ perspective, the optimality of the

rejection design closely approaches the theoretical upper bound as the number of crowdworkers

increases. This highlights its effectiveness in typical crowdsourcing settings that demand significant

participation. Second, we explore the interaction between the platform and the requester. Our

findings indicate that both the adoption and pricing strategies are shaped by the potential costs
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faced by the platform. We examine the optimal responses for both the requester and the platform

across various scenarios. Third, we conduct a welfare analysis for all parties involved. Interestingly,

we find that the rejection design creates a tripartite win-win-win situation for the platform, the

requester, and the crowdworkers. Our results also show that the platform benefits more than

either a no-rejection design or a zero-cost rejection policy. Moreover, our proposed rejection design

coordinates the system to achieve the first-best performance as if the platform and the requester

are integrated. These insights support a more nuanced implementation of the rejection design in

practical applications.

Our study, while providing valuable insights into the rejection design within crowdsourcing plat-

forms, is not without limitations, which present avenues for future research. First, our model does

not account for a sequential context where players repeatedly make decisions over time. Investigat-

ing a more dynamic aspect of the rejection design could prove beneficial. For example, incorporating

an individual reputation system (e.g., Goes et al. 2016) might reveal long-term effects of rejection on

crowdworker engagement and performance. Additionally, exploring negotiation processes, such as

allowing crowdworkers to resubmit rejected submissions, could further optimize the design’s effec-

tiveness and fairness. Second, our analysis is based on a monopoly scenario where a single platform

operates without competition. Future research could enhance the model by considering competitive

dynamics between multiple platforms (e.g. Stouras et al. 2025) and explore how platforms compete

to attract and retain both crowdworkers and requesters. Third, our model does not account for

the moral hazard where the requester may reject a submission on the platform yet still utilize

it in downstream tasks. Fourth, the potential for crowdworker learning within community-driven

platforms presents another rich area for study. Many crowdsourcing platforms operate communities

where crowdworkers can share insights and strategies. Understanding how this communal learning

affects individual and collective performance could provide deeper insights into task engagement

and quality.
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Online Appendix A: Figures

Figure A.1 An Example of Crowdworker Complaint Regarding Rejection

Note. This figure illustrates an example of reputation loss due to rejection on Amazon Mechanical Turk. Source: Red-
dit (https://www.reddit.com/r/mturk/comments/1fbea47/no_help_for_reversing_unwarranted_rejection/).
Accessed on April 4, 2025.

Online Appendix B: Additional Lemmas

Lemma B.1. The rejection design is efficient, as it encourages higher-ability crowdworkers to submit

higher-quality work (i.e., dqi
dsi

> 0).

Proof. Denote F (·) as the cumulative distribution function (CDF) of si and f(·) as the probability den-

sity function (PDF). Let gm(·) and Gm(·) denote the PDF and CDF of the m-th highest si among n− 1

crowdworkers, respectively. Let EUC
i denote the expected utility for crowdworker i. Hence, we have

EUC
i =

(
w− qi

si

)
P(qi > q−i,m)− qi

si
P(qi < q−i,m) =wGm(η−1(qi))−

qi
si
,

https://www.reddit.com/r/mturk/comments/1fbea47/no_help_for_reversing_unwarranted_rejection/
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where qi = η(si) represents crowdworker i’ optimal response given his type si. We focus on symmetric

equilibrium in which each crowdworker chooses submission quality to maximize his expected utility. We have

dEUC
i

dqi
=
w [Gm(si)]

′

η′(si)
− 1

si
,

dEUC
i

dqi
= 0⇒ η′(si) =wsigm(si)> 0. (B.1)

The lemma is proved.

Lemma B.2. Consider (X1, ...,Xn) as n independent and identically distributed samples drawn from a

distribution with a known CDF F (x). Let Xm denote the m-th highest value among these samples. Then,

Xm converges to F−1(π) in probability as n approaches infinity, where π= m
n
.

Proof. Define the empirical CDF Fn(x) =
1
n

∑n
i=1 1[Xi≤x]. We have

P(Xm −F−1(π)> ϵ) = P(F−1(π)+ ϵ <Xm)

= P(Fn(F
−1(π)+ ϵ)<π)

= P(Fn(F
−1(π)+ ϵ)−F (F−1(π)+ ϵ)<π−Fn(F

−1(π)+ ϵ))

Since π−F (F−1(π)+ ϵ)<π−F (F−1(π)) = 0, there exists a δ such that π−F (F−1(π)+ ϵ)<−δ. By Strong

Law of Large Numbers, Fn(x) converges to F (x) almost surely. Hence, when n→∞, we have

P(Fn(F
−1(π)+ ϵ)−F (F−1(π)+ ϵ)<π−Fn(F

−1(π)+ ϵ))

≤ P(Fn(F
−1(π)+ ϵ)−F (F−1(π)+ ϵ)<−δ)→ 0

Similarly, we have P(Xm −F−1(π)<−ϵ)→ 0 when n→∞.

