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Abstract. Many companies offer free access to their technology to encourage outside add-
on innovation, hoping to later profit by raising prices or harnessing the power of the crowd
while continuing to steer the direction of innovation. They can achieve this balance by
opening access to the technology (access rights) but still maintaining governing control
over it (control rights). However, how this continued exertion of control influences other
companies’ choice to invest in furthering that technology is not well understood. This study
looks at the impact of technology control on external contributions in open collaboration
contexts by examining the case of PyTorch, a popular machine learning framework, which
shifted its governance from a for-profit corporation (Meta) to a non-profit foundation in
2022. The results show that this shift led to a small decrease in contributions from Meta
but a notable increase from external companies. In particular, participation increased
from complementors (Chip Manufacturers); by contrast, users (App Developers and Cloud
Providers who rely on PyTorch as input) did not change their rate of participation. These
findings are consistent with the notion that the governance change resolved complementors’
hold-up concerns.
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1 Introduction

Open collaboration has long been studied as a model for distributed innovation, inspired
by examples like Wikipedia or Linux, (Baldwin and von Hippel 2011; Levine and Prietula
2014; Ren et al. 2016; Kane and Ransbotham 2016; Gambardella and Von Hippel 2019).
However, the past decade has seen a rise in the strategic use of open collaboration in
innovation efforts by firms across prominent settings like electric vehicles, digital platforms,
and artificial intelligence1, raising new economic questions. In particular, firm-sponsored
open collaboration is characterized by the fact that, although the focal firm makes its
technology open for use and follow-on innovation by the public, it retains various forms of
control over the technology. Such firm-sponsored projects are paradoxically open (in the
sense of free access for use and modification) but not open (in the sense of decentralized
technical control). Due to the possibility of coordinated, strategic action on the part of the
focal firm, it is likely that community participation, particularly external firm participation,
will vary based on the strength of the focal firm’s control rights. How do technology control
rights impact an external firm’s likelihood of participation in open collaboration? Which
firms are more sensitive to technology control rights?

Understanding the relationship between control rights and external firm participation in
firm-sponsored open collaboration is essential because of the breadth of relevant economic
settings where it occurs. For example, firms have been shown to strategically open technol-
ogy (such as committing to not enforce intellectual property rights) to increase control over
technology standards, improving competitive positioning in supplier networks (Augereau
et al. 2006; Jones et al. 2021; Toh and Pyun 2024). Many companies sponsor the devel-
opment of open source software (OSS) for key technologies to encourage development and
interoperability with related software (O’Mahony and Karp 2020; Haese and Peukert 2024;
Azoulay et al. 2024), including recent developments in Generative Artificial Intelligence
(GenAI) models. Finally, digital platforms may be seen as open collaborations when they
leverage governance decisions like data sharing or low initial royalty rates to attract com-
plementors and increase complementor compatibility with the platform (Wareham et al.
2014; Rietveld et al. 2019).

However, despite its potential economic importance, the effect of technology control
rights on firm participation in open collaboration is understudied in the prior literature.
Preliminary but limited evidence (Boudreau 2010; O’Mahony and Karp 2020) suggests that
a focal firm’s reliquishing of control rights does impacts an external firm’s likelihood of
participating in open collaboration. However, the mechanism through which this occurs is
debated2. Relatedly, to our knowledge, there is no direct evidence on how this effect may
differ depending on the type of external firm, specifically, whether they are a user of the
open technology, or a complementor to it, a key dichotomy in inter-firm relationships.

This literature gap likely exists because of three key challenges in empirically estimating
this relationship. The first and most subtle challenge is that changes in “control rights” al-
most always correlate with changes in what the literature calls “access rights” — the direct
ability for third-party firms to appropriate value freely or at low cost3. The prior literature

1Examples are discussed throughout the paper, but top of mind examples include Tesla’s 2014 release
of its electric vehicle battery technology (Musk 2014), Google’s sponsorship of the cloud containerization
software Kubernetes (Evans 2018), or Meta’s sponsorship of PyTorch, the focal setting of this paper (Meta
2022).

2We describe our paper’s relationship and contribution to this literature at length below.
3As a prominent example, Tesla’s opening up of its electric vehicle patents reduced Tesla’s control over
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(Boudreau 2010; Schwarz and Takhteyev 2010) mostly studies this distinction in the context
of platforms that grant access to complementors to build on the core technology, equating
control with the open-sourcing of the core platform (and therefore the inevitable opening
of access rights). Only recent research by O’Mahony and Karp (2020) demonstrates that
governance structures of already open-sourced technologies represent a further aspect of
technology control, one that can vary independently of access rights. However, finding such
settings that cleanly separate the influence of these two related effects in this way is difficult.
Second, in many contexts, it can be difficult to find sufficient statistical power to study dif-
ferences in the effect of technology control rights on different external participants. Finally,
the third challenge is that it is hard to find plausibly exogenous variation in control rights
to convincingly identify a causal effect, as shifts in control rights may be anticipated or even
endogenously determined by community actions (e.g., through the lobbying of government
regulators).

This paper addresses these challenges by studying an economically important open
source project (i.e., with constant access rights) as it changed its governance model from
firm-sponsored (”dominant”) governance to community-led (”distributed”) governance. Specif-
ically, we study PyTorch, a leading machine learning framework, as it unexpectedly tran-
sitioned governance from the for-profit corporation Meta to the Linux Foundation (a non-
profit organization focused on supporting open source software (OSS) projects) in Septem-
ber 2022. PyTorch’s governance change presents a unique opportunity to test the effect of
technology control rights on external firm participation because PyTorch was already open
source at the time of the change and had been so for almost its entire existence dating back
to 2016. Therefore, this governance shift did not change the direct ability of external firms
to appropriate value from the technology, but did change their ability to control the future
trajectory of the technology. We interpret this governance change as a shift in control rights
but not access rights, allowing us to separate the two effects and solve the first challenge
highlighted above. Additionally, there is a large amount of external firm contributors, al-
lowing us to address the second challenge. Motivated by our theoretical framework, we
study differences in participation between external firms that are users versus those that
are primarily complementors. Finally, PyTorch’s announcement was sudden and unantic-
ipated by the machine learning community. When applicable, we leverage this plausible
”exogenous to the external community” property to justify causal interpretations of our
estimated effects and make progress on the third challenge.

We operationalize this empirical design by assembling a novel, user-level panel data
set from GitHub (the primary website hosting OSS projects) of all historical contributions
to PyTorch. Descriptive analysis focuses on characterizing overall contribution trends to
PyTorch around the time of the governance change. Our data comprises 4,138 unique
contributors (33.9% from Meta4) to PyTorch from April 2020 - September 2023. Notably,
contributors include a long tail of relatively low-commitment individuals, which we use as
a helpful comparison group in some parts of our analysis. Instead, we focus primarily on
employee contributors from the largest and most recognizable external firms contributing
to PyTorch (other than Meta), including NVIDIA, Hugging Face, Apple, and Microsoft.
We identify 964 total contributors employed at 72 key external firms responsible for 7.19%
of our dataset’s total commits5. These data allow us to estimate difference-in-difference

the technology but also directly gave access to the technology to other car manufacturers (Musk 2014).
4Meta’s contributors are more active than other contributors on average; Meta contributions account for

over 70% of the total commits to PyTorch during the timeframe of the study.
5A commit is a group of simultaneous code changes made to a software project leveraging the Git version
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specifications to test our key hypotheses.
Our empirical results highlight that control rights have an immediate, large, and sus-

tained effect on firm contributions to PyTorch. The first group of results is from within-
PyTorch difference-in-difference models estimated on variation over time in contributor-level
participation. They show that the transition of PyTorch governance from Meta to the Linux
Foundation leads to only a small increase in net contributors to the project. The small net
effect conceals important heterogeneity: external firm participation rose by approximately
25% and remained elevated, while Meta’s participation initially increased before dropping
sharply after the governance change. This result highlights that shifting control rights to col-
lective governance may not always increase total welfare because such a shift likely reduces
the focal company’s incentive to contribute while simultaneously increasing the incentives
of other companies to contribute.

The second set of results highlights that the governance shift led to a sustained contri-
bution increase for only a certain type of external firm. Namely, contributions increased
from Chip Manufacturers, who began or increased making technology-specific investments
needed to create interoperability between PyTorch and their computer chips. However,
there were no changes in contributions by Non-Chip Manufacturers (”Application Devel-
oper” or ”User”) firms, who contribute primarily to learn and to improve the usability of
the technology for themselves. We interpret these results as evidence that PyTorch’s shift
in control rights mitigated an existing hold-up problem for external firms. However, be-
cause “Complementor” Chip Manufacturers depend on continued interoperability of their
chips with the software to capture value, they are more susceptible to hold-up by Meta and
therefore experience a relative increase in participation (compared to “Users”) when the
threat is mitigated by the governance change. This result is robust to a triple-difference
comparison, where we leverage TensorFlow (another popular open source machine learning
framework controlled by Google) contributors as a control group.6

Our findings primarily contribute to the strategy literature on value capture in open
innovation (Teece 1986; Chesbrough and Bogers 2014; Tambe 2014; Alexy et al. 2018; Nagle
2019; Rotolo et al. 2022), by being the first (to our knowledge) to apply a control rights
lens to analyze firm participation in that setting. The closest of these papers to ours is
Alexy et al. (2018), but it focuses on the perspective of the firm choosing to open their
technology and why they might do so. We take this decision as given and consider how
external firms are likely to react to this decision. More broadly, whereas the prior literature
emphasizes the role of direct value appropriation in predicting firm participation in open
collaboration (often via control of complementary assets), our paper is the first to empirically
demonstrate that future value appropriation (through ex-post control rights) drive present-
day firm participation decisions in open collaboration innovation systems.

Moreover, we contribute to the literature on firm participation in the governance of
the digital commons (Ostrom 1990; West and O’Mahony 2008; Boudreau 2010; He et al.
2020; O’Mahony and Karp 2020; Altman et al. 2022; Tang et al. 2023). Our paper is most
similar to two of these. Boudreau (2010) studies participation by hardware complementors
in an operating system as a function of ‘openness’ and ‘control’, but identifies control with
public access / lack of IP rights. By contrast, our paper studies a setting where the tech-
nology is entirely open source (i.e., in the public domain), but where control is determined

control system. For those without prior exposure to Git, you can think of a commit as a set of code changes
tagged by the contributor and date contributed.

6For reasons detailed in the manuscript, we only use TensorFlow in triple diff (and not diff-in-diff)
comparisons due to the presence of pre-trends in the event studies corresponding to diff-in-diff specifications.
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by governance structure. Consequently, our main finding (relinquishing control increases
participation) differs from the main finding of Boudreau 2010. O’Mahony and Karp (2020)
study how changes in governance of IBM’s Eclipse IDE affected external firm participation.
Their explanation of external firm reactions to a platform opening technology focuses on
concerns around appropriation by IBM, whereas we focus on hold-up due to control rights.
More broadly, this literature largely emphasizes that the more ‘open’ the commons, the bet-
ter. Our control rights lens adds nuance to this work by showing that shifting control rights
to a more ‘distributed’ model does not necessarily lead to an increase in contributions as it
may dampen the incentive for focal company investments while increasing the incentives to
contribute for complementors, and having a limited impact on user contributions.

Lastly, our results contribute to the literature on firm participation in OSS communities
(West and Lakhani 2008; Dahlander and Magnusson 2008; Nagle 2018; O’Mahony and Karp
2020; Murciano-Goroff et al. 2021; Nagaraj and Piezunka 2024; Fleischmann et al. 2023;
Haese and Peukert 2024; Kim et al. 2024), by being the first paper (to our knowledge) to
study how external firms responses to actions by open collaborations directly sponsored by
other firms differ depending on whether they are complementors or users. **Note, we could
add a bit more to distinguish from Haese/Peukert and Nagaraj/Piezunka, but I think this
already sums it up sufficiently.***

We proceed as follows. In section 2, we develop a conceptual framework for analyzing
the effect of control rights on firm participation in open collaboration. In section 3, we
introduce PyTorch as the empirical domain for our tests, as well as our data and empirical
design. In Section 4, we present the main results of our paper. And in section 5, we discuss
several implications of our findings and conclude.

2 Conceptualizing Technology Control and Open Collabora-
tion

In this section, we review the literature on control rights and firm participation in firm-
sponsored open collaboration to theorize hypotheses to take to the data. We first define
open collaboration, then define control rights in the context of open collaboration, and
finally theorize their effect on external participation, especially that of external firms.

2.1 Defining Control Rights in Open Collaboration

Open collaboration refers to an important model of innovation where an open technol-
ogy is developed by a distributed community, often without explicit contracts or research
agreements (Baldwin and von Hippel 2011; Levine and Prietula 2014). Open collaboration
differs from more traditional innovation models like research agreements or joint ventures
because it requires many participants (not just two or three) to realize the full value-creation
potential. Our interest is particularly in firm-sponsored open collaboration, where a focal
firm releases a technology as a public good in order to encourage follow-on innovation by
other firms. This variant is further distinctive because innovation is asymmetric between
the focal firm and the follow-on firms. Such collaborations are especially common due to
digitization, which brought about communication technologies that enabled the decentral-
ized coordination of larger technology projects (Gambardella and Von Hippel 2019). Most
prominently, both firm-led software and hardware development have occurred under an
open-source model (e.g., at Meta, see Lin 2021 and https://opensource.fb.com/). How-
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ever, other examples include companies intentionally releasing IP to encourage follow-on
innovation (and possibly standardization around the technology), such as in the case of
DuPont (Murray et al. 2016), Celera (Williams 2013), or Tesla (Musk 2014). In the same
spirit (though perhaps not fully ‘open’ in the full sense of the word), platforms may provide
low prices and open source software development kits (SDKs) to encourage complementary
innovation, such as Hugging Face’s model hub or various ‘App’ stores on platforms like
Shopify.

What is the primary predictor of external firm participation in firm-sponsored open
collaboration? Currently, the literature on open collaboration emphasizes current value
appropriation channels (”access rights”). (Boudreau 2010; O’Mahony and Karp 2020).
Access rights may include low royalty rates to benefit from a platform or use of intellectual
property or the ability to use a software or hardware design in follow-on innovation for free.
But what about expectations about future value capture (which we call ”control rights”),
where a firm may make a costly effort in order to provide optionality later on after markets
develop?

