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Gig economy platforms compete to source labor from common pools of workers, who multihome by dynami-

cally allocating their services in real-time across multiple platforms. The question of how such workers choose

between competing platforms has grown in salience. However, the unavailability of comprehensive data has

limited our understanding of workers’ dynamic multihoming decisions and their impact on the labor supply

and operations of platforms. We address this gap by integrating a major ride-hailing platform’s proprietary

data regarding individual drivers’ detailed trips with public data on the drivers’ outside options. Using

empirical methods that overcome the remaining data limitations using simulation and machine learning,

we structurally estimate the perceived costs that motivate drivers’ forward-looking decisions and behavior.

Our analysis reveals that workers are short-sighted and value sequences of consistent rewards (e.g., jobs

and pay) over highly variable ones. Based on these findings, we explore the impact of compensation and

incentives on the platform’s labor supply and operations. Our counterfactual analyses indicate that consis-

tent pay dominates variable pay in retaining multihoming workers. For gig platforms seeking to maintain a

stable platform workforce, they can further control their labor supply by rewarding uninterrupted work or

delaying quits. For policymakers, our research gives insights regarding the design of gig economy incentive

schemes and regulations, including specifically New York City’s 2018 Driver Income Rules, and their impact

on multihoming behavior.

Key words : gig economy, multihoming, structural estimation, applied generative adversarial networks,

incentives, empirical operations, behavioral operations

1. Introduction

The gig economy forces platforms to compete for on-demand workers, who can flexibly choose where

to work not only daily but also at every moment throughout the day. Increasingly and prevalently,

such workers “multihome,” or dynamically allocate their labor supply across various platforms in

real-time. For example, ride-hailing drivers use multiple platforms to find and complete rides and
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provide additional services such as food delivery. In 2021, approximately 39% of gig workers in the

United States actively work across two or more types of gig jobs, a substantial increase from 14%

in 2016 (Anderson et al. 2021)

As the number of platforms has grown, each multihoming worker devotes less time and labor

to any single platform. The competition for workers has further intensified in cities like New York

and Seattle that have capped the total number of ride-hailing drivers who are eligible to work

in order to ease traffic congestion and protect driver welfare (Fitzsimmons 2018, Wilson 2019).

As such market conditions increasingly drive platforms to compete fiercely for the same common

pools of multihoming workers, both platforms and policymakers must ask themselves: what rules

and incentives can appropriately and desirably shape the multihoming labor supply decisions of

gig workers?

At the same time, however, platforms must manage and compete for the uncertain demand of

customers, who comparison-shop across different platforms based on factors such as availability and

price. As a result, the prevalent model of platform operations aims to dynamically reconcile present

levels of supply and demand through pay-per-work schemes that offer to pay workers dynamic,

market-clearing wages for the tasks they complete. For instance, Uber compensates drivers for each

trip they complete, at dynamic wages that depend on the time and distance, traffic conditions,

and the current ratio of drivers over rider demand.

Whereas such dynamic pay-per-work mechanisms let workers flexibly decide their supply of

labor in response to their individual preferences and market conditions (Chen et al. 2019), the

implications for the platforms that use them are mixed. Historically, gig platforms have prioritized

their operational flexibility in the face of demand uncertainty and therefore largely accepted the

constantly evolving supply and wages of workers as a given. However, firms increasingly compete

dynamically for a limited and multihoming labor supply, so firms are paying closer attention to

how exactly workers select their gigs and choose to remain active on a given platform in order to

assure that their labor supply is reliable when the demand for their services actually occurs. In fact,

some ride-hailing and delivery platforms have begun compensating gig workers on an hourly basis,

at dynamic rates that are guaranteed to workers as long as they remain available to immediately

accept jobs. Several platforms add transparency or flexibility by announcing such hourly wage

schedules in advance or allowing workers to choose from different rates themselves. Yet, the exact

appeal of such pay policies is not well justified or understood in the literature. Do such rigid pay

incentives respond effectively to escalation of multihoming behavior, and do they appeal to gig

economy workers who are widely believed to value workplace flexibility?

Our study therefore addresses two primary research questions: (i) How do multihoming gig econ-

omy workers decide among the different work opportunities made available to them? In particular,
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how do they assess the dynamic and potentially uncertain evolution of both the tasks available

to them and weigh the multiple, cross-platform incentives they face? Ultimately, their individual

reactions to such dynamics collectively shape the gig economy’s labor supply as a whole. (ii) In

turn, given a multihoming labor supply, how should on-demand platforms compete for multihoming

workers? What incentive scheme optimally balances a platform’s response to demand uncertainty

against maintaining adequate control over its available supply of labor?