Lemma B.3.
∫ 1

0

√
Ix((1−π)n+1, πn)Ix((1−π)n,πn)dx< π.

Proof. Since Ix((1− π)n+ 1, πn) ∈ [0,1] and Ix((1− π)n,πn) ∈ [0,1], by Cauchy–Schwarz inequality, we

have ∫ 1

0

√
Ix((1−π)n+1, πn)Ix((1−π)n,πn)dx

≤
(∫ 1

0

Ix((1−π)n+1, πn)dx

∫ 1

0

I2x((1−π)n,πn)dx

) 1
2

≤
(∫ 1

0

Ix((1−π)n+1, πn)dx

∫ 1

0

Ix((1−π)n,πn)dx

) 1
2

=

(
Beta((1−π)n+1, πn+1)

Beta((1−π)n+1, πn)

Beta((1−π)n,πn+1)

Beta((1−π)n,πn)

) 1
2

= π

(
n

n+1

) 1
2

< π.

Lemma B.4. limn→∞
∫ 1

0

√
Ix((1−π)n+1, πn)Ix((1−π)n,πn)dx= π.
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Proof. Consider a random draw of x∈ [0,1] from the distribution with a CDF of Ix((1−π)n+1, πn). The

mean and variance of x are respectively given by

E[x] =
(1−π)n+1

n+1
, Var(x) =E

[
(x−E[x])2

]
=
πn[(1−π)n+1]

(n+1)2(n+2)
.

By Chebyshev’s inequality, we have

P
(∣∣∣∣x− (1−π)n+1

n+1

∣∣∣∣≥ b

)
≤ πn[(1−π)n+1]

b2(n+1)2(n+2)
. (B.2)

Let b = b(n) = nβ , where β ∈ (− 1
2
,0). The RHS of the equation decreases in n and goes to zero when

n→∞. For x= 1− π+∆π, where ∆π ∈R \ {0} is a constant, there exists n≥
∣∣∣∆π− π

n+1

∣∣∣1/β that ensures∣∣∣x− (1−π)n+1

n+1

∣∣∣≥ b. Hence, by taking n→∞, we have P(x ̸= 1−π)→ 0 and P(x= 1−π)→ 1. Thus

lim
n→∞

Ix(πn, (1−π)n+1) = 1, x > 1−π,

lim
n→∞

Ix(πn, (1−π)n+1) = 0, x < 1−π.

Similar conclusions also apply to random variables drawn from another probability distribution with the

CDF Ix((1−π)n,πn). Hence, the lemma is proved.

Online Appendix C: Proof Details

Proof of Lemma 1. Since si follows a uniform distribution on [0, s̄], we denote gm(x) and Gm(x) as the

PDF and CDF of the m-th highest si
s̄
among n− 1 crowdworkers, respectively. We have

gm(x) = (n− 1)f(x)

(
n− 2

m− 1

)
[F (x)]n−m−1[1−F (x)]m−1 =

xn−m−1(1−x)m−1

Beta(n−m,m)
,

Gm(x) =

∫ x

0

xn−m−1(1−x)m−1

Beta(n−m,m)
dx=

Betax(n−m,m)

Beta(n−m,m)
= Ix(n−m,m).

Using Equation B.1, the optimal response quality for crowdworker i becomes

η(si) =ws̄

∫ si/s̄

0

xn−k(1−x)k−1

Beta(n− k, k)
dx+C

=ws̄
Beta(n− k+1, k)

Beta(n− k, k)

∫ si/s̄

0

xn−k(1−x)k−1

Beta(n− k+1, k)
dx+C

=ws̄(1−π)Isi/s̄((1−π)n+1, πn)+C.

Since EUC
i = 0 when si = 0, we have C = 0. The lemma is proved.

Proof of Propositions 1 and 2. Trivial, omitted.

Proof of Proposition 3. Lemma B.4 shows that limn→∞ Ix(πn, (1− π)n+ 1) = 1 if x > 1− π, while

limn→∞ Ix(πn, (1−π)n+1) = 0 if x< 1−π. This proves the proposition.

Proof of Lemma 2.