In economic theory, a standard framework for reasoning about uncertain future value
falls under a set of ideas known as property rights theory (Grossman and Hart 1986; Hart
and Moore 1990).7 In particular, property rights theory (also known as incomplete con-
tracts theory) highlights that although many economic collaborations can be made efficient
through the re-allocation of value through contracting (including those with quantifiable
future uncertainty), in special economic situations of interest, relationship-specific effort
and investment (”ex-ante investment”) must precede the resolution of non-contractible un-
certainty. In such situations, a critical governance decision is the allocation of control rights
— the ex-ante ability (e.g., they are allocated before firms invest any effort) to make ex-post
decisions (e.g., after non-contractible uncertainty is resolved) about how shared assets are
used. The theory predicts that firms without ex-post decision rights will underinvest in
ex-ante effort (relative to the social optimum) because of fear of the potential of ”hold-up”
by the firm with the control rights. The theory predicts that hold-up threats are stronger
when those without ex-post decision rights have weaker outside options (i.e., value captured
in the absence of ex-post cooperation). In this framework, control rights are optimally al-
located when they are controlled by the firm whose investment has the greatest effect on
net value creation. We thus adopt a definition of control rights as the ability for a single
agent (often a single firm) to make decisions about an innovative asset in the future after
current, non-contractible uncertainty is resolved.

In practice, where do control rights come from? While originally referring to ownership
of physical property and used to study the boundary of the firm, the innovation literature
has applied control rights theory to settings like bilateral research agreements and joint ven-
tures (Aghion and Tirole 1994; Oxley 1997; Sampson 2004; Lerner and Malmendier 2010;
Rodŕıguez and Nieto 2016) where the relevant control rights are decision rights about the
R&D project (e.g. project termination) rather than explicit property rights, and where
relationship-specific investments are interpreted as technology-specific investments. In that
setting, control rights theory helped to identify optimal contract design for research col-
laborations that properly incentivized cooperation between firms (Lerner and Malmendier

7We utilize the term control rights and the associated theoretical framework, but our ideas also relate
to a sibling literature in economics known as Transaction Cost Economics. In that literature, the focal
governance structure is ex-post governance and monitoring rather than ex-ante decision rights. While the
ideas are similar and, in some cases, overlapping, we prefer the control rights framework because of its sharp
predictions around hold-up effects, which are the focus of this manuscript.
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2010).
Our theoretical contribution is to apply incomplete contracts theory to a new innovation

setting: open collaboration. Incomplete contracts theory is particularly applicable to open
collaboration because there is often non-contractible uncertainty over how to capture value.
This is because technical capabilities are rapidly shifting, meaning that business models
are changing, regulations are forming, and other clear market structures have yet to take
shape (Gao and McDonald 2022). Because of this, it’s common for firms to prioritize
value capture optionality while they wait for the regulatory and business model structure
to solidify (McDonald and Gao 2019). Furthermore, many instances of open collaboration
preclude the ability to formally contract on expected outcomes due to community norms
(e.g., in the example of open source software).

In the context of open collaboration, control rights are most clearly allocated based
on formal governance rights — explicit rules about who has decision-making power. How-
ever, control rights can also be developed through more informal social authority, such as
through past technical contributions or expertise. For example, Python’s creator, Guido
Van Rossum, had control over the (open source) programming language’s technical trajec-
tory due to his authority as the creator, a role that was only later semi-formalized into his
title as the ”Benevolent Dictator for Life” (BDFL) (Van Rossum 2008). More generally, He
et al. (2020) study the process by which OSS project licenses are changed and find that they
are driven through discussions by core contributors to each project, often through ”reflective
agency” that focuses on emphasizing shared values across the project contributors.

2.2 Theorizing the Effect of Control Rights on External Firm Participa-
tion

The literature often describes the allocation of control rights as centralized or distributed
(O’Mahony and Karp 2020). Just because a firm is sponsoring a technology does not
mean the control rights are centralized; it is possible that control rights are seen as more
distributed if the focal organization is seen as reputable, fair, cooperative, or ideologically
motivated, such as the open source machine learning company Hugging Face (Greenstein
et al. 2023). What is the effect of an exogenous shift in control rights from a centralized
to a distributed model (in particular, holding present value-capture channels constant) on
external firm participation?

The key insight of our conceptual framework is that “opening” control rights in this way
does not create incentives out of thin air but rather shifts incentives between parties. In
firm-sponsored open collaboration, the focal firm is often responsible for creating the raw
infrastructure and rules through which other firms engage. By contrast, external firms are
those that build on the focal innovation to create additional value. For example, Fontana
and Greenstein (2021) demonstrate that the establishment of the Centrino Wifi standard by
Intel (the focal firm) led to an influx of complementary products by router manufacturers
(the external firms). Assuming that there is any expected value in these decision rights,
such a change will, therefore, differentially impact these two groups.

Hypothesis 1. In open collaboration, a change in governance from firm-dominant to col-
lective will increase participation by external firms.

Notably, external firms are different from (external) unaffiliated individuals, a class
of contributors that have been extensively studied in the literature (West and Lakhani
2008; Dahlander and Magnusson 2008). In particular, Hypothesis 1 predicts the opposite
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of the literature on individual participation in open source ecosystems, which highlights
that participants engage in open source development due to a mix of extrinsic preferences
like the ability to become known and hired by the focal company or intrinsic preference of
problem solving and skill-building enabled by the focal company’s coordinating role (Lerner
and Tirole 2002; Lakhani and Wolf 2005; David and Shapiro 2008; Shah and Nagle 2020;
Tang et al. 2023). Hypothesis 1 also resonates with the core finding of O’Mahony and Karp
(2020), which highlights that clear, collective governance led to deepened participation by
external firms in the context of the open sourcing of IBM’s Eclipse platform. We extend
beyond such existing work in our consideration of the types of external firms below.

Although the focus of this paper is on the impact on such a governance shift on external
firms, we can also consider the impact on the focal firm itself. Although the governance
shift is certainly not exogenous to them, it is still interesting to consider how they are likely
to act after such a decision. Such a consideration highlights an unappreciated downside of
collective governance: it reduces the incentives for a focal firm to invest as they now have
less at stake in the future of the project. Therefore, the effect of such a governance change
on net contributions to a project is actually ambiguous. If a focal firm is a disproportionate
contributor to a focal technology, then a shift in governance rights may actually reduce wel-
fare by decreasing the focal firms’ incentives to continue investing in the technology. This
is equivalent to a ”no free lunch” argument, because it shows that openness does not magi-
cally create incentives for external participation without associated costs, but rather shifts
incentives between focal and external firms. In particular, control rights theory emphasizes
that consideration of the optimal allocation of control rights (with respect to overall welfare)
depends on the marginal returns to the ex-ante effort of each party (Grossman and Hart
1986; Hart and Moore 1990).

2.3 Heterogeneous Firms Motives for Participating in Open Collabora-
tion

We distinguish between two types of external firms based on how they capture value
from their contributions. The first class of external firms is those who derive value from
follow-on innovation through the creation and control of profitable complementary products
(per traditional arguments by Teece (1986) and its descendants, e.g., Alexy et al. (2018)).
We simply call them Complementors. By contrast, a second class of external firms is those
who contribute in order to increase the value of the technology to their own applications
they are building on top of the focal technology. In particular, it has been shown that firms
that contribute to open technologies can learn to use the technology in a more productive
manner (Nagle 2018). We call such firms Users. User firms, therefore, get value from
contributing as long as they can continue to access the technology8.

While both types of firms make technology-specific investments (and are thus suscep-
tible to hold-up problems), the key difference between Complementors and Users is the
strength of their outside options (and the corresponding magnitude of hold-up). Recall

8We use the term Complementor and User to align with Porter’s classic strategy framework (Porter
1980) where users or customers utilize a firm’s product directly but complementors are firms whose products
enhance the value of the focal firm’s product when a user uses both products together. However, readers
familiar with the platform literature may note that contributions from both types of external firms are
presumably complementary (in terms of value creation) to the focal technology, adding confusion to the
label “Complementor” (which can apply to both groups). Such readers can substitute the concepts of
Complementor and User for the more recent concepts of Horizontal and Vertical complementors (respectively)
in the platform literature, e.g., Thomas et al. (2024).
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that in property rights theory, an outside option is the value an agent captures if ex-post
cooperation between parties breaks down. Crucially, property rights theory predicts that
when an agent has a stronger outside option, the magnitude of a hold-up problem is less-
ened. In open collaboration, such a breakdown in ex-post cooperation corresponds most
closely to disagreement on the technical direction of a project. In that case, Users have
a stronger outside option because they only depend on the interface (or “API”) of the
technology, shared across all users. Therefore, even if the focal firm and the User do not
cooperate after investments are made, Users can still capture substantial value from their
investment because their access rights are guaranteed (since the technology is open) and the
technology’s interface is unlikely to change significantly. By contrast, Complementors have
a weaker outside option because they technically depend on specific integrations that en-
able the coupling between the focal technology and their complementary products to create
value.9 If the focal firm and Complementors do not cooperate after initial investments, the
focal firm may limit or undo interoperability with the Complementor’s product, meaning
Complementors could not capture value from their investment and, therefore, experience
greater hold-up. Formally stated:

Hypothesis 2. The positive effect of a change in governance from firm-dominant to collec-
tive on external firm participation in open collaboration will be greater for Complementors
than Users.

Hypothesis 2 is critical for our empirical tests that interpret a governance change as a
shift in control rights because it is singularly predicted by a control rights interpretation of
that change. While a governance change may have several possible causal pathways that
impact an external firm’s involvement, we expect to see this pattern only if control rights
are the primary mechanism underlying the effect.

3 Empirical Setting, Design, and Data

In this section, we explain PyTorch’s relevance as an empirical setting for testing our
hypotheses, describe our data collection process, and introduce our estimation strategy.

3.1 PyTorch as an Empirical Setting

3.1.1 Background on Open Source Machine Learning and PyTorch

To test our hypotheses, we need an empirical setting that features a technology developed
by a focal firm, contributed to by multiple external firms, and containing variation in
”control rights” that holds ”access rights” constant. While challenging to find in general,
a particularly useful setting where these properties hold is that of open source software,
and in particular open source machine learning (OSML). Open source software is useful
as a setting because it is by definition freely available, meaning that access rights to the
technology are fixed. In particular, OSML is useful as a setting because its development is
dominated by leading technology firms (for example, see Baruffaldi and Poege (2024)) and

9Essentially, we are arguing here that the nature of a firm’s technical dependence (Baldwin and Clark
2000) predicts the strength of that firm’s outside option. When a firm is only dependent on the general
functionality of a technology, they have a stronger outside option; when a firm is dependent on a specific
technical integration with the technology, they have a weaker outside option.
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it features a framework (PyTorch) that experienced a sudden shift in control rights, as we
explain below.

What is PyTorch? PyTorch is a machine learning framework used to specify, train, and
run inference on neural networks10. In particular, PyTorch provides two key features that
differentiate it from standard numerical computing libraries like Numpy or Matlab: 1) flex-
ible specification and automatic differentiation of model architecture, enabling application
to many modalities of data (numeric, text, speech, video, etc.) and 2) optimized training on
different hardware accelerators (e.g. GPUs) and computing environments (e.g. distributed
compute clusters). In other words, PyTorch makes it straightforward to operate neural
networks at scale, a technique that has become increasingly popular given recent research
breakthroughs leveraging models with billions of parameters.

PyTorch has arguably become the most popular machine learning framework, providing
a technical backbone for a majority of artificial intelligence (AI) research and applications
today. Paperswithcode.com reports that almost 70% of machine learning research papers
with code use PyTorch (see Figure A1). All major cloud providers provide customized
pre-packaged environments for leveraging PyTorch (AWS, Azure, GCP). Beyond direct us-
age, PyTorch also underlies many implementations of popular AI models today as both a
critical dependency of higher-level open source libraries like Hugging Face’s Transformers
and Lightning AI’s PyTorch Lightning, as well as direct usage by a diverse range of star-
tups and larger companies including OpenAI, Elasticsearch, Tesla, Airbnb, Genentech, and
Disney (Meta 2022, OpenAI 2020, PyTorch Foundation 2023, Sharma 2024, Lahoti 2019).
While other machine learning frameworks exist and have similar functionalities (most no-
tably TensorFlow, a Google-backed open source machine learning framework)11, PyTorch
won ”market share” due its superior usability12 and its strong technology ecosystem (He
2019). Undoubtedly, PyTorch has been essential to the emergence of AI technologies as a
driver of the economy.

Critical to our purposes, PyTorch is open source under the Berkeley Software Distri-
bution (BSD-3) license, where ”redistribution and use in source and binary forms, with or
without modification, are permitted” (see the source code), as long as appropriate attri-
bution is given to the original creators in any forks (derivatives) of the code. The main
repository’s source code is publicly available on GitHub at pytorch/pytorch, and the
broader pytorch/ GitHub organization hosts several other repositories that cover a vari-
ety of complementary developer activities to the main repository (such as documentation,
technical integrations, testing infrastructure, etc.).

10Understanding of machine learning terminology and PyTorch’s functionality is not necessary for under-
standing this paper. However, for the interested reader, relevant definitions can be found in many places on
the internet, including Google’s Machine Learning Glossary.

11Indeed, PyTorch is the technical descendant of two such frameworks that came from academia: Lua
Torch and Caffe2. There are many other similar software packages capable of implementing neural networks
(and other popular machine learning techniques), such as Matlab, scikit-learn, OpenNN, Julia, Apache’s
MXNet, or Microsoft’s CNTK (see Langenkamp and Yue 2022 for background). However, none of them
have achieved the same level of community engagement and economic relevance as Meta’s PyTorch and
Google’s TensorFlow, with the potential exception of Google’s JAX.