To address these questions, we have collaborated with a ride-hailing platform based in New

York City (NYC) and combine its proprietary data on driver activity with the public corpus of

NYC ride-hailing trips reported by the Taxi and Limousine Commission (TLC). Using such data,

we structurally model and estimate the preferences for work and pay that drive workers’ intra-

day labor supply decisions in the presence of multihoming opportunities. Our model considers the

detailed time and location of drivers’ sequential decisions, the pay incentives offered to individual

drivers, and the contemporaneous availability and pay on the competing platform. Each driver then

optimizes her dynamic decision-making. We estimate the structural model using indirect inference

methods, which combine simulation with adversarial machine learning (Gourieroux et al. 1993,

Kaji et al. 2023). These methods have been used previously to recover choice preferences from

dynamic spatial trajectories in service networks (Moon 2023).

Using this structural empirical framework, we recover the heterogeneous discount factors and

costs of working that explain drivers’ forward-looking decisions. In particular, we find that drivers

heavily discount their future earnings and therefore (over)react robustly, including by multihoming,

to short-term income shocks. Because drivers focus heavily on immediate, short-term earnings

and exhibit little patience for waiting to receive higher future earnings, 66.59% of the drivers on

the partner platform multihome more often than not. Under their short-term focus, consistent

pay rates give drivers a continual stream of reliable work and pay that greatly reduces their

switching between platforms. In contrast, dynamic wages that clear the market may fluctuate to

yield low availability or wages in the short run even if average effective wages stay high. Our partner

platform offers drivers consistent wages in the form of preannounced wages that vary periodically

but deterministically throughout the day. Nevertheless, we find that multihoming peaks around

the scheduled times at which the dynamic pay rates change because workers are so sensitive to

short-term pay.

We explore the prescriptive implications using counterfactual analyses. First, we evaluate the

impact that pay schemes have on workers’ multihoming decisions and on platform performance.

Our main comparison pits dynamic, market-clearing wages against consistent pay rates in the form

of a preannounced dynamic schedule of guaranteed wages by time of day. Offering guaranteed wages

controls the multihoming that is otherwise caused by workers’ short-run focus on avoiding even
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temporarily low effective wages; therefore, it offers gig platforms a cost-effective path to maintaining

a reliable labor supply in the presence of multihoming. Second, we further evaluate two types of

incentives that can enable a platform to control multihoming. Recently, several platforms have

rewarded workers with “streak” or consecutive work bonuses when they maintain availability for

work and complete all their assigned tasks within a pre-allotted time frame. We show that offering

this type of reward plausibly discourages multihoming. Another platform policy is to delay active

workers from quitting the platform. This could be achieved by introducing frictions (e.g., multiple

buttons) in the quitting process or by requiring workers to signal their quits in advance. While this

policy is appealingly non-monetary, we find that it could counterproductively motivate workers to

switch to the competing platform earlier. Finally, we examine NYC’s 2018 Driver Income Rules,

which imposed minimum wage standards on ride-hailing platforms. We show that such minimum

wage regulations can unintentionally harm multihoming workers. Effective regulations should take

into account how platforms compensate workers and how workers make labor decisions.

2. Contributions and Related Work

Our work contributes to the growing stream of research in operations management on the gig

economy (for a comprehensive review, see Benjaafar and Hu 2020) and the decentralized decision-

making of gig workers. The majority of prior work provided analytical insights into gig economy

worker decisions (e.g., Ibrahim 2018, Dong and Ibrahim 2020, Besbes et al. 2021, Benjaafar et al.

2022). Lobel et al. (2024) show that utilizing flexible contractors as workers offers key operational

advantages over hiring them as employees, especially in the presence of substantial demand uncer-

tainty. More recently, empirical researchers have studied factors that shape gig economy workers’

labor decisions. Miao et al. (2022) analyze the effects of surge pricing on driver behavior using a

quasi-experiment based on a ride-hailing company introducing surge pricing in two Chinese cities

at different times. They find that surge pricing decreases drivers’ daily earnings, encouraging more

part-time drivers to work on more days compared to full-time drivers. In US-based ride-hailing,

Allon et al. (2023b) empirically find that workers make platform labor decisions based on both the

monetary value of incentives and their internal goals. Our work expands the study of gig worker

labor supply decisions to the increasingly prevalent pattern of multihoming wherein workers choose

when and where to provide services.