EUR =E

[
n∑

i=1

EUR
i

]

= n

∫ s̄

0

[
(
√
qi + a−w− c1)Gm(s)− c2(1−Gm(s))

]
ds

= n
√
ws̄(1−π)

∫ 1

0

√
Ix((1−π)n+1, πn)Ix((1−π)n,πn)dx+n

m

n
a−n

m

n
c1 −n

n−m

n
c2

=
m

π

√
ws̄(1−π)

∫ 1

0

√
Ix((1−π)

m

π
+1,m)Ix((1−π)

m

π
,m)dx+ma−mc1 −

m

π
(1−π)c2.
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Proof of Lemma 3. If all crowdworkers can observe each other’s type, those with s ≥ sm will choose

for a submission quality of q = wsm to ensure acceptance, while the rest will adopt zero quality as their

best responses. Hence, the requester’s expected total utility from submission quality is E[m√
q]≤m

√
E[q] =√

ms̄(1−π). Lemma B.2 shows that E[m√
q]→

√
ms̄(1−π) when n→∞.

Proof of Proposition 4. Since n= m
π
, we have

Q=
m

π

√
ws̄(1−π)

∫ 1

0

√
Ix ((1−π)n+1, πn)Ix ((1−π)n,πn)dx.

Lemmas B.3 and B.4 show that Q<m
√
ws̄(1−π) and limn→∞Q→m

√
ws̄(1−π). Hence, we have τ < 1

and limn→∞ τ → 1.

Proof of Lemma 4. First, consider the scenario where π ∈ (0,1). Solving the first-order conditions (FOC)

for the expected utility of the requester EUR with respect to π and w, we find π =
2
√

c2√
s̄

and w = s̄−2
√

c2s̄
4

.

The second-order conditions (SOC) confirm that this solution maximizes EUR. To ensure π ∈ (0,1), it is

required that 0≤ c2 <
s̄
4
. Conversely, if c2 ≥ s̄

4
, we have π= 1 and the requester and the requester minimizes

costs by setting w= 0 to maximize EUR.

Proof of Lemma 5.

EUP =E

[
n∑

i=1

EUP
i

]

= n

∫ s̄

0

[
(c1 −h)Gm(s)− (c2 −h− r)(1−Gm(s))

]
ds

=mc1 +
m

π
(1−π)c2 −

m

π
(1−π)r− m

π
h.

Proof of Lemma 6 and Proposition 5. The platform sets the service fees, c1 and c2, to maximize its

expected utility, subject to a constraint that ensures requester entry:

max
c1,c2

EUP s.t. EUR ≥ 0.

We first consider the scenario where π ∈ (0,1). Using Lemma 4, we have EUR =m(a− c1 + c2 −
√
c2s̄+

1
4
s̄)

and EUP =m(c1 − c2 + r)+ m
√

s̄(c2−h−r)

2
√
c2

. We define the Lagrangian for this optimization problem as:

L(c1, c2, λ) =m(c1 − c2 + r)+
m
√
s̄(c2 −h− r)

2
√
c2

+λ

(
a− c1 + c2 −

√
c2s̄+

1

4
s̄

)
.

To find the optimal service fees, we apply the Karush-Kuhn-Tucker (KKT) conditions:

• Stationarity: m−λ= 0 and 1
4
n(

√
s(c2+h+r)

c
3/2
2

− 4)− λ
√
s

2
√

c2
+λ= 0.

• Primal feasibility: a− c1 + c2 −
√
c2s̄+

1
4
s̄≥ 0.

• Dual feasibility: λ≥ 0.

• Complementary slackness: λ(a− c1 + c2 −
√
c2s̄+

1
4
s̄) = 0.

From these conditions, we find the solutions: c∗1 = a+ h+ r −
√
(h+ r)s̄+ 1

4
s̄ and c∗2 = h+ r. As a result,

the requester obtains EUR = 0 and the platform obtains EUP =
m(4a−4

√
(h+r)s̄+4r+s̄)

4
. The platform will

enter the market if and only if it can achieve nonnegative utility, i.e., EUP ≥ 0. This condition implies that

h≤ (a+r)2

s̄
+ a−r

2
+ s̄

16
. The use of rejection requires c2 <

s̄
4
. This case also requires h< s̄

4
− r.
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Next, we consider the scenario where π= 1. In this case, we have EUR =m(a− c1) and EUP =m(c1−h).
Hence, the platform chooses c1 = a and c2 ≥ s̄

4
. Thus, the requester obtains EUR = 0 and the platform

obtains EUP =m(a−h). This equilibrium is achieved when h≤ a and h≥ s̄
4
− r.