12As a famous tweet by Andrej Karpathy in 2017 goes, ”I’ve been using PyTorch a few months now and
I’ve never felt better. I have more energy. My skin is clearer. My eye sight has improved.”
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3.1.2 PyTorch’s Institutional History and Governance Change

Institutionally, PyTorch was conceptualized and developed by Meta (née Facebook)
engineers (see Soumith’s blogpost or Spisak’s keynote).13 It was the second major corporate-
backed open source machine learning framework to emerge, with Meta’s public release of
PyTorch in 2017 following Google’s public release of TensorFlow in 2015. PyTorch was
developed as a community-driven project from its very beginnings, with many contributions
coming from outside of the Meta organization, including from other companies like NVIDIA
and Quansight.14 Nevertheless, Meta has consistently provided the majority of investment
in PyTorch: Table 1 shows that Meta employees have provided over 70% of commits to the
repository since its 2017 public release.15

Table 1. Affiliation Breakdown of PyTorch Contributions. This table summarizes con-
tributions to the PyTorch repositories by affiliation type—Meta, External Company, or
Other—across the entire history of the project (until 2024). Some percentages do not sum
to 100% due to bot-related contributions, which are not shown here.

Affiliation Total Commits % of Commits Unique Committers Total Issues % of Issues Unique Issue Authors

Meta 88001 70.98 1942 96433 52.77 1191

External Company 22221 17.92 734 27206 14.89 721

Other 13759 11.10 3640 57895 31.68 20949

Due to Meta’s special relationship with PyTorch, prior to 2022, the company controlled
the project at both the technical and strategic levels. PyTorch has tight technical inte-
gration with Meta’s infrastructure – Meta famously sources its own production PyTorch
code directly from the head of PyTorch’s main branch, meaning that the GitHub PyTorch
repository is technically a mirror of the ”true” Facebook-internal repo, and thus only cur-
rent Meta employees can ”land” pull-requests (i.e., approve changes to the codebase that
others pull from — see Eric Yang’s blog or PyTorch documentation).16. Beyond technical
control, Meta management had complete governing control over the project’s technical vi-
sion and direction. This type of control is best understood as ”soft power”, in the sense
that PyTorch prides itself on a clear division between its business and technical leadership
of the project. Indeed, almost all public descriptions of the governance process highlight
its democratic nature and emphasize technical, data-driven arguments over consideration
of particular users or use-cases (Chinatala 2022).

In September 2022, Meta shocked the machine learning world by announcing a transition

13More generally, Meta is known for its broad support of open source development. For example, Meta
is the primary firm sponsor of several other well-known open source projects, such as the React javascript
library for developing responsive web interfaces, the GraphQL API language (link), several popular pre-
trained machine learning models including Detectron2 and the Llama LLM family, and the ELI5 Open
Compute project for developing open source designs for datacenter hardware (Lin 2021).

14Quansight is a data science and engineering company founded by Travis Oliphant, the creator of Numpy
and the Anaconda organization.

15We discuss how we impute institutional affiliations of contributors later in Section 3.2.1. This amount
of Meta contribution is a lower bound because some commits are tagged with generic email hosts like Gmail
or Outlook, who may actually be Meta employees. Nevertheless, OSS norms would generally imply that
individuals contributing on behalf of their employer use their work email address, validating this measurement
approach.

16PyTorch leaders like Eric Yang and public documentation come off as genuinely apologetic about this
arrangement, but we note that this arrangement has not changed as of 2024/07 despite at least three years
of recorded public recognition of this problem. For reference in the documentation, see the answer to “Q:
Can I become a committer on the project?”
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of PyTorch’s governance model to a standalone PyTorch Foundation, operated under the
guidance of the Linux Foundation (LF). This governance change was made with the explicit
intention to attract investment (both code and financial contributions) from external orga-
nizations into PyTorch ”to accelerate progress in AI research” (Chintala 2022). The Linux
Foundation, a non-profit organization established in 2000 to support Linux development and
OSS projects, has a mission focused on ensuring neutrality across organizations on technical
projects, including the popular operating system Linux and container orchestration system
Kubernetes.

The hallmark of such LF-run projects is the presence of a governing board that votes
to democratically make high-level decisions about both business and technical strategy (in-
cluding who else to admit to the board). Thus, concurrent to the announcement of the
PyTorch foundation, the organization brought on NVIDIA, AWS, Google Cloud, Microsoft
Azure, and AMD as part of the shared governance board (Linux Foudation 2022, Meta
2022), a board that would be expanded throughout 2023 to include IBM, Hugging Face,
Intel, Graphcore, Lightning AI, Huawei, and Snowflake (PyTorch 2023). All announcement
posts emphasize that the board focuses on decisions related to business governance, not
day-to-day technical governance of the tool, which was intended to remain unchanged.17

Nevertheless, by changing the governance to a model run by a voting board of other orga-
nizations and bringing in the LF, Meta’s singular control of the technical direction of the
project (and potentially its social status as the creator of the tool) was greatly diluted.

The exact timing of when the ‘effects’ of the governance change begin is challenging
to precisely pin down. Conversations with PyTorch Foundation insiders revealed that this
transition had been discussed privately between Meta and LF for over two years, with
the agreement being put in place in principle in Spring 2022 and a handful of other key
organizations being recruited to the foundation around that time. Because we do not have a
record of which companies were approached as potential members of the PyTorch foundation
in Spring 2022, we expect that PyTorch’s potential transition to the Linux Foundation was
‘in the air’ for these early joiners as early as Spring 2022, and structure our subsequent
analysis accordingly.

Conceptually, we interpret this governance change as a shift in control rights from Meta
to many external companies, what the literature calls a change from “dominant” to “col-
lective” governance (O’Mahony and Karp 2020). Because collective governance requires
voting and alignment of preferences between companies (similar to the Internet Engineer-
ing Task Force standard setting committees of Simcoe (2012)), Meta no longer has the
ability to single-handedly set the technical direction of the tool (e.g., with respect to sys-
tem architecture and higher level technology strategy). Therefore, they no longer have the
ability to “hold up” a contributing company in the event that Meta’s commercial interest
diverges from the contributing company’s interest. For example, in the event of a techni-
cal incompatibility, the PyTorch governance board may weigh in on whether the project
should maintain support for specific back-end compilers; previously, Meta could have single-
handedly decided to discontinue support for certain complementary technologies.

17Beyond the governance board, in practice, the LF primarily provides support in community organization
through marketing, conference management, and administrative coordination. Technical leadership remains
with the original maintainers of the tool.
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3.1.3 Meta’s Strategy and Competitive Considerations

Why did Meta invest so heavily in PyTorch in the first place, and why did they de-
cide to spin the project out as a jointly governed foundation under the Linux Foundation
in 2022? From the perspective of developing empirical tests for the effect of technology
control rights, Meta’s rationale for these transitions is orthogonal to this study (save for
testing Hypothesis 2) as long as the change was unanticipated by external firms and unaf-
fected by external firm strategizing. Nevertheless, Meta’s technology strategy is a first-order
managerial question, and we provide a more extended (speculative) discussion of this in Sec-
tion A.1. Germane to the core theme of this paper, Meta leadership has explicitly called
out control of the technology’s future as a rationale for their original investment (PyTorch
2023). Therefore, the most thematic interpretation of Meta’s decision to spin out PyTorch
in 2022 is that sufficient non-contractible uncertainty had been resolved as time passed from
its founding in 2017 to the governance transition in 2022. Under this rationale, as value
capture channels from AI technologies became increasingly clear and contractible, Meta’s
expected marginal benefit of investment with singular governing control has diminished
to the point where relinquishing governing control to encourage external firm investment
became relatively attractive versus retaining technological control.

An astute reader may speculate that the governance change may have changed the
competitive logic of contributing to PyTorch, differentially affected companies in direct
competition with Meta (e.g., in social media or digital advertising). A priori, this seems
plausible, and may well occur in other settings where governance of this type changes occur.
However, while it seems like this empirical setting may support a competition-based inter-
pretation, the results actually show that the governance change did not induce cooperation
from competitors, but rather incentivized entry from complementors and users of the tech-
nology. We know this because only two companies that contribute to PyTorch over the time
period studied could remotely be characterized as in direct competition with Meta. The
first, Google, is a technology giant that competes with Meta in digital advertisement, but
its contributions to PyTorch were purely limited to creating technical compatibility with
its customized chip for machine learning (“Tensor Processing Units”); in this sense, Google
is actually acting as a complementor here. ByteDance (the parent company of TikTok)
competes with Meta over social media users, but its contribution magnitude is relatively
small (8 total commits over the analysis period for this paper). Furthermore, technology
competition is notoriously challenging to measure, and no clear consensus has emerged from
the literature for how to do this. For this reason, our paper focuses on theorizing exter-
nal firms as complementors to, or users of, PyTorch, and does not theorize competitive
considerations.

3.2 Data and Measures

One of the distinct advantages of studying an open source software project like PyTorch
is that a full contribution history is stored in a public git repository, available on GitHub.18

18Git is a source control management (SCM) system that allows software projects with multiple developers
to track changes over time and ensure that the program continues to function as expected. Git (or similar
SCM systems) are almost universally used and considered best practice for software projects due to the
fact that code systems grow tremendously complex over time and small changes can easily break the overall
system. Germane to our purposes, Git tracks granular information on contributors and the contributions
that they make to the project over time. While the exact mechanics of git are somewhat complicated and
can be found in detail online (see here), previously unexposed readers can think of commit changes as ”code
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By leveraging the public GitHub API, we gather data on the PyTorch organization’s entire
contribution history19, including technical contributions data and contributor-level data.
We aggregate the raw commit-level data20 to the contributor-month level21 to form our
primary analysis data set. For our analysis, we focus on the timeframe between April 2020
and September 2023, which includes two years before the start of the transition period and
one year after the public announcement of the governance change. In total this gives us
3.5 years (42 months) of data, covering the time surrounding the event of interest. As a
control, we gather analogous data from TensorFlow, Google’s open source machine learning
framework.

3.2.1 Imputing Institutional Affiliations

Testing our hypotheses requires measuring company affiliation at the contributor level.
To do this, we leverage the fact that the git version control system requires contributors to
provide an associated ”author” email address. We use this email in two ways. First, GitHub
indirectly uses these emails to link commits to the author’s corresponding GitHub profile.
Because a significant benefit to open source contributions is the public recognition given
to key contributors (and potential career benefits), these profiles tend to be populated and
well maintained – allowing us to gather meta-data at the contributor level. In particular,
contributors tend to self-report their affiliations in their profiles. The second benefit of the
email data is that we can use the email domain to directly assign a company affiliation
to some subset of the committers. There is a very strong norm in OSS development that
contributors should use their work email address if they are contributing on behalf of their
employer and a personal email address if they are contributing on their own time. For
example, PyTorch founder Soumith Chintala’s early contributions to PyTorch were made
using the author’s email ”soumith@fb.com,” his Facebook work email address, since creating
PyTorch was his official job at Facebook.

Therefore, we impute company affiliations at the contributor level using the following
steps. First, we gather self-reported affiliations from contributors’ profiles and extract
known institution names (”entity resolution”) from these descriptions. Second, we take the
domain of any email addresses associated with that contributor on GitHub via commits
(e.g., ”fb.com” or ”nvidia.com”) and develop a mapping between those domains and known
companies. Lastly, for contributors with greater than 100 commits, we manually inspect
the GitHub and LinkedIn profiles of contributors and record their company affiliations.
We do this to ensure accurate affiliation information for the most active contributors. We
then merge this information and record the contributor’s affiliation as 1) Meta if any source
reports the contributor as a Meta employee at any point, 2) any company if that contributor
was identified as an employee at any point, 3) any university if the contributor was associated

change” level data associated with a software repository, tagged by the contributor and date contributed.
19PyTorch’s organization on GitHub comprises 73 repositories, including the primary tool

pytorch/pytorch and a constellation of related projects. Because of the high level of integration between Py-
Torch organization projects and overlap in the contributors, we view these projects as collectively comprising
”PyTorch”. However, as shown in the appendix, results are robust to analysis of only pytorch/pytorch.

20A commit is a code change by an author at a point in time, created for version control. While we gather
data on commits, pull requests, issues, and comments, our analysis focuses on commits (in line with the
literature, e.g., Wright et al. (2023)). However, our results are largely the same for using pull requests, with
pull requests simply being a more aggregated version of commits. Issues and comments are more indicative
of using the technology than contributing to it, so we end up not using that data in this analysis because
our core interest is in firm contributions to the technology, rather than usage.

21Results are robust to analysis at the quarterly level.
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with a particular school, and otherwise 4) unknown, a common outcome for accounts only
associated with generic email domains like gmail.com or outlook.com. Importantly, our
aggregation rolls up subsidiaries to the parent organization level: for example, we assign
employees of Oculus or Instagram to Meta and DeepMind or Google Brain to Google.

Our approach is biased towards over-reporting contributors as Meta employees, which
(if anything) would downwardly bias the results that we find later on (we exclude Meta
employees from our test of Hypothesis 1 and ??). The approach minimizes false-positive
matches, leaving open the possibility of false-negatives (unaffiliated contributors who are
actually employed), who contribute due to company influence but go unmarked due to the
fact that they contribute using an unaffiliated email address (e.g., Gmail). The additional
information from manual labeling is essential for our analysis due to the need for accurate
affiliation-level data on contributions. We demonstrate the benefit of this approach for our
analysis by comparing it to the literature’s standard approach of just using email domains
(for example Wright et al. (2024)) in Table A1. In particular, we show that different
corporate affiliation implies a different likelihood of using a corporate email (versus self-
reporting that affiliation in a GitHub or LinkedIn profile but using one’s personal email to
sign commits), highlighting the importance of the additional information captured by our
method. As a robustness check, we later demonstrate that our main results are strengthened
if we impute affiliation based only on the email domain, indicating that the results of our
broader approach err on the side of underestimating the true effect.

3.2.2 Which Companies Contribute to PyTorch and TensorFlow?

A list of the top 25 companies (by total unique contributors) contributing to PyTorch
or TensorFlow22 is presented in Table 2. Notably, the top contributing companies comprise
technologies companies, especially Chip Manufacturers (Intel, NVIDIA, ARM, AMD, IBM,
etc.), Cloud Providers (Microsoft, Amazon, Alibaba, etc.), as well as other App Developers
(Red Hat, OpenAI, Hugging Face, Spotify, etc.). Contributions to PyTorch and TensorFlow
are dominated by contributions from Meta and Google (respectively), with more contribu-
tors from those organizations than any other organization.