Multihoming behavior has been studied on consumer platforms that predate the gig economy.

Recent surveys have shown that consumers typically “shop around” for similar products on other

e-commerce sites before making a purchase and this is true across product categories (Critero

2017, Davies et al. 2022). The majority of academic work considers consumer multihoming in the

advertising market (e.g., Athey et al. 2018, Park et al. 2021), suggesting that consumer switching
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leads to inefficiency in the matching of advertisers and consumers, lowering the demand and prices.

A handful of prior works offer insights into provider-side multihoming. For instance, Landsman and

Stremersch (2011) and Cennamo et al. (2018) show that provider multihoming in the video game

industry is a result of variations in the complexity in adapting their product to different platforms.

The nature of the gig economy enables both consumers and providers to multihome across plat-

forms and marketplaces. On the consumer side, Chitla et al. (2023) models the trade-offs that

riders consider when they choose between ride-hailing platforms with potential loyalty effects. On

the provider side, theory offers some guidance regarding gig workers’ multihoming behavior. Specif-

ically, by multihoming, workers can reduce the time they spend idly waiting for customers (Bryan

and Gans 2019, Loginova et al. 2022). However, despite increasing their utilization and hours

worked, multihoming gig workers can suffer declining earnings in equilibrium (Benjaafar et al.

2020, Bernstein et al. 2021). Tadepalli and Gupta (2020) further analyze how multihoming may

alter the actions of platforms, leading to inefficient matching policies and decreasing welfare for all

parties in the long term. Notwithstanding such predictions, cross-platform multihoming is empir-

ically under-explored, and the broader literature offers a limited understanding of the ability of

platforms to influence workers’ decisions in the presence of multihoming opportunities.

We are among the first to model and empirically estimate multihoming behavior among workers

in the gig economy. Our model captures temporal and spatial variations in demand and supply

as well as competition across on-demand platforms. Closest to our work are the papers by Rosaia

(2020) and Allon et al. (2023a). Rosaia (2020) presents a model of competing transportation plat-

forms and uses New York City (NYC)’s high-frequency taxi ride data to estimate profit-maximizing

allocations and prices and then go on to study policies for reducing traffic and incentivizing plat-

forms to improve driver utilization. Unlike Rosaia (2020), our paper explores policies aimed at

influencing gig workers’ multihoming behavior. Using proprietary data from a driver analytics

company, Allon et al. (2023a) empirically measure both multihoming and repositioning decisions

among ride-hailing drivers and assess policies intended to limit multihoming or traffic congestion,

whereas we focus solely on workers’ multihoming behavior. We offer an in-depth study of the

two pay schemes predominantly offered by gig economy platforms that compete. We additionally

assess other monetary and non-monetary interventions for multihoming workers from both the

platform’s and policymakers’ perspectives. Our structural estimation framework ultimately offers

a response to the call for the integration of machine learning and behavioral science in operations

management (Davis et al. 2024).

Finally, our prescriptive counterfactual analyses provide fresh insights into incentive design for

gig economy platforms and policymakers. Offering a pay-per-task is generally more common in

the gig economy, but a growing number of platforms have adopted guaranteed pay schemes (e.g.,
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Browning 2023). Moving away from task-dependent compensation offers stability, which is highly

valued by gig workers (Chen et al. 2019). Despite having full flexibility, gig workers tend to main-

tain a consistent schedule and stay on one platform over time (Allon et al. 2023b). Pay variability

also leads to increased voluntary turnover, lower task completion rates and less motivated work-

ers (Ikeda and Bernstein 2016, Cameron and Meuris 2022, Butschek et al. 2022). Platform incentive

policies, in general, can be inefficient, affecting competition and not addressing workers’ diverse

preferences (Chen et al. 2022, Besbes et al. 2022). Recent works have proposed and demonstrated

the effectiveness of non-monetary interventions, including providing feedback (Bolton et al. 2004,

Athey et al. 2024), showing relative rankings (Choudhary et al. 2022, Shokoohyar and Katok 2022),

limiting past performance information (Li and Zhu 2021), and introducing priority matching (Mai

et al. 2023). Our analyses characterize the conditions under which income certainty could influence

multihoming behavior and provide guidance for the design of optimal monetary and non-monetary

incentive schemes as well as gig economy regulations.