To ensure that when h< s̄
4
− r, the platform will choose for a c2 <

s̄
4
to encourage rejection, we conduct a

final check. The difference in utility between the two cases is given by:

m(4a− 4
√
(h+ r)s̄+4r+ s̄)

4
−m(a−h) =

m

4
(
√
s̄− 2

√
h+ r)2 > 0.

This means that encouraging rejection is a dominant strategy for the platform when h< s̄
4
− r.

Proof of Proposition 6. Let EUC denote the average utility for all crowdworkers. Lemma 6 shows that

when the rejection design is not used, the requester sets the compensation at w = 1, leading to EUC = 0.

Now, consider that the requester uses the rejection design, we have

EUC =

∫ s̄

0

wGm(s)− η(s)

s
ds

=ws̄π−ws̄(1−π)

∫ 1

0

Ix((1−π)n+1, πn))

x
dx

=ws̄π−ws̄(1−π)

[
[Ix((1−π)n+1, πn)) log(x)]10 −

∫ 1

0

x(1−π)n(1−x)πn−1

Beta((1−π)n+1, πn)
log(x)dx

]
=ws̄π−ws̄(1−π)

∫ 1

0

x(1−π)n(1−x)πn−1

Beta((1−π)n+1, πn)
(− log(x))dx

=ws̄π−ws̄(1−π) [ψ0(n+1)−ψ0((1−π)n+1)]

=ws̄π−ws̄(1−π)
[
Hn −H(1−π)n

]
≥ws̄ [π+(1−π) log(1−π)] .

Here, ψ0 denotes the digamma function, and Hn denotes the the n-th harmonic number. It is trivial to show

that π+(1−π) log(1−π)> 0 ∀π ∈ (0,1).

Proof of Proposition 7. We consider a different setting of the game. That is, instead of imposing a

minimum acceptance rate, the platform directly determines a customized acceptance rate for each requester

and does not charge any fee to the requester for the rejected submissions. Hence, the requester maximizes:

EUR =ma+m
√
ws̄(1−π)︸ ︷︷ ︸

utility from submissions

− mw︸︷︷︸
compensation

− mc1︸︷︷︸
platform service fee

.

The expected utility of the platform is expressed as:

EUP = mc1︸︷︷︸
platform service fee

− m

π
(1−π)r︸ ︷︷ ︸

reputation loss

− m

π
h︸︷︷︸

hiring cost

.

The FOC and SOC suggest that w= (1−π)s̄

4
maximizes the requester’s utility. The platform chooses c1 and

π to solve the following optimization problem:

max
c1,π

EUP s.t. EUR ≥ 0.

We define the Lagrangian for this optimization problem as:

L(c1, π,λ1, λ2) =
m(πc1 +πr−h− r)

π
+λ1

(
a− c1 +

(1−π)s̄

4

)
+λ2(1−π).

We apply the KKT conditions:
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• Stationarity: m−λ1 = 0 and m(h+r)

π2 − λ1s̄
4

−λ2 = 0.

• Primal feasibility: a− c1 +
(1−π)s̄

4
≥ 0 and 1−π≥ 0.

• Dual feasibility: λ1 ≥ 0 and λ2 ≥ 0.

• Complementary slackness: λ1(a− c1 +
(1−π)s̄

4
) = 0 and λ2(1−π) = 0.

Hence, we have π∗ =
√

4m(h+r)

ms̄+4λ2
. If λ2 = 0, we have π∗ < 0. This requires that h + r < s̄

4
. In this case,

c∗1 =
4a−2

√
s̄(h+r)+s̄

4
. The platform and the requester obtains EUP =

m(4a−4
√

s̄(h+r)+4r+s̄)

4
and EUR = 0,

respectively. Similar to Lemma 6, we need h ≤ (a+r)2

s̄
+ a−r

2
+ s̄

16
in this case. If h+ r ≥ s̄

4
, we have λ2 =

4m(h+r)−ms̄

4
̸= 0 and π∗ = 1. In this case, c∗1 = a. The platform and the requester obtains EUP =m(a− h)

and EUR = 0, respectively. This proposition can be directly drawn from these results. In scenarios where the

platform sets the acceptance rate and offers full refunds for rejected submissions, the decision on π remains

consistent with scenarios in which the requester determines the acceptance rate while the platform sets the

pricing for rejections. Hence, a fixed π is not optimal.

Proof of Lemma 7. Trivial, omitted.

Proof of Proposition 8. Trivial, omitted.
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