Motivated by our theoretical framework in section 2, we classify the companies con-
tributing to PyTorch as Chip Manufacturers23 or Non-Chip Manufacturers. We interpret
Chip Manufacturers as Complementors to PyTorch because their commercial incentive is
to increase demand for their focal chips through improving the complementary software,
a classic example of ‘commercializing the compliment” (e.g., Teece (1986)). By contrast,
Non-Chip Manufacturers can be either Application Developers (who use the technology in
their own products) or Cloud Providers (who provide use of the technology on their com-
puters) are interpreted as Users24, getting their value primarily from learning the tool and
increasing its applicability within their own products.

22We include TensorFlow here and later on in our analysis as a control group. TensorFlow is often seen
as the competitor ML framework to PyTorch; this table shows that in practice, many companies contribute
technically to both frameworks.

23Chip Manufacturers are companies whose primary focus is the design and production of semiconductor
components, including CPUs, GPUs, and other integrated circuits, which serve as the critical processing
units in computers and other electronic devices.

24We use the term Non-Chip Manufacturers throughout the manuscript for technical accuracy, but the
reader can substitute the term ‘Application Developer’ if they find it a more clear description of the types
of firms contained in this category. Later in the analysis, we provide a data-driven justification for grouping
App Developers and Cloud Providers
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Table 2. Top 25 Companies (by total unique contributors) contributing to PyTorch and
TensorFlow from April 2020 - September 2023 (the analysis period covered in this pa-
per). Note that PyTorch and TensorFlow refer to all repositories under the pytorch/ and
tensorflow/ GitHub organizations, not just the primary repositories (pytorch/pytorch
and tensorflow/tensorflow). The column ‘Both’ denotes the amount of contributors that
commit to both PyTorch and TensorFlow in the analysis period. Not all PyTorch Board
members joined on the first announcement; the full list and dates joined are listed here,
as derived from the PyTorch Foundation’s website. Note that Huawei (App Developer,
October 2023), Snowflake (Cloud, December 2023), and Rebellions (Chip Manufacturer
November 2024) also joined the PyTorch board at some point, but were not in the top
companies contributing here.

Contributors Commits

Company PyTorch Board Company Type PyTorch TensorFlow Overlap Total PyTorch TensorFlow Total

Meta Sep 2022 Focal Firm 1402 10 2 1410 52851 247 53098
Intel Oct 2023 Chip Manufacturer 83 85 4 164 1058 2280 3338
Microsoft Sep 2022 Cloud 80 21 1 100 1473 177 1650
NVIDIA Sep 2022 Chip Manufacturer 65 47 2 110 4028 2153 6181
Amazon Sep 2022 Cloud 47 14 4 57 1081 149 1230

Google Sep 2022 Chip Manufacturer 44 1395 13 1426 1614 83478 85092
AMD Sep 2022 Chip Manufacturer 29 24 1 52 695 724 1419
IBM Jul 2023 Chip Manufacturer 23 19 1 41 171 174 345
Quansight App Developer 22 0 0 22 3703 0 3703
Yandex Cloud 11 6 1 16 17 19 36

Alibaba Cloud 10 10 1 19 21 50 71
Fujitsu App Developer 9 1 0 10 76 4 80
Hugging Face Aug 2023 App Developer 9 3 0 12 12 71 83
Graphcore Sep 2023 Chip Manufacturer 8 7 0 15 24 39 63
Tencent App Developer 7 11 2 16 31 131 162

Apple Chip Manufacturer 6 5 1 10 236 77 313
ARM Sep 2024 Chip Manufacturer 6 50 3 53 14 1021 1035
ByteDance App Developer 6 13 2 17 8 110 118
Cerebras Chip Manufacturer 6 4 1 9 33 10 43
Lightning Oct 2023 App Developer 6 0 0 6 107 0 107

Cruise App Developer 5 0 0 5 186 0 186
GitHub App Developer 5 3 0 8 24 19 43
OpenAI App Developer 5 7 1 11 41 209 250
Preferred Networks App Developer 5 0 0 5 53 0 53
Uber App Developer 5 2 1 6 15 3 18

The key prediction of our theoretical framework is that Chip Manufacturers are more
concerned about being ‘held up’ by Meta and, therefore, are most likely to contribute more
after control rights are dispersed via the governance change. The reason is that Chip Manu-
facturers must maintain interoperability between their chips and PyTorch’s implementation,
whereas Non-Chip Manufacturers are only dependent on the PyTorch library interface. As
a result, Chip Manufacturers are more concerned about loss of interoperability (and there-
fore value capture) should Meta be non-cooperative after investments are sunk. Indeed,
discussions with the Linux Foundation highlighted that support for various chip backends
was indeed a type of key concern that was brought to the governing board for strategic
discussion, consistent with this prediction. Section 4.2 generalizes and tests for this insight
in the data.
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Table 3. Summary Statistics. All observations are at the Contributor-Month level. Panel A
describes all contributors to PyTorch organization repositories. Panel B describes Non-Meta
Contributors to PyTorch, the analysis sample used to test Hypothesis 1 and Hypothesis 2.
Panel C describes a more limited sample: External Company contributors to PyTorch and
TensorFlow; this is used as a more stringent test of ??.

Variable Mean Stdev Min Max N # Contributors

Panel A. Sample: All Contributors to PyTorch

Repo = PyTorch 1 0 1 1 173796
Month 2020-04-01 2023-09-01 173796

Post 0.2857 0.4518 0 1 173796
Transition 0.1429 0.3499 0 1 173796

Contributor 173796 4138
Meta 0.3388 0.4733 0 1 173796 1402
Unaffiliated 0.4886 0.4999 0 1 173796 2022
University 0.035 0.1839 0 1 173796 145
External Company 0.1375 0.3444 0 1 173796 569

Chip Manufacturer 0.064 0.2448 0 1 173796 265
Non-Chip Manufacturer 0.0735 0.2609 0 1 173796 304

1(Is Active) 0.0809 0.2727 0 1 173796
Log(Commits + 1) 0.1129 0.4498 0 4.9053 173796

Panel B. Sample: Non-Meta Contributors to PyTorch

Repo = PyTorch 1 0 1 1 114912
Month 2020-04-01 2023-09-01 114912

Post 0.2857 0.4518 0 1 114912
Transition 0.1429 0.3499 0 1 114912

Contributor 114912 2736
Meta 0 0 0 0 114912
Unaffiliated 0.739 0.4392 0 1 114912 2022
University 0.053 0.224 0 1 114912 145
External Company 0.208 0.4059 0 1 114912 569

Chip Manufacturer 0.0969 0.2958 0 1 114912 265
Non-Chip Manufacturer 0.1111 0.3143 0 1 114912 304

1(Is Active) 0.0573 0.2324 0 1 114912
Log(Commits + 1) 0.0669 0.3197 0 4.804 114912

Panel C. Sample: External Company Contributors to PyTorch and TensorFlow

Repo = PyTorch 0.5602 0.4964 0 1 40488
Month 2020-04-01 2023-09-01 40488

Post 0.2857 0.4518 0 1 40488
Transition 0.1429 0.3499 0 1 40488

Contributor 40488 964
Meta 0 0 0 0 40488
Unaffiliated 0 0 0 0 40488
University 0 0 0 0 40488
External Company 1 0 1 1 40488 964

Chip Manufacturer 0.5 0.5 0 1 40488 482
Non-Chip Manufacturer 0.5 0.5 0 1 40488 482

1(Is Active) 0.1272 0.3332 0 1 40488
Log(Commits + 1) 0.1748 0.5337 0 4.804 40488
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3.2.3 Measures

For our analysis, we form a balanced panel of Contributor-Months for contributions to
PyTorch organization repositories, summarized in Table 3, Panel A. Here, we describe the
variables found within at greater length.

Time Variables (Transition and Post). In addition to using months as fixed effects,
we form variables denoting two key periods of interest: the ”Transition” period (April
2022–September 2022) and the ”Post” period (On or After October 2022). We call the first
period the ”Transition” period because, as described in Section 3.1.2, conversations with
the Linux Foundation emphasize that a handful of external contributors were looped into
private discussions of the potential governance change during these months. Second, we
consider the “Post” period as after October 2022 after the governance change based on the
timing of the public announcement of the change.

Contributor Variables (Affiliation Labels). Across PyTorch, we find 4,138 unique con-
tributors hailing from 802 unique institutional affiliations (as measured following the pro-
cedure described in Section 3.2.1). From these affiliation labels, we split contributors into
four mutually-exclusive dummy variables: Meta employees, Unaffiliated (e.g. if contributed
from an gmail.com address), University affiliates, or External Company employees. For Ex-
ternal Company employees, we further form (mutually exclusive) dummy variables denoting
whether the company is a Chip Manufacturer or not. Notably, there are many Unaffiliated
contributors to PyTorch (2,022 in total), but this should not be confused with the idea
that unaffiliated contributors drive PyTorch development. Most unaffiliated contributors
commit once and then leave, whereas most Meta and External Company contributors are
consistent contributors. Finally, we note that of the External Company contributors, Chip
Manufacturer employees comprise about half of the contributing population.

Dependent Variables. We measure two outcome variables. First, 1(Is Active) measures
whether a contributor committed within a given month, e.g., the extensive margin of par-
ticipation. Second, Log(Commits + 1) measures the magnitude of commits made in a given
month. To give a sense of scale, PyTorch requires that official maintainers successfully land
6 commits (log(6 + 1) ≈ 1.95) in a given technical area to be considered an expert in that
area of the code base. We impute a value of 0 for both variables if no commit associated
with the Contributor is observed in the relevant month.

Table 3 also provides summary statistics for two related samples of Contributor-Months.
Namely, Panel B presents a strict subsample of Panel A: Non-Meta contributors to PyTorch.
This sample is used in subsequent tests of Hypothesis 1 and ??. Consistent with the idea
that Meta employees are the most regular and high-intensity contributors to PyTorch, the
average value of the dependent variables drops substantially relative to Panel A. Panel C
presents an augmented subsample: External Company contributors to PyTorch or Tensor-
Flow, a total of 964 unique contributors. This sample is used for our most stringent test
of ??. Notably, there is an extremely small number of contributors that contribute to both
PyTorch and TensorFlow (29, or 2.92%), and most of them skew heavily towards contribut-
ing to either PyTorch or TensorFlow or the other. We exclude these dual contributors from
Panel C and from our analysis, although their inclusion does not change the results of our
analysis.
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3.3 Empirical Design

To test our hypotheses, we leverage difference-in-difference style regression specifications,
taking advantage of the rich data available in our setting to explore various comparison
groups. All of our specifications take the following form for contributor i in month t:

Yit = βPost · Treati × Postt + βTransition · Treati × Transitiont + α ·Xit + γi + δt + ϵit

where Yit represents the dependent variable, Xit represents (potentially time-varying) con-
trols that vary by specific analysis, and γi and δt are contributor and month fixed effects.
Treati is a contributor level variable that varies by specification: for our within PyTorch
specifications, it usually takes the form Chip Manufactureri, but for our between-PyTorch-
and-TensorFlow analyses, it takes the form Chip Manufactureri × PyTorchi. All analyses
cluster standard errors at the Affiliation and Month levels.

While the empirical specification is standard, the choice of appropriate control group
for our analysis has more nuance. We only observe a single technology governance change
- all contributors to PyTorch experience the same governance change at the same time.
Therefore, there is no entirely unaffected group that we can leverage as a control in our
analysis. Nevertheless, we explore three different reasonable comparison groups throughout
our analyses, which allow us to assemble strong evidence in favor of our hypotheses.

1. Unaffiated Contributors. This group comprises contributors that contribute using
University or Ambiguous email domains (such as ‘gmail.com’). While unaffiliated
contributors may well be employeed, their choice to not use their corporate email at
least indicates a lower level of corporate involvement in their choice to contribute to
open source software. Therefore, we’d expect that any relevant incentives passed on
from a company would be lessened for this group.

2. Non-Chip Manufacturers. A second control group comprises the employees at cloud
computing and application developer companies, such as Amazon, OpenAI, and Dis-
ney. Our theory predicts that these Users will be less affected by the governance
change because their access rights to the technology do not change.

3. External Company Contributors to TensorFlow. A final control group is External
Company contributors committing to TensorFlow, a rival machine learning framework
that does not undergo the same governance change. In this case, we leverage triple-
difference specifications to explore pre-post differences in the difference between Chip
Manufacturers and Non-Chip Manufacturers across PyTorch and TensorFlow.

Notably, we exclude contributors from Meta from our analyses (except for our test of
Hypothesis 2) because Meta initiated the governance change, and therefore Meta’s contri-
bution patterns likely anticipated and are inherently endogenous to the governance change.
By contrast, we argue that the governance change was unanticipated by external company
contributors prior to Spring 2022.

Before presenting these specifications, we will also present raw time trends in the data
that corroborate the final statistical estimates. Further, as is standard for difference-in-
difference analyses, we modify the above specification to explore how results change with-
out fixed effects as well as the associated event study specification (to explore potential
violations of the parallel trends assumptions in the form of pre-trends). Because of a lack of
an unaffected comparison group, it is difficult to interpret our estimates as any direct form
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of average treatment effect. Nevertheless, the difference-in-difference specification allows us
to tighly relate variation in control rights to variation in outcomes across different groups
of theoretical interest, and for that reason we are confident in interpreting our results as
supportive of a causal relationship between control rights and contributions to PyTorch. Fi-
nally, at the end of our results, we explore potential alternative explanations and associated
robustness tests.

4 Empirical Analysis

4.1 Baseline Effect of PyTorch’s Governance Change

Figure 1 visualizes contribution patterns across different contributor groups around the
timeframe of the governance change. The top left panel shows total unique monthly con-
tributors, revealing a striking pattern: a temporary increase in contributors during the
Transition period, followed by a sharp decline after the public announcement. Breaking
this down by affiliation reveals that external companies drove the initial increase, while
Meta employees’ participation dropped sharply post-announcement. Unaffiliated contrib-
utors showed no discernible trend throughout this period. The breakout by contributor
affiliation explains this temporary increase: the increase in contributors is driven primarily
by an influx of contributors by external companies, alongside a surprising temporary in-
crease in Meta participation (potentially associated with transition-related changes). The
drop-off at the end of the transition is driven by a sharp decrease in Meta contributors
following the public announcement. By contrast, no discernable trend is visible for Other
(Not Company). Figure A2 superimposes these time trends to illustrate the difference in
trajectory depending on institutional affiliation.