3. Model of Gig Platforms and Worker Decisions

To study gig economy workers’ multihoming decisions, we consider a market in which two platforms

offer competing on-demand ride-hailing services fulfilled by gig workers. While the two platforms

operate largely identically to meet customers’ requests for rides, they compensate their workers

differently. One platform offers guaranteed but dynamic pay to drivers based on their availability

for work, while the other compensates drivers on a trip-by-trip basis with greater variability. Our

model allows for spatially, differentiated, dynamic incentives, and captures how heterogeneous

workers respond to these incentives depending on when and where they are working.

We denote the two competing platforms as firm A (the focal platform for our study) and firm B.

Firm A guarantees drivers an hourly rate of pay while logged into firm A’s platform, as long as they

are available to drive customers. While drivers are logged on, Firm A instructs them where to drive

even without passengers—e.g., along pickup-friendly routes. In contrast, Firm B pays drivers on

a per-work basis (accounting for trip characteristics) and lets them move freely between rides. We

further detail these differences when introducing our industry partner’s background in Section 4.1.

The market is structured as follows. Spatially, it is defined over L regions in a single metropolitan

area and covers all trips that originate and end within the city limits. Temporally, we discretize

service hours into 20-minute intervals as decision epochs as the average ride-hailing trip duration

is approximately 20 minutes. Effectively, we assume each ride lasts a multiple of 20 minutes. In

between rides, on-demand drivers consider whether to continue to work and whether to switch

platforms (multihome). Hence we assume that they do not abandon customers mid-ride.

In order for a gig platform to maintain service performance, it must manage the dynamics of

when multihoming workers switch platforms and quit for the day. We focus on platform A and its
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ability to retain drivers throughout the day once they join its platform at the start of their daily

work schedules. Once a driver joins, she interacts with the platform in the following way during

every subsequent epoch until she leaves. At the start of the epoch, she is matched to a customer

with a probability RA
lt which depends on her current location l and time t. We assume that drivers

are required to accept a match and they do not relocate themselves when idling. If matched, she

commences the ride and, at the end of the decision epoch in which she completes the ride, decides

whether to continue working on A, switch to the competing firm B, or stop working for the day.

Otherwise, she waits without a ride until the end of the current decision epoch and faces the same

decision.

Once she switches to platform B, her trajectory follows a similar model—she is matched to a

customer with a state-dependent probability RB
(·), completes assigned trips, and then makes stop-

or-continue decisions based on the new location and time. Empirical patterns show that very few

drivers work multiple, disjointed shifts on a single platform, say the platform for firm A, within a

single day; therefore, switches are permanent within a day, and we do not model a driver option

to return to firm A on the same day once she has switched to firm B. Thus, once having switched

to the competing platform B, a driver has only two options at the end of decision epochs—to stay

on B or leave the market. Figure 1 illustrates our model.

Figure 1 Model overview

Task

Work
for A

Stay with A

Switch to B

Quit

Decide

Leave
market

A = Focal

Info

Stay with B

Quit

Task

Decide

B = Competitor

Info

Note: A driver starts working on the focal firm A and, after completing each task, examines the time and

location to decide whether to stay on firm A, switch to the competing firm B, or quit. After switching to firm

B, she performs a task, examines the time and location, and decides whether to stay on firm B or quit.

Finally, drivers heterogeneously resolve their forward-looking decisions about whether to drive

and whether to multihome based on their driver-specific costs to work, i.e., to stay on the road

regardless of whether their time is spent waiting or driving a passenger. A driver i’s average cost

to work for a decision epoch, Ci, is Normally distributed with mean µC and variance σ2
C over the
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truncated support [C, C̄] for the overall population of drivers. In each decision epoch, an individual

driver i’s actual cost to drive is stochastic, Ci + ε
(·)
ilt, with the platform-specific contribution ε

(·)
ilt

of unobserved (to us) factors being i.i.d. extreme valued. Additionally, drivers’ forward-looking

decisions incorporate a homogenous time-discount factor β < 1.

The next subsections further detail drivers’ forward-looking decisions on each platform.

3.1. Work Decisions on Focal Firm A

Except when she is mid-ride, a driver i active on platform A decides in each decision epoch whether

to continue working on A, switch to B, or exit the service market entirely by quitting for the day.