To further explore this trend, the second row illustrates a sharp increase in ’exiting’
contributors—those making their final commit before disappearing from the data—directly
preceding the governance announcement. This pattern is primarily driven by maintainer-
level Meta employees rolling off the project, with no comparable increase in exits among
other contributor groups. The final row showing commit volume mirrors these patterns but
exhibits higher variability.

To statistically validate these observations, we conduct regression analysis presented in
Table 4, using Unaffiliated contributors as our comparison group. Model (1) confirms our
visual interpretation: relative to Unaffiliated contributors, both External Company and
Meta contributors show heightened activity during the Transition period. However, their
behaviors diverge significantly in the Post period — External Companies maintain elevated
participation levels (though with increased variability), while Meta’s contribution rate be-
comes negative. Quantitatively, External Company contributors increased their likelihood
to contribute by 25.7% (= 0.0307+0.0080

0.0307+0.0757+.0080+.0359). Model (2) demonstrates these results

remain robust when including fixed effects25. Models (3) and (4) show similar patterns
when measuring commit volume rather than participation likelihood.

We cautiously interpret the results of Table 4 as evidence in favor of Hypothesis 1 — an
increase in external firm participation. Although the Post-period result is not statistically
significant for External Company, it is of the same magnitude as our transition period

25The use of fixed effects frequently does not change the point estimate in our analysis. While superficially
puzzling, this fact can be explained by the observation that most contributors do not contribute in most
months. (For example, as shown in the summary statistics, the average month sees participation by only
8.13% of contributors in our sample.)
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Figure 1. Time Trends in contributions to PyTorch. Each subplot shows an outcome
variable (y-axis) over time (x-axis), aggregated over all repositories within the PyTorch
organization on GitHub for a specific group of contributors. Each subplot row varies the
specific outcome variable of interest, and each column varies the group of contributors
being aggregated. In particular, the left most column presents an aggregation over all
contributors to PyTorch (”Total”), and the remaining columns break out this trendline
by the affiliation of the underlying contributors (Meta, Other (Company), or Other (Not
Company)). Lastly, the start and the end of the Transition period (leading up to the
public announcement of the Governance Change) are denoted by the vertical dotted lines.
The left-most column presents the aggregate contributions to PyTorch, and the following
columns split out contributions by contributor institutional affiliation type. The top row
presents unique contributors contributing to PyTorch in a given month. The second row
measures how many ‘exits’ occur in the month, where exit is defined as a contributor with
≥ 6 commits who makes their final commit in that month (and disappears from the commits
data afterwards). The last row presents the aggregate number of commits made to PyTorch
over the analysis period.

results and loses significance due to increased noise. Further, we emphasize that the “Not
Affiliated” comparison group used in this analysis is not a perfect ‘unaffected’ control group
— it’s possible (and even likely) that the governance change has a positive effect on the
contributions from this group. Therefore, the estimates for External Company are likely
underestimates of the true treatment effect of the governance change. Lastly, inspection of
the relevant event study plot (Figure A4) lends confidence to a causal interpretation because
the are not driven by discernable pre-trends and there’s a sharp and sustained increase in
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Table 4. Regression analysis of the full PyTorch contribution sample (Panel A of the Ta-
ble 3). The comparison group is contributors not affiliated with a known company (‘Unaffili-
ated’). These contributors contribute with non-company emails, and come from universities
or are working due to their own intrinsic motivation.

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
External Company × Post 0.0307 0.0307 0.0304 0.0304

(0.0204) (0.0212) (0.0317) (0.0337)
External Company × Transition 0.0322∗∗ 0.0322∗∗ 0.0437∗∗∗ 0.0437∗∗

(0.0130) (0.0155) (0.0106) (0.0212)
External Company 0.0757∗∗∗ 0.1291∗∗∗

(0.0182) (0.0351)
Meta × Post -0.0051 -0.0051 -0.0030 -0.0030

(0.0031) (0.0044) (0.0036) (0.0067)
Meta × Transition 0.0309∗∗∗ 0.0309∗∗∗ 0.0500∗∗∗ 0.0500∗∗∗

(0.0016) (0.0041) (0.0013) (0.0046)
Meta 0.0850∗∗∗ 0.1593∗∗∗

(0.0017) (0.0019)
Post 0.0080∗∗∗ 0.0092∗∗∗

(0.0024) (0.0032)
Transition 0.0064∗∗∗ 0.0060∗∗∗

(0.0018) (0.0007)
Constant 0.0359∗∗∗ 0.0338∗∗∗

(0.0013) (0.0015)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 173,796 173,796 173,796 173,796
R2 0.02759 0.27253 0.03246 0.43493
Within R2 0.00096 0.00079

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

outcome value in the point estimate at the expected time.
The results are consistent with Hypothesis 2. However, we do not interpret the results

as evidence of Hypothesis 2. They are inconclusive for two reasons. First, regardless
of the coefficient, we cannot give a clear causal interpretation of the result because the
governance change was anticipated and is itself part of a broader technology strategy being
pursued by Meta. Therefore, we cannot cleanly attribute a causal effect of the governance
change to any particular time period — perhaps Meta gave up control of PyTorch because
they anticipated other trends that necessitated rolling back investment. Second, while
the directional results from Table 4 are consistent with the predicted causal decrease in
contribution of Hypothesis 2, they are statistically insignificant given the current analysis
period. However, an inspection of the associated event study (Figure A4) reveals strong
upward pre-trends, which bias the results toward zero. In other words, Meta employees
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certainly decrease participation after the governance change, but at a similar amount to
their increase in participation over the pre-period. To underscore this point, Figure A5
shows the Meta Post effect is significantly negative if we simply push the analysis start
date back to May 2020 (or any date afterward)26. Table A2 illustrates this concretely by
replicating Table 4 but only including one year of pre-period; in that case, the Meta Post
result is negative and significant.

In aggregate, the preceding results highlight the implicit tradeoffs associated with chang-
ing the control rights governing a technology project. By changing from ‘dominant’ to ‘col-
lective’ governance, PyTorch experienced an increase in contribution from External Compa-
nies. However, after a temporary increase in the Transition period, focal company (Meta)
participation drops off sharply after the governance change, falling to a level comparable to
or slightly lower than the pre-period. Overall, the result is that PyTorch experiences a very
small increase in net sustained participation on the project, far less than would be expected
based on the fanfare around the governance change. Our results highlight that, from a wel-
fare perspective, changing governance from dominant to collective may not always increase
contribution to a project because it may diminish the incentives for the focal company to
continue investing. In this case, a decrease in Meta participation resulted in a much smaller
increase in net contributions to PyTorch than expectations set by public messaging27.

4.2 Increase in Company Contributions Driven by Chip Manufacturers

Why did the governance change caused an increase in External Company participation?
While an interpretation of the governance change as diluting Meta’s control rights and
reducing the threat of hold-up for other companies is a sufficient condition for the observed
increase, there could be other explanations that similarly explain the effect of the governance
shift observed in Section 4.1. Accordingly, we turn to testing for heterogeneity in the
effect of the governance change on the External Companies that contribute to PyTorch.
By demonstrating evidence in favor of ??, a signature prediction of our theory, we aim
to demonstrate control rights as the primary mechanism behind the observed increase in
external company contributors to PyTorch organization repositories.

4.2.1 Within PyTorch Analysis

Descriptively, it is clear that Chip Manufacturers started contributing significantly more
to PyTorch after the Transition period began. To show this, in Figure 2, we plot the like-
lihood of a contributor committing to PyTorch in a given month (normalized over the
pre-period values) for Chip Manufacturers, Application Developers, Cloud Providers, and
Unaffiliated contributors. The plot reveals a sharp increase in Chip Manufacturer contribu-
tions around the start of the governance change. By contrast, all other categories slightly
decreased their rate of participation post-governance change. Based on the similarity of the
Cloud Provider and App Developer trends, we group these categories together in subsequent
analysis.

To further explore this trend, we plot the descriptive contributions of the key chip
manufacturers in our sample in Figure A6. The figure reveals that all but one of the chip
manufacturers in the data increased their contributions closely in-sync with the timing

26We report the April 2020 start date results in the main paper for consistency with the rest of our results,
and for greater transparency of the sensitivity of this result to the analysis start date.

27See https://pytorch.org/blog/one-year-pytorch/ for example.
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Figure 2. Trend lines of the average monthly likelihood of participation by contributors
for different affiliation types, centered and scaled to normalize the pre-period values. The
grey trend line depicts Unaffiated contributors. The solid red line depicts contributors em-
ployed by Chip Manufacturers. The blue and yellow lines depict App Developers and Cloud
Providers (respectively). The separation of the Chip Manufacturers from other companies
in the Post-period is the analytic focus of Section 4.2.

of the broader governance transition, especially Google, Intel, and Apple. The only Chip
Manufacturer not increasing contributions around this time is NVIDIA, a company that had
been contributing to PyTorch for years before the transition; we speculate on the reason
for this curious (but tangent) fact at length in Appendix Section A.2. These quantitative
findings are consistent with qualitative evidence found on the PyTorch Foundation blog,
where Apple, Intel, NVIDIA, and IBM all describe the specific projects aiming to improve
PyTorch efficiency on their respective hardware.28

While visually compelling, the above descriptive results do not tell us whether the rel-
ative increase from chip manufacturer contributors could be explained by random noise or
other explanations. To statistically test this hypothesis, we explore a difference-in-difference
analysis within PyTorch, presented in Table 5. Models (1) and (2) show a regression com-
paring the monthly likelihood of committing for Chip Manufacturer and Non-Chip Man-
ufacturer Contributors versus Unaffiliated Contributors (Control Group #1), varying the
use of fixed effects. The results quantify the difference shown in Figure 2, showing that
Chip Manufacturer contributors dramatically increase their likelihood to contributor rel-
ative to Unaffiliated contributors in both the Transition and Post period. By contrast,
Non-Chip Manufacturers decrease their relative likelihood of contribution (although this
result is not statistically significant when accounting for fixed effects). Models (3) and

28In case the careful reader is concerned that Google is contributing to PyTorch in a capacity other than
as a chip manufacturer, an examination of commits by Google reveals that almost all Google-based commits
target the repository pytorch/xla – an extension focused on enabling efficient use of Google’s Cloud Tensor
Processing Units (TPUs) (blog).
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Table 5. Regression Analysis of Non Meta Contributors to PyTorch. The unit of analysis
is the Contributor-Month, and each specification presents a different choice of dependent
variable, comparison group, and the inclusion of fixed effects. The results here are relevant
to the test of ??.

Dependent Variables: 1(Is Active) Log(Commits+1)

Comparison Group: Unaffiliated Non Chip Manufacturers Unaffiliated Non Chip Manufacturers
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Chip Manufacturer × Post 0.0939∗∗∗ 0.0939∗∗∗ 0.1151∗∗∗ 0.1151∗∗∗ 0.1090∗∗ 0.1090∗∗ 0.1438∗∗∗ 0.1438∗∗

(0.0258) (0.0260) (0.0273) (0.0291) (0.0507) (0.0508) (0.0517) (0.0554)
Chip Manufacturer × Transition 0.0759∗∗∗ 0.0759∗∗∗ 0.0795∗∗∗ 0.0795∗∗∗ 0.1015∗∗∗ 0.1015∗∗∗ 0.1054∗∗∗ 0.1054∗∗∗

(0.0078) (0.0137) (0.0103) (0.0193) (0.0046) (0.0159) (0.0128) (0.0290)
Chip Manufacturer 0.0636∗∗ -0.0202 0.1125∗∗ -0.0283

(0.0258) (0.0360) (0.0532) (0.0703)
Non Chip Manufacturer × Post -0.0212∗∗ -0.0212 -0.0348∗∗ -0.0348

(0.0090) (0.0132) (0.0163) (0.0229)
Non Chip Manufacturer × Transition -0.0036 -0.0036 -0.0039 -0.0039

(0.0038) (0.0123) (0.0124) (0.0235)
Non Chip Manufacturer 0.0837∗∗∗ 0.1408∗∗∗

(0.0251) (0.0461)
Post 0.0083∗∗∗ -0.0129 0.0089∗∗∗ -0.0259

(0.0023) (0.0088) (0.0030) (0.0160)
Transition 0.0052∗∗ 0.0016 0.0054∗∗∗ 0.0014

(0.0024) (0.0043) (0.0012) (0.0132)
Constant 0.0358∗∗∗ 0.1195∗∗∗ 0.0338∗∗∗ 0.1746∗∗∗

(0.0013) (0.0252) (0.0015) (0.0462)

Fixed-effects
Month Yes Yes Yes Yes
Contributor Yes Yes Yes Yes

Fit statistics
Observations 114,912 114,912 23,898 23,898 114,912 114,912 23,898 23,898
R2 0.02872 0.19331 0.01095 0.32481 0.03679 0.36389 0.00574 0.47400
Within R2 0.00422 0.00897 0.00430 0.00665

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

(4) instead compare Chip Manufacturers with Non-Chip Manufacturers directly (Control
Group #2), effectively summing the two differences observed in Model (2). Taking the
point estimates from Model (3) literally, Chip Manufacturers experience a 47.1% increase
(= 0.1151−0.0202

0.1151−0.0202−0.0129+0.1195) in participation relative to the pre-period, compared to a -

12.1% decrease (= −0.0129
0.1195−0.0129) for Non-Chip Manufacturers. Models (5)-(8) repeat the

same specifications, but using Log(Commits+1) as the dependent variable. In aggregate,
the results show that Chip Manufacturer employees contributions significantly increased on
both the extensive and intensive margins relative to other contributor groups, providing
evidence in favor of ??. Further, inspections of the corresponding event studies (Figure A7)
reveal a lack of pre-trends in the pre-period that bolsters confidence in the use of the two
control groups.

4.2.2 Between TensorFlow Analysis

A central empirical concern challenging interpretation of these results is that interest
in usage of AI technologies dramatically increased in December 2022 due to public release
of OpenAI’s ChatGPT. And while Chip Manufacturer and Application Developer com-
panies are both affected by this demand shock, it is possible that they are differentially
affected by this change in a way that confounds our analysis. To rule out this possibility,
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we augment our sample by further gathering the external company commits data to Ten-
sorFlow, Google’s open source machine learning framework.29 The intuition behind this
expanded sample is that companies that contribute to open source machine learning frame-
works (either PyTorch or TensorFlow) are subjected to the same demand forces across both
technologies. Therefore, if contributions by a given company increase for PyTorch but not
TensorFlow in the post-period, such an increase could not be explained by a broader shock
to AI demand caused by ChatGPT.

Table 6. Regression analysis of External Company contributors to PyTorch and TensorFlow.
See Table 3, Panel C for summary stats on the sample. The baseline comparison group
is Non-Chip Manufacturers on TensorFlow in the Pre- period of the event. This table
constitutes the primary evidence in favor of ??.

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
Chip Manufacturer × PyTorch × Post 0.0977∗∗∗ 0.0977∗∗∗ 0.1226∗∗ 0.1226∗

(0.0292) (0.0314) (0.0576) (0.0618)
Chip Manufacturer × Post 0.0181 0.0181 0.0198 0.0198

(0.0113) (0.0132) (0.0216) (0.0244)
PyTorch × Post 0.0341∗∗ 0.0341∗ 0.0412∗ 0.0412

(0.0139) (0.0175) (0.0226) (0.0312)
Chip Manufacturer × PyTorch × Transition 0.0721∗ 0.0721∗ 0.1125∗∗∗ 0.1125∗∗

(0.0395) (0.0418) (0.0395) (0.0507)
Chip Manufacturer × Transition 0.0103 0.0103 -0.0058 -0.0058

(0.0298) (0.0318) (0.0361) (0.0404)
PyTorch × Transition 0.0110 0.0110 0.0226 0.0226

(0.0170) (0.0215) (0.0217) (0.0353)
Chip Manufacturer × PyTorch -0.1043∗∗ -0.1435∗∗

(0.0387) (0.0684)
Chip Manufacturer 0.0827∗∗∗ 0.1119∗∗∗

(0.0163) (0.0302)
PyTorch 0.0285 0.0555

(0.0276) (0.0512)
Post -0.0530∗∗∗ -0.0753∗∗∗

(0.0119) (0.0195)
Transition -0.0154 -0.0287

(0.0165) (0.0248)
Constant 0.0949∗∗∗ 0.1268∗∗∗

(0.0103) (0.0215)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 40,488 40,488 40,488 40,488
R2 0.01504 0.30122 0.00987 0.41794
Within R2 0.00888 0.00665

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

We operationalize this concept by focusing on External Company contributors to either

29In the case of TensorFlow, we exclude Google contributions from our sample but retain Meta contribu-
tions; in the case of PyTorch, we exclude Meta contributions but retain Google contributions.
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Figure 3. Interaction Effect Plot produced from Table 6, Model (1). The left visualizes the
‘difference-in-difference’ from PyTorch contributors, and the right visualizes the analogous
effect from TensorFlow contributors. The triple-difference effect estimated in Table 6 is
essentially the difference between these terms.

PyTorch or TensorFlow (see Table 3, Panel C for summary stats on this sample)30, and
augment our specification as a triple-difference analysis, presenting the results in Table 6.
In this new specification, the effective ‘Treatment’ is Chip Manufacturer × PyTorch, and
the coefficient of interest is the triple interaction term presented on the first row. We
see immediately that the relative increase of Chip Manufacturers is exclusive to PyTorch:
the coefficient of interest from Models (1) and (2) is positive (+0.0977) and statistically
significant. Models (3) and (4) show that this effect is also found when considering the
intensive margin (Log(Commits + 1)).

The magnitude of the estimate in Table 6, Model (2) (0.0977) is particularly interesting
in comparison to its analog in Table 5, Model (2) (0.0939). Whereas the latter (within
PyTorch) result is a difference-in-difference estimation (Chip Manufacturer vs Non-Chip
Manufacturer, Pre-Post governance change), the former (between TensorFlow) result is a
triple difference, meaning that we are observing the change in the difference-in-difference
term as calculated on PyTorch and TensorFlow respectively. We infer from the fact that
these coefficients are essentially equal that the equivalent difference-in-difference term for
TensorFlow is therefore zero — that Chip Manufacturers did not experience a relative
increase in participation on TensorFlow.

This inference is confirmed through visual inspection of Figure 3, which plots the pre-
dicted likelihood of participation for contributors to PyTorch (left) and TensorFlow (right)
using Table 6, Model (1). We see that Chip Manufacturer contributors increase their likeli-
hood of participation relative to Non-Chip Manufacturers in the Post Period within PyTorch

30As highlighted before, there is very minimal co-contribution to both PyTorch and TensorFlow, likely
due to the significant requirements of technical skill and contextual understanding necessary for making a
meaningful contribution to either of these projects. We rule out such dual contributors in our analysis.
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— analogous to the result found in Table 5. In contrast, Chip Manufacturers and Non-Chip
Manufacturers decrease participation at similar rates in TensorFlow (the lines are almost
parallel).31 The triple interaction term found in Table 6 essentially takes the difference of
the two interaction terms plotted here: but since the TensorFlow interaction term is roughly
0, the triple-difference term from the Between TensorFlow analysis effectively equals the
difference-in-difference term from the within PyTorch analysis.

As with the difference-in-difference analysis, causal interpretation of the triple-difference
coefficient rests on the validity of the parallel trends assumption. And while this assumption
cannot be proven empirically, we are reassured by a lack of pre-trends in the corresponding
event study, provided in Figure A8.

Finally, because the above analysis assumes that company contribution to PyTorch
and TensorFlow is independent, a remaining concern for this analysis is that the observed
effects could be driven by competitive effects between PyTorch and TensorFlow. For ex-
ample, could the increase in PyTorch contribution be driven by reallocated investment by
Chip Manufacturers from TensorFlow? We argue that this is highly unlikely on the ba-
sis that we observe very few individual contributors reallocating effort to PyTorch from
TensorFlow, and already filtered them out of our sample. Further, we observe Non-Chip
Manufacturers similarly decline in participation on TensorFlow, but do not observe an in-
crease in participation of Non-Chip Manufacturers on PyTorch. Finally, even if there were
some competitive reallocation from companies between PyTorch and TensorFlow, we note
that this reallocation would not invalidate the results from the within PyTorch analysis (Ta-
ble 5), which do not require an independence assumption between contributions to PyTorch
and TensorFlow.

In aggregate, we have shown that post governance change, Chip Manufacturers increase
their likelihood and magnitude of contributing to PyTorch. Further, they increase their like-
lihood and magnitude of contributing more than Unaffiliated contributors (Control Group
#1), more than Non-Chip Manufacturer contributors (Control Group #2), and more than
Chip Manufacturer contributors to TensorFlow (Control Group #3). Each of these compar-
isons helps to rule out alternative, non-causal explanations as the reason for the observed
correlation between the governance change and Chip Manfacturer participation; for exam-
ple, Control Group #3 helps rule out explanations based on changes in AI demand or supply
that occured around the end of 2022. The robustness of the effect across these comparisons
and the lack of pre-trends gives us confidence that we are estimating a causal effect of the
governance change on Chip Manufacturer’s likelihood of participation and providing evi-
dence for ??. In particular, this heterogeneity in firm response to the governance change
lends credence to our interpretation that the governance change causes this increase because
of the reallocation of control rights across firms.

Consistent with this interpretation, as commented on above, Figure A6 shows that
NVIDIA was the only chip manufacturer that actually decreased its participation post
governance change, despite joining the PyTorch board. Being far and away the most reg-
ular contributor to PyTorch as well as the market leader with respect to GPUs as well
as the owners of the proprietary CUDA standard (which provides a standardized interface
for programming NVIDIA GPUs across different operating systems), our interpretation of

31Incidentally, this plot also suggests why TensorFlow is a poor group for our direct analysis from Sec-
tion 4.1. Both Chip Manufacturers and Non-Chip Manufacturers were already reducing their net contri-
butions to TensorFlow even before the governance change, in away that did not parallel their behavior on
PyTorch. However, because the difference between Chip Manufacturers and Non-Chip Manufacturers on
TensorFlow parallels that of PyTorch, TensorFlow makes a good control group for triple difference analysis.
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NVIDIA’s different reaction to the governance change is that NVIDIA already had signifi-
cant control of the technology and had less of a threat of loss of interoperability due to the
popularity of its GPUs. Speculatively, this explains why NVIDIA was one of the few chip
manufacturers that did not increase its contributions significantly after the change.

4.2.3 Is the Effect Caused by Governance Board Membership?

To this point, we have assumed that the governance change uniformly affected all exter-
nal firms, without accounting for specific details regarding their membership in the PyTorch
governance board. However, one might be concerned that the observed increase in participa-
tion is driven by Chip Manufacturers joining the board more frequently or at different times
than other firms. In other words, could it be that Chip Manufacturers are just correlated
with Board Membership, and it’s Board participation that drives engagement?

Descriptively, this does not appear to be the case — we plotted the contribution trends
of all PyTorch governance board members in Figure A9, marking the point at which each
firm joined the board. The plot clearly shows that joining the governance board does not
have a uniform effect on contribution trends. For instance, Microsoft and Amazon, original
board members, did not increase their contribution rate post-announcement.

To test this more rigorously, in Table A3, we expand Table 5 to include initial board
membership (September 2022, which includes Meta, Google, Amazon, NVIDIA, Microsoft,
and AMD) as a variable. Models (3) & (4) show that initial board membership is not
associated with any change in contributions after that governance change. Models (5) &
(6) interact initial board membership with whether the individual works for a chip man-
ufacturer, and shows that it’s actually the non-board chip manufacturers that drive the
increase in post governance-change contributions. By contrast, individuals working for
chip manufacturers who were on the initial board (NVIDIA, AMD) decrease their rate of
participation.

These findings are consistent with the fact that board membership is optional and
endogenous; firms that eventually join the board often begin contributing before joining.
Based on this evidence, we interpret board membership as a signal of a firm’s intent to
participate rather than as a direct cause of increased contributions, justifying our analysis
approach.

4.2.4 Is the Effect Caused by Substitution with Meta Contributors?

A final alternative explanation for the observed increase in firms (and in particular Chip
Manufacturers) contributing to PyTorch is an alternative causal effect of the governance
change. The literature on firm involvement in the creation of crowdsourced public goods
(and OSS in particular) highlights the possibility that firm involvement can crowd out
community contribution (Reisinger et al. 2014; Nagaraj and Piezunka 2024). In this setting,
could the governance change have caused Chip Manufacturer entry into PyTorch simply
because Meta employees stopped contributing to the parts of the code that were crucial to
the integration between PyTorch and common computer chip backends? That is, perhaps
it is not a shift in control rights but rather the decrease in Meta participation that drives
the observed changes in Chip Manufacturer contributions, due to inherent substitutability
between each firms contributions.

In order to rule out this possibility, we construct a statistical test that shows that
External Companies (and in particular Chip Manufacturers) actually change contribution
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in a way that’s positively correlated with changes in Meta employee contributions. In other
words, we aim to provide evidence that Chip Manufacturer contributions are complementary
to Meta contributions, in a way that is directly inconsistent with a crowding-out story. To
do this,

1. We collect commit-level data on the specific files that were modified for each commit
to PyTorch in our data set. In particular, this commit-level data features the path of
every file that is modified, allowing us to granularly measure which parts of the code
are being modified in the given commit.

2. Using this data, we construct ”contribution groups” by grouping files in similar parts
of the overall repository directory. At a high level, our goal is to identify equally-sized
parts of the PyTorch codebase that are ‘related’, in the sense that changes to that
part of the codebase are related to the same set of functionality. We accomplish this
by leveraging the natural hierarchical structure of GitHub repositories, such that a
contribution group is: any repository that’s not the main one (pytorch/pytorch),
any first-level subdirectory within pytorch/pytorch that’s not in the main subdirec-
tory (torch/), and any second-level subdirectory within pytorch/pytorch/torch.
We identify 158 contribution groups using this methodology. These contribution
groups capture significant differences in the type of code being created: for exam-
ple, the repository pytorch/pytorch.github.io manages the community website,
while pytorch/pytorch/aten manages PyTorch’s abstract tensor interface.

3. We form a dataset at the contribution group level that contains the amount of contrib-
utors and commits in the six months before the governance change and the six months
after (comparing October 2021-April 2022 to October 2022-April 2023). In particu-
lar, we do this for each of Meta, Chip Manufacturer, and all External Company, and
compute the pre-post difference. If any employer type did not contribute to a given
contribution group in either the pre- or post- period, we remove that observation from
our regression (rather than marking it as zero).

We compute the correlation between the change in external company contributions
and the changes in Meta contributions, presenting the results in Table 7. There, we see
that Meta contributors and contributions are actually positively correlated with External
Company and Chip Manufacturer contributions. Because we know that Meta experienced
a net decrease in contributions over this time period, this implies that External Companies
and Chip Manufacturers tended to contribute less in areas that Meta stopped investing
in. This result is directly opposite a crowding out story: despite Meta contributions being
complementary to External Company contributions, and despite a broader Meta withdrawal
from contribution to PyTorch, External Company (and in particular Chip Manufacturer)
participation increased. Therefore, if anything, our main results are underestimates of the
causal effect of control rights on external firm participation.

4.3 Additional Robustness Checks

We conclude our analysis with an overview of four additional robustness checks, with
empirical evidence presented in greater detail in the appendix.

Robustness to use of only pytorch/pytorch. During our discussions with the Linux
Foundation, it was revealed that the Linux Foundation only took technical control of the
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Table 7. Regression analysis of changes in contributions by external companies as a function
of changes in contributions by Meta. The unit of analysis is the ‘contribution group’ (see the
manuscript body for details). The variables used here are the year-over-year difference in
number of commits or unique contributors to a given contribution group, by affiliation type.
The results show that changes in contribution by Meta correlate with changes in contribution
by external companies (including chip manufacturers), ruling out an alternative explanation
involving crowding-out effects that induce entry as Meta reduces investment.