Given that driver i finds herself at location l at the time t of her decision-making, we introduce

the following relevant state variables and parameters. As prefaced, she accounts for the probability

RA
lt that she matches to a customer within the current epoch. Additionally, based on the location

and time, she considers the characteristics of the trips she could receive. First, she anticipates

the probability πAlkt that a customer departing l requests a trip to destination k. Then, for each

potential destination k, she considers the average trip duration, in epochs, τAlk , of trips made to k

when departing l at time epoch t.

Accordingly, if she stays and is matched under our model, the driver takes her customer to the

destination k with probability πAlkt, and such trip will take τAlk time epochs. We ignore as negligible

the driver’s travel within l to the customer’s exact pickup location. Whether she is matched or

waiting, the driver i earns a flat hourly rate of wit as long as she remains active on firm A’s

platform. Section 4.1 provides more information about drivers’ hourly compensation rates on A. If

active but unmatched, the driver remains at location l and revisits her work decision in the next

decision epoch t+1. If the driver chooses to quit, she earns her outside option value of Vi(Quit; l, t)

which we normalize to 0.

Therefore, when excluding the stochastic component εStayilt of her cost to drive, the driver’s

expected discounted value, Vi(Stay;A, l, t), of continuing to work for A accounts for her wage rate

per epoch,
wit
3

, her cost to drive, Ci, and the best choice she could make at her next opportunity

to decide whether to work, switch, or quit:

Vi(Stay;A, l, t) =
wit
3
−Ci +RA

lt ·

(
L∑
k=1

πAlkt ·βτ
A
lk ·
(
(τAlk − 1)(wit/3−Ci) +V ∗i (A,k, t+ τAlk)

))
+β · (1−RA

lt) ·V ∗i (A, l, t+ 1), (1)

where V ∗i (A, l′, t′) represents her optimal future decision at location l′ and time t′:

V ∗i (A, l′, t′) := max
a∈{Stay,Switch,Quit}

Vi(a;A, l′, t′) + εail′t′ (2)

= log

 ∑
a∈{Stay,Switch,Quit}

exp
(
Vi(a;A, l′, t′)

) . (3)
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The value of switching to the competing firm B will be derived in the next subsection, as equal

to the value of continuing to work once on B: Vi(Switch;A, l′, t′) = Vi(Stay;B, l′, t′). In each case,

Vi excludes the stochastic component of the driver’s current-period driving cost, which is based

on factors unobserved to us as researchers. Once these are included, the utility-maximizing driver

chooses to continue working on at least one platform as long as maxa∈{Stay,Switch} Vi(a;A, l, t)+εailt ≥

Vi(Quit;A, l, t) + εQuitilt = Vi(Quit; l, t) + εQuitilt = εQuitilt .

3.2. Work Decisions on Competing Firm B

Similarly, except when mid-ride, each driver active for firm B decides at the end of each decision

epoch whether to stay on for the next epoch or quit working for the day.

We use notation analogous to firm A’s parameters to analyze the choice of a platform B driver

at location l and time t. If she continues working for B, she is matched to a passenger with the

probability RB
lt . If matched, the requested destination is location k with probability πBlkt, and the

ride occupies τBlk epochs in work duration. For each potential destination k, the driver further

considers the average fare fBlkt she would receive. If active but unmatched, the driver remains at

location l and revisits her work decision in the next decision epoch t+ 1.

Therefore, the driver’s expected discounted value, Vi(Stay;B, l, t), of continuing on B is:

Vi(Stay;B, l, t) =−Ci +RB
lt

(
L∑
k=1

πBlktβ
τBlk

(
fBlkt− (τBlk − 1)Ci + max

a∈{Stay,Quit}
Vi(a;B, l, t+ τlk)

))

+ (1−RB
lt )

(
β · max

a∈{Stay,Quit}
Vi(a;B, l, t+ 1)

)
. (4)

The utility-maximizing driver chooses to continue working for B as long as Vi(Stay;B, l, t) ≥

Vi(Quit;B, l, t) = Vi(Quit; l, t) = 0.

4. Data: Ride-hailing Trips in New York City

To estimate the model introduced in Section 3, we combine two sets of data on ride-hailing trips in

New York City (NYC). First, we obtain proprietary data from our industry partner, a U.S. ride-

hailing platform, that contain information regarding driver-level incentives and work decisions as

well as trips within drivers’ daily work sessions. Second, we leverage the trip record data collected

by NYC’s Taxi and Limousine Commission (TLC), which report the time and location of each trip

fulfilled by a ride-hailing platform, including those provided by our industry partner. Together,

these datasets allow us to examine the focal platform’s ride-hailing drivers’ decisions under real-

time market conditions.
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4.1. Proprietary Data from a Ride-hailing Industry Partner

Our industry partner is a ride-hailing platform, referred to as platform A, that operates in several

U.S. cities. We focus only on its operations within NYC in this paper, in order to incorporate

accurate data regarding drivers’ outside options. The focal platform mainly offers shared rides and

the majority of its customers are regular commuters, who have relatively consistent demand for

their work commutes and require reliable service.

Another key feature of the partner’s platform is that drivers are paid at a guaranteed hourly

wage rate regardless of the number of customer trips they make as long as they are online and

follow the navigation instructions supplied by the platform.1 Hourly rates, referred to as offers,

offered to drivers, are determined at the granularity of day of the week and time interval within

each day (e.g., the morning rush hours of a given day, or the late night hours of the same day)

and are communicated in advance to the driver through text messages. On this platform, a shift

refers to a set time interval during which the hourly offer rate is fixed at a single value. The shifts

studied in this paper are as follows: morning rush hours from 7 to 9 a.m. (AM peak), from 9 a.m.

to 5 p.m. (midday), afternoon rush hours from 5 to 8 p.m. (PM peak), evening non-rush hours

from 8 to 9 p.m. (PM off-peak), and from 9 p.m. to midnight (late night). Note that drivers do

not need to work an entire shift’s duration in order to be compensated; instead, they are paid pro

rata at the offer rate times the actual time they work (i.e., are online and following navigation

instructions). Most rides are shared by multiple passengers, and the platform utilizes its drivers

at higher rates than other ride-hailing platforms. Consequently, drivers rarely need to decide to

relocate, justifying our modeling assumption that drivers stay in their current regions when not

matched with passengers.

We leverage two sets of proprietary data provided by our industry partner for their NYC oper-

ations in July 2017. The first dataset contains, for every driver’s active shift, information regard-

ing her driving activities and financial incentives including offers. The data include each driver’s

anonymized ID and vehicle type, her experience with the platform, the duration she worked during

the shift, and the shift’s hourly offer rate. We merge these with another comprehensive dataset

from our industry partner that reports a driver’s first pick-up and last drop-off during every work

session. A work session is defined as an uninterrupted span of time during which the driver remains

actively logged into the platform. For each work session, we observe the driver ID and the exact

timestamps and GPS coordinates of the driver’s first and last trips. Effectively, we observe, on a

daily basis, when and where each driver starts and stops working. In total, these data cover 45,208

work sessions performed by 2,875 drivers.

1 When not matched with any customers, drivers are instructed to relocate to specific locations and their real-time
location is tracked by GPS to confirm that they are still working for the platform.
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4.2. Public Trip Record Data from TLC

We also leverage the large, public, trip record dataset collected by NYC’s Taxi and Limousine

Commission (TLC) that reports the pick-up and drop-off information for every ride-hailing trip

taken in the city across all platforms.2 For each trip, we observe the timestamps and neighborhood-

level locations of the pick-up and drop-off, as well as the dispatching base information, which we

use to identify the specific ride-hailing platform operating each reported trip. Despite knowing

trip times, locations, and destinations by platform, we cannot identify and trace individual drivers

across trips.

We use this data in two ways. First, we use trip-level information to approximate the path taken

by each active driver on the focal platform during each of her work sessions. As we could observe

only the first pick-up and the last drop-off of each of work session, the TLC dataset allows us to

estimate origin-destination transition probabilities when a driver is matched to a customer at a

given pickup time and location. Second, we use the data to reconstruct the market conditions and

incentives offered to our partner’s drivers by competing ride-hailing platforms. During the summer

of 2017, four major ride-hailing platforms were operating in the city, including our industry partner.

We choose the largest competing platform to serve as the representative competing firm, referred

to as platform B, in our model and estimation. From the TLC data, we obtain the average trip

durations and transition probabilities as well as the overall volume of trips by location and time on

the competing platform B; we use these values in our model. We lastly augment these data with

trip fares calculated using a duration-and-distance-based formula posted on platform B’s website,

allowing us to reconstruct the real-time market conditions and potential outside opportunities

offered to drivers by platform B.

4.3. Preliminary Analysis of Gig Work

The proprietary data from our industry partner provides preliminary insight into gig economy

workers’ behaviors and their work settings. We analyze 45,208 work sessions performed by 2,875

drivers on the focal platform during the month of July 2017. As stated earlier, as long as they

are logged into the system and stay active, drivers earn guaranteed hourly offer rates that are

determined and communicated to them ahead of time (e.g., typically the evening prior). These

rates are driver-, day-, and shift-specific. Figure 2 shows the distributions of hourly offer rates by

operating shift for work sessions on weekdays and on weekends. On average, the rates are at their

daily high during the midday shift (labeled as 2 in the figure) and at their daily low during the

late night shift (labeled as 5 in the figure).

2 See https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Figure 2 Hourly guaranteed wage rates offered to drivers, by shift, in the combined dataset
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Note: The shifts, defined by the focal platform, from 1 to 5 are morning rush hours (7-9am), midday (9am-5pm),

afternoon rush hours (5-8pm), afternoon non-rush hours (8-9pm), and late night (9pm-12am).

The duration of a work session has a mean of 4.50 hours, a median of 3.03 hours, and the

middle quartiles cover between 1.10 hours and 6.66 hours. For each driver, the time between two

consecutive work sessions has a mean of 36.83 hours and a median of 12.51 hours, and the middle

quartiles cover between 4.43 hours and 27.58 hours. The average number of daily work sessions for

an individual driver ranges from one session to five sessions, with a mean of 1.33 sessions and a

median of 1.24 sessions. Therefore, it is safe to assume that most drivers only drive one long work

session per day on the focal platform.

Figure 3 Daily work outcomes conditional on working
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(b) Daily earnings

Summing up across same-day work sessions, the daily work duration on the focal platform has a

mean of 6.34 hours and a median of 5.55 hours, and the middle 50 percent range spans are from 2.28

hours to 10.32 hours. A comparison of our proprietary data and the aggregated reports published

by TLC reveals that the daily work duration on the focal platform approximately matches the

average daily duration of 65,178 ride-hailing drivers across all platforms in July 2017 (6 hours),
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suggesting that the behavior on the focal platform is not significantly different from the other

platforms. Figure 3a depicts the distribution of the daily work duration for each of the weekdays.

Similarly, Figure 3b illustrates the distribution of workers’ earnings for each day of the week.

Daily earnings on the focal platform have a mean of $230.90 and a median of $211.35, and the

middle quartiles are from $116.67 to $322.77. Dividing these daily earnings by the average daily

work duration, a driver would earn on average $36.42 per hour, which is much higher than NYC’s

minimum wage of $11.00 per hour in 2017. Potentially, the higher pay could encourage drivers to

stay on the focal platform rather than switch to the competitor.

Under the gig economy’s unique flexibility, workers can start working at any time and location.

Here, we compare each work session’s starting location as well as its ending location and time. We

find that 91.86% of work sessions started and ended on the same day, suggesting that most drivers

do not work overnight on this focal platform, thus justifying our model assumption. Figure 4 shows

the distribution of drivers’ decisions of when to start and end their work sessions. We observe a

spike in drivers starting new sessions right before the morning rush hour begin (5-6 a.m.), at the

beginning of the midday shift (9 a.m.), before the afternoon rush hour (3-4 p.m.), and right after

midnight. Such patterns suggest that drivers strategically maximize the benefit of these shifts and

their offers by starting early. We also find that drivers tend to end their sessions right before the

end of the morning rush hours (8-9 a.m.) and after the afternoon rush hours (after 5 p.m.). These

clustered ending times suggest that after rush hour the drivers find better value elsewhere.

Figure 4 Distributions of the hours of the first and last trips in drivers’ work sessions
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In terms of individual drivers’ location decisions, 74.62% of sessions started and ended in the

same borough in New York City; however, only 2.06% started and ended in the same neighborhood,

and 9.66% started and ended in the same region defined by us. These findings suggest that drivers

tend to stay in their focal borough, but within it, they explore multiple neighborhoods based on

where their trips can lead.
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These preliminary analyses provide early insights that drivers on the focal platform are sensitive

to real-time monetary incentives as well as potential outside options happening at the same time

across the city.

5. Estimation Strategy and Implementation

In this section, we estimate the model we developed in