Dependent Variables: ∆ Contributors ∆ Commits

Affiliation Type External Company Chip Manufacturer External Company Chip Manufacturer
Model: (1) (2) (3) (4)

Variables
∆ Meta Contributors 0.1406∗∗ 0.0288

(0.0548) (0.0432)
∆ Meta Commits 0.2421∗∗∗ 0.1012∗∗∗

(0.0498) (0.0368)

Fit statistics
Observations 123 103 123 103

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

main repository (pytorch/pytorch), rather than all 77 of the PyTorch organization’s repos-
itories on GitHub (e.g. (pytorch/vision or pytorch/ignite) ). We chose to use all repos-
itories in the PyTorch organization in our analysis because we believe that this technical
detail about the governance change did not affect the overall public perception (and subse-
quent response to) the governance change. Nevertheless, we show in Table A4 that the use
of only the primary repository (pytorch/pytorch) yields equivalent results.

Email Only Affiliations Robustness. As discussed above, our paper imputes corporate
affiliation by augmenting email affiliations with additional information from the contribu-
tor’s GitHub profiles. We show in Table A5 that our results hold if we only impute affiliation
based on the email domain associated with the commit author’s email.

Filter Low-Frequency Contributors Robustness. There may be a concern that our results
are driven by the left tail of infrequent contributors to PyTorch or TensorFlow, who do not
contribute in the majority of periods. To rule out this possibility, we repeat our analysis,
but filtering to only include employees that are active for at least three months during our
analysis period. Table A6 shows that our results are actually strengthened when considering
this more active sub-sample of participants. That the effect seems to be driven by the
intensive margin of contributor participation more than the extensive margin is consistent
with the idea that strategic hold-up concerns are stronger for those already incentivized to
participate, although further testing would be necessary to argue this point more fully.

5 Discussion

In this paper, we study the effect of technology control rights on an external firm’s likeli-
hood of participating in open collaboration by estimating the effect of PyTorch’s governance
change on external firm contributions to the project. We present two sets of findings. First,
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contrary to strong public expectations, the transition from governance by Meta to the Linux
Foundation did not lead to a net increase in activity on the project. This is because an
increase in participation by external firms was negated by a concurrent decrease in con-
tributions by Meta. Our second set of results highlights that the increase in external firm
contributors can be almost entirely attributed to increased participation by employees of
Chip Manufacturers. Relative to other Application Developers and Cloud Provider com-
pany contributors or Unaffiliated contributors, these Chip Manufacturers were much more
likely to begin contributing after the transition of governance to the Linux Foundation.

Why? Overall, our results are consistent with the predictions of control rights the-
ory, which interprets the governance change as resolving a latent ‘hold-up’ problem that
previously limited the amount of external firm participation in Meta. In particular, the
first set of results highlights that governance changes do not create value out of nothing.
When control rights are changed from dominant to collective, the originating focal firm
loses incentives to invest. Control rights theory emphasizes that the optimal governance
mode actually depends on the relative marginal benefit of effort between the focal firms
and external firms, and that it is not always best to innovate under a collective governance
model. The second set of results is consistent with the prediction that Chip Manufacturers
(“Complementors”) were subject to a greater hold-up threat than other Application Devel-
opers or Cloud Providers (“Users”) because their value capture proposition depends more
sensitively on technical interoperability between their chips and PyTorch. Threfore, they
increased their level of participation more upon the governance transition.

Our findings contribute to the literature on value capture in open collaboration (Teece
1986; Tambe 2014; Alexy et al. 2018; Nagle 2019; Rotolo et al. 2022). Whereas the prior lit-
erature emphasizes the role of direct value appropriation in predicting firm participation in
open collaboration (often via control of complementary assets), our paper is the first to em-
pirically demonstrate that future value appropriation (through ex-post control rights) drive
present-day firm participation decisions in open collaboration innovation systems. We apply
a control rights framework, historically developed to answer questions about the boundary
of the firm and contractual design for bilateral research agreements, to a new empirical set-
ting: open collaboration. In doing so, we are the first (to our knowledge) to formalize and
apply the concept of technology control rights as an explanation of why firms strategically
open their technologies to other firms. We argue that this framework is particularly likely
to apply in settings of rapid technological innovation like artificial intelligence and machine
learning, where technical capabilities and, therefore, market structure are uncertain and
ex-post outcomes are challenging to foresee and contract over.

Moreover, we contribute to the literature on firm participation in the governance of the
digital commons (Ostrom 1990; West and O’Mahony 2008; He et al. 2020; O’Mahony and
Karp 2020; Altman et al. 2022; Tang et al. 2023), which is largely qualitative or cross-
sectional. Our paper contributes by studying a direct change in governance model, and
provides quasi-causal estimates of its effect on external firm participation. Overall, our
results go beyond how governance decisions are made by firms by quantitatively illustrating
the economic consequences of those strategic decisions, highlighting the implicit tradeoffs,
and demonstrating the importance of focal company investments when considering optimal
governance mode.

Lastly, our results contribute to a literature on firm participation in OSS communities
(West and Lakhani 2008; Dahlander and Magnusson 2008; Nagle 2018; Murciano-Goroff
et al. 2021; Nagaraj and Piezunka 2024; Fleischmann et al. 2023; Haese and Peukert 2024;
Kim et al. 2024). This literature largely focuses on firm participation in collectively governed
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communities or individual participation in firm-sponsored communities. However, there is
a gap in our understanding of how firms contribute to OSS projects sponsored by other
firms, a surprising gap given the likelihood of rich strategic interactions in such a setting.
This paper fills this gap as one of the first studies to show what drives firm contributions
in the context of another firm’s (Meta’s) OSS project.

5.1 Generalization

If a governance change were implemented in a similar way, should we expect a similar
effect in other areas of open collaboration, such as in the context of certain platforms or
other open source projects? While our analysis produces quasi-causal estimates of the
effect of a governance change on external firm participation, one limitation is that a lack of
a completely unaffected control group makes it hard to extrapolate these results to a more
experimental setting. Nevertheless, we expect the results that we find in this study to map
directionally onto many open collaboration settings.

More substantively, our theory highlights key boundary conditions on when we would
expect such a shift in control rights to have an effect on external firms. Namely, control
rights matter in situations where technological investment is made before noncontractable
uncertainty is resolved. As argued before, noncontractability is highly likely in contexts
where the regulatory environment has yet to form and businesses are still experimenting
with their value capture models. This property is particularly relevant to areas of new
technology development that are rapidly changing in their qualitative properties, such as
in the context of Big Data and AI technology. Notably, this property is less relevant in
contexts where innovation fits neatly into an existing value capture framework, such as
in the context of pharmaceutical research. This observation resonates with other findings
in the literature that highlight the relationship between weak patent protections and an
increased prevalence of open source software (Lin and Rai 2023).

5.2 Managerial and Policy Implications

Our analysis shows the importance of control rights in encouraging entry by external
firms into open collaboration. The natural, first order question that emerges is: where do
control rights come from? The answer to this question is littered with managerial and policy
implications.

On the managerial side, our results suggest that early involvement or founding of an
open source project can be a source of control rights for a firm. In this sense, our paper
suggests a new reason for the literature on firm participation in openness: by participating,
firms may increase the control that they have over a technology, even if present channels
for value capture are unclear. Extrapolating, our results may provide insight into why
firms may invest so heavily in scientific workforces: it gives them flexibility to pivot as
a novel technology takes shape in the market (Rotolo et al. 2022). Our results may also
provide insight into why technical infrastructure for emergent technologies is often open:
infrastructure provides a logical way to increase control rights. This potentially explains
the emergence of open source machine learning hub Hugging Face and its popularity with
investors despite its current lack of commercialization strategy (Greenstein et al. 2023).

For managers, the key challenge in using openness in building control rights is trading off
noncontractable, future value from control rights with the fact that such control rights can
deter external firms from collaborating on technology projects. Further, managers need to
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be able to defend the significant investments necessary to establish control rights through
openness without being able to show or articulate a clear value capture channel; in this
sense, this strategy is easier to implement at firms with patient executives and investors.

From a policy perspective, while retaining control rights may be an essential part of
firm strategy, it also reduces third-party participation. If a firm intends to capture value
through a different means (especially one that aligns value creation and value capture), then
intentional concession of control rights can spur ecosystem growth. Regulators can play a
key role in limiting the potential for focal firms to abuse their control rights to encourage
greater collaboration in the context of open collaboration (such as in the context of the EU
Digital Markets Act).

Lastly, our results highlight that regulators and open source proponents should not
naively promote collective governance at all costs. The focal firm’s incentives must be
considered in any overall welfare calculation.
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A Appendix

A.1 Meta’s Technology Strategy

Why did Meta invest so heavily in PyTorch in the first place, and why did they decide
to spin the project out as a jointly governed foundation under the Linux Foundation in
2022? From the perspective of developing empirical tests for the effect of technology control
rights, Meta’s rationale for these transitions is irrelevant to this study (save for testing
Hypothesis 2) as long as the change was unanticipated by external firms and unaffected by
external firm strategizing. Nevertheless, we join others (e.g. see Rodriguez and Schechner
(2024) or Soumith’s tweet) in speculating briefly on Meta’s strategic rationale here.

While Meta’s overall willingness to bear a large amount of the development cost for a
fully open-source tool is a puzzle, Meta has enjoyed several clear strategic advantages due
to its stewardship PyTorch.32 First, Meta clearly has significant organizational expertise
in PyTorch’s technology, and therefore is likely to gain competitive advantage by more ef-
ficiently leveraging the tool in their own products (like in Nagle (2018)), including taking
advantage of any higher-level technologies that emerge out of the PyTorch ecosystem (such
as Hugging Face, Lightning AI, or Kornia). Second, Meta enjoys a significant brand benefit
that likely translates to labor market advantage in hiring talented engineers at lower wages
(although empirical evidence of this is scarce). Finally, and most subtly, Meta has control
of the project, at both the technical and strategic levels. PyTorch has tight technical inte-
gration with Meta’s infrastructure – Meta famously runs its own production infrastructure
directly from the head of PyTorch’s main branch, meaning that the Github PyTorch repos-
itory is technically a mirror of the “true” Facebook-internal repo, and thus only current
Meta employees can “land” pull-requests (see Eric Yang’s blog or PyTorch documenta-
tion)33. Beyond technical control, Meta management had complete governing control over
the project’s technical vision and direction. This type of control is best understood as “soft
power”, in the sense that PyTorch prides itself on a clear division between its business and
technical leadership of the project. Indeed, almost all public descriptions of the governance
process highlight its democratic nature and emphasize technical, data-driven arguments
over consideration of particular users or use-cases (example).

If Meta’s original investment in PyTorch is economically puzzling, then its decision to
spin-out the tool from official Meta control is even more puzzling. That is, what changed
in Meta’s incentives that led to a decision to spin-out PyTorch? Whatever the rationale,
while this governance shift is plausibly exogenous to external organizations, it is unequiv-
ocally endogenous to Meta’s strategic business priorities, and therefore understanding the
effect of the change on Meta (beyond noting that they drastically reduce their contribu-
tions to PyTorch) is beyond the scope of our empirical analysis. We speculate this change
occurred because Meta’s marginal benefit of investment with singular governing control has
diminished over time. As a result, the expected marginal benefit of relinquishing governing
control to attract external investment became relatively attractive versus retaining control.

32Indeed, Meta has publicly acknowledged these advantages in shareholder calls.
33PyTorch leaders like Eric Yang and public documentation come off as genuinely apologetic about this

arrangement, but we note that this arrangement has not changed as of 2024/03 despite at least three years
of recorded public recognition of this problem.
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A.2 NVIDIA’s Strategic Engagement with PyTorch

While our primary analysis focuses on the implications of the governance change on
overall contributions—and in particular on Meta’s strategic reorientation — it is worth
expanding on Chip Manufacturer’s contributions to PyTorch, and the anomaly of NVIDIA’s
early and persistent involvement in PyTorch.

At a high level, chip manufacturers contribute to PyTorch to ensure AI developers
can efficiently leverage their accelerators for AI workloads. This interoperability is essen-
tial for broad adoption and competitive performance in machine learning applications. To
achieve this, manufacturers must implement core tensor operations within PyTorch’s back-
end (ATen), developing a custom execution backend that interfaces with PyTorch’s dis-
patcher and optimize memory management for efficient tensor processing. They also need
to support various PyTorch optimizations and compiliers, including graph-based transfor-
mations via FX tracing, TorchInductor, OpenXLA, and OpenAI’s Triton. While much of
this development is done in-house, collaboration with the PyTorch open-source community
is crucial for upstream integration, long-term maintenance, and performance optimizations.
Through these contributions, chip vendors ensure their hardware remains competitive and
accessible to the broader AI research and development community.

NVIDIA’s substantial early contributions can be understood as part of its broader strat-
egy to bolster its proprietary CUDA platform, which is central to accelerating deep learning
computations on its GPUs. By investing heavily in PyTorch from near the project’s incep-
tion, NVIDIA not only showcased CUDA’s performance advantages but also helped drive
adoption of a framework that was optimized for its hardware ecosystem. Indeed, NVIDIA
GPU’s were the only GPU with first-class support in PyTorch until PyTorch 1.8 (March
2021), which introduced an official binary package for AMD ROCm—marking the first-class
support (in beta form) for AMD GPUs (Burbank 2021).

This strategic engagement contrasts sharply with the approach taken by other chip man-
ufacturers. Whereas NVIDIA’s involvement was driven by the incentives associated with
a proprietary, vertically integrated technology stack, competitors such as Intel and AMD
have largely promoted open standards like ROCm and OpenCL. Cross-vendor compatibility
diminishes the strategic leverage that comes from close integration between hardware and
software. Consistent with this, these firms have did not invest in PyTorch interoperability
until much later.

Figure A6 in our appendix reveals that NVIDIA’s contributions declined following the
transition to a jointly governed model under the Linux Foundation. One plausible expla-
nation for this decline is that the shift in governance diluted the unilateral influence that
NVIDIA could exercise over PyTorch’s technical trajectory. When control rights are con-
centrated within a single firm, as they were prior to the governance change, a firm like
NVIDIA can more directly shape the project to maximize the benefits of its proprietary
technology (in this case, optimizing PyTorch’s architecture to uniquely suit the capabilities
of NVIDIA GPU’s [and vice-versa]). However, as governance becomes distributed among
a broader coalition of stakeholders, the strategic benefits of exerting such influence are re-
duced. The reduced ability to steer key technical decisions may have diminished NVIDIA’s
incentive to sustain high levels of contribution.

From a theoretical perspective, these dynamics align with the notion of strategic hold-
up: NVIDIA’s early, active role can be seen as an effort to preempt potential hold-up
by ensuring that PyTorch’s evolution remained closely tied to the strengths of the CUDA
ecosystem. Once the governance structure shifted—thus mitigating the risk of hold-up by
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any single dominant actor—the marginal benefits of continued intensive involvement for
NVIDIA were likely reduced. In contrast, Meta’s behavior reflects a different calculus, as
its control over the project carried direct strategic advantages for its core business. The
divergence between these patterns highlights how distinct technology strategies shape a
firm’s incentives in open collaboration settings.

A full exploration of NVIDIA’s strategic decision-making lies beyond the scope of our
empirical analysis, which focuses on why Chip Manufacturers increase in PyTorch par-
ticipation in general. This appendix discussion offers a nuanced view of how proprietary
technology standards and governance structures interact. Future research could further
examine these trade-offs to provide deeper insight into the differences in incentives driving
different chip manufacturers’ participation in open-source projects.

A.3 Supplementary Tables and Figures

Figure A1. Increasing Dominance of PyTorch as the preferred framework for machine
learning research. Figure provided by paperwithcode.com.
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Table A1. Regression results demonstrating the benefit of the manually-augmented affilia-
tion labels. The unit of analysis is unique author-email contributing to PyTorch between
2020 and 2023 for any author with an imputed corporate affiliation. While the current stan-
dard in the literature is simply to use company affiliations from email domains, an advantage
of our methodology is that we add additional information from the contributor’s GitHub
profiles about the author’s affiliation. A disadvantage is that we impute institutions at the
contributor level, meaning we cannot effectively handle employment changes in our data.
Usefully, our approach can be directly compared to the corresponding affiliation labels if we
only used the email addresses. This allows us to quantify the informational gains from the
profile information presented in this Table, by regressing the email-only imputed affiliation
on the ‘true’ corporate affiliation imputed by using all the information that is available.
Model (1) shows that Meta employees are particularly likely to use their company email ad-
dress when committing rather than an ambiguous email (e.g. gmail.com). However, about
30% of chip manufacturer employees will use their Gmail or otherwise ambiguous email ad-
dress affiliation. Model (2) shows that there is a mismatch of imputed affiliation on about
6.44% of unique author emails; however, Model (3) shows that it is very rare (0.61%) for
this to involve an improperly imputed company, such as due to an employee move. Instead,
manual inspection reveals that these mismatches come from corporate researchers using
academic emails, possibly because they occurred during an internship.

Dependent Variables: Ambiguous Email Affiliation Different Email Affiliation Different Company Affiliation
Model: (1) (2) (3)

Variables
Constant 0.3673∗∗∗ 0.0673∗∗∗ 0.0061∗

(0.0178) (0.0092) (0.0032)
Chip Manufacturer -0.0606∗∗ -0.0148 -0.0019

(0.0253) (0.0131) (0.0045)
Meta -0.2144∗∗∗ -0.0303∗∗∗ -0.0012

(0.0194) (0.0100) (0.0035)

Fit statistics
Observations 3,587 3,587 3,587
R2 0.04297 0.00288 5.16× 10−5

Adjusted R2 0.04244 0.00233 -0.00051

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A2.
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Figure A3. This figure presents an extended version of the descriptive line charts found
in the main body of the paper. Here, we separate out Unknown (ambiguous) affiliations
from affiliations from known universities. Further, we provide three additional outcomes:
Entering (>= 6 Commits), Entering (Transient), and Avg Commits per Login. Here’s its
easy to see the small amount of university involvement in the project.
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Figure A4.

Figure A5. Coefficient Results for Meta Terms from Table 3, but with a sequentially filtered
Analysis Period
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Table A2. Regression analysis equivalent to Table 4, but only including one year of pre-
period (April 2021 start).

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
External Company × Post 0.0263 0.0263 0.0271 0.0271

(0.0193) (0.0207) (0.0315) (0.0344)
External Company × Transition 0.0278∗∗ 0.0278∗ 0.0403∗∗∗ 0.0403∗

(0.0101) (0.0141) (0.0025) (0.0201)
External Company 0.0801∗∗∗ 0.1324∗∗∗

(0.0193) (0.0366)
Meta × Post -0.0144∗∗∗ -0.0144∗∗∗ -0.0213∗∗∗ -0.0213∗∗∗

(0.0039) (0.0051) (0.0037) (0.0070)
Meta × Transition 0.0216∗∗∗ 0.0216∗∗∗ 0.0316∗∗∗ 0.0316∗∗∗

(0.0013) (0.0042) (0.0020) (0.0050)
Meta 0.0943∗∗∗ 0.1777∗∗∗

(0.0039) (0.0036)
Post 0.0091∗∗ 0.0107∗∗

(0.0036) (0.0040)
Transition 0.0075∗∗∗ 0.0076∗∗∗

(0.0020) (0.0027)
Constant 0.0348∗∗∗ 0.0323∗∗∗

(0.0040) (0.0040)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 124,140 124,140 124,140 124,140
R2 0.02989 0.32200 0.03472 0.50252
Within R2 0.00113 0.00102

Clustered (Month & aff clean) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A6. Individual contributions by Chip Manufacturers contributing to PyTorch orga-
nization repositories.
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Figure A7. Event Study for Within PyTorch ComparisonsTable 5
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Figure A8. Event Study for Between PyTorch Comparisons Table 6
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Table A3. Robustness of Results to Initial Board Membership.

Dependent Variables: 1(Is Active) Log(Commits+1) 1(Is Active) Log(Commits+1) 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4) (5) (6)

Variables
Chip Manufacturer × Post 0.1134∗∗∗ 0.1420∗∗∗ 0.1640∗∗∗ 0.2216∗∗∗

(0.0267) (0.0506) (0.0196) (0.0379)
Chip Manufacturer × Transition 0.0879∗∗∗ 0.1143∗∗∗ 0.1066∗∗∗ 0.1175∗∗∗

(0.0099) (0.0130) (0.0227) (0.0352)
Initial Board × Post -0.0300 -0.0689 0.0089 -0.0065

(0.0340) (0.0479) (0.0160) (0.0291)
Initial Board × Transition 0.0039 0.0064 0.0153 −0.0001

(0.0244) (0.0208) (0.0092) (0.0250)
Initial Board × Chip Manufacturer × Post -0.1008∗∗∗ -0.1552∗∗

(0.0272) (0.0641)
Initial Board × Chip Manufacturer × Transition -0.0391∗∗∗ -0.0063

(0.0140) (0.0318)
Post -0.0133 -0.0266 0.0547∗ 0.0732∗ -0.0171 -0.0238

(0.0090) (0.0163) (0.0302) (0.0392) (0.0132) (0.0290)
Transition -0.0032∗∗ -0.0039 0.0369∗ 0.0476∗∗∗ -0.0097 -0.0039

(0.0014) (0.0134) (0.0203) (0.0159) (0.0076) (0.0240)
Initial Board × Chip Manufacturer 0.1313∗∗ 0.2576∗∗∗

(0.0489) (0.0901)
Chip Manufacturer -0.0233 -0.0338 -0.0883∗∗ -0.1608∗∗

(0.0359) (0.0701) (0.0434) (0.0794)
Initial Board 0.0390 0.0705 -0.0220 -0.0503

(0.0323) (0.0632) (0.0448) (0.0792)
Constant 0.1212∗∗∗ 0.1775∗∗∗ 0.0920∗∗∗ 0.1286∗∗ 0.1306∗∗∗ 0.1989∗∗

(0.0256) (0.0470) (0.0284) (0.0533) (0.0423) (0.0787)

Fit statistics
Observations 23,898 23,898 23,898 23,898 23,898 23,898
R2 0.01078 0.00560 0.00612 0.00458 0.01969 0.01874
Adjusted R2 0.01057 0.00539 0.00592 0.00437 0.01923 0.01829

Clustered (t & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A4. PyTorch Main Repo Robustness

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
Chip Manufacturer × PyTorch × Post 0.0626∗ 0.0626∗ 0.0505 0.0505

(0.0347) (0.0369) (0.0563) (0.0604)
Chip Manufacturer × Post 0.0183 0.0183 0.0173 0.0173

(0.0153) (0.0163) (0.0232) (0.0251)
PyTorch × Post 0.0680∗∗∗ 0.0680∗∗∗ 0.1162∗∗∗ 0.1162∗∗∗

(0.0181) (0.0219) (0.0318) (0.0385)
Chip Manufacturer × PyTorch × Transition 0.0531 0.0531 0.0481 0.0481

(0.0379) (0.0414) (0.0384) (0.0504)
Chip Manufacturer × Transition 0.0082 0.0082 -0.0070 -0.0070

(0.0309) (0.0323) (0.0366) (0.0397)
PyTorch × Transition 0.0187 0.0187 0.0625∗∗∗ 0.0625

(0.0148) (0.0221) (0.0219) (0.0379)
Chip Manufacturer × PyTorch -0.0983∗∗ -0.1284∗∗

(0.0386) (0.0591)
Chip Manufacturer 0.0721∗∗∗ 0.0971∗∗∗

(0.0140) (0.0264)
PyTorch 0.0130 0.0032

(0.0310) (0.0505)
Post -0.0567∗∗∗ -0.0818∗∗∗

(0.0112) (0.0189)
Transition -0.0145 -0.0295

(0.0157) (0.0236)
Constant 0.0901∗∗∗ 0.1229∗∗∗

(0.0097) (0.0205)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 40,560 40,560 40,560 40,560
R2 0.01523 0.27574 0.01185 0.36077
Within R2 0.00919 0.00823

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A5. Email Affiliations Only Robustness

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
Chip Manufacturer × PyTorch × Post 0.0789∗∗ 0.0789∗∗ 0.1469∗∗∗ 0.1469∗∗∗

(0.0321) (0.0331) (0.0468) (0.0486)
Chip Manufacturer × Post 0.0125 0.0125 -0.0052 -0.0052

(0.0158) (0.0167) (0.0250) (0.0264)
PyTorch × Post 0.0367∗∗ 0.0367∗∗ 0.0263 0.0263

(0.0165) (0.0174) (0.0269) (0.0282)
Chip Manufacturer × PyTorch × Transition 0.0418 0.0418 0.0858 0.0858

(0.0482) (0.0498) (0.0563) (0.0593)
Chip Manufacturer × Transition -0.0005 -0.0005 -0.0323 -0.0323

(0.0371) (0.0390) (0.0415) (0.0452)
PyTorch × Transition 0.0039 0.0039 -0.0049 -0.0049

(0.0256) (0.0272) (0.0388) (0.0415)
Chip Manufacturer × PyTorch -0.0979∗∗∗ -0.1572∗∗∗

(0.0205) (0.0272)
Chip Manufacturer 0.0898∗∗∗ -0.1286∗∗∗ 0.1286∗∗∗ -0.1642∗∗∗

(0.0128) (0.0162) (0.0213) (0.0165)
PyTorch 0.0139 0.0338

(0.0144) (0.0205)
Post -0.0482∗∗∗ -0.0543∗∗∗

(0.0114) (0.0181)
Transition 0.0013 0.0136

(0.0219) (0.0275)
Constant 0.0698∗∗∗ 0.0813∗∗∗

(0.0073) (0.0123)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 37,632 37,632 37,632 37,632
R2 0.01765 0.23521 0.01504 0.27101
Within R2 0.00767 0.00801

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table A6. Filter Low Frequency Contributors Robustness

Dependent Variables: 1(Is Active) Log(Commits+1)
Model: (1) (2) (3) (4)

Variables
Chip Manufacturer × PyTorch × Post 0.1691∗∗ 0.1691∗∗ 0.1974 0.1974

(0.0746) (0.0777) (0.1469) (0.1542)
Chip Manufacturer × Post 0.0752∗ 0.0752∗ 0.1105 0.1105

(0.0381) (0.0400) (0.0680) (0.0715)
PyTorch × Post 0.0582 0.0582 0.0925 0.0925

(0.0491) (0.0536) (0.0959) (0.1070)
Chip Manufacturer × PyTorch × Transition 0.1644∗∗ 0.1644∗ 0.2243∗∗ 0.2243∗

(0.0809) (0.0850) (0.1034) (0.1230)
Chip Manufacturer × Transition 0.0011 0.0011 -0.0070 -0.0070

(0.0614) (0.0638) (0.0906) (0.0953)
PyTorch × Transition -0.0114 -0.0114 0.0241 0.0241

(0.0571) (0.0627) (0.0915) (0.1109)
Chip Manufacturer × PyTorch -0.1553∗∗ -0.2167

(0.0650) (0.1373)
Chip Manufacturer 0.0401 0.0327

(0.0341) (0.0747)
PyTorch 0.0768 0.1424

(0.0521) (0.1182)
Post -0.1345∗∗∗ -0.2026∗∗∗

(0.0373) (0.0655)
Transition -0.0146 -0.0510

(0.0506) (0.0823)
Constant 0.2281∗∗∗ 0.3352∗∗∗

(0.0311) (0.0694)

Fixed-effects
Month Yes Yes
Contributor Yes Yes

Fit statistics
Observations 17,766 17,766 17,766 17,766
R2 0.01880 0.26798 0.01441 0.38309
Within R2 0.01898 0.01350

Clustered (Month & Company) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure A9. Individual contributions by PyTorch Governance Board members. The solid
lines correspond to the dates of the Transition and Post Period. The vertical dashed line
corresponds to the date that each firm joined the PyTorch Foundation Board, as announced
on the public blog.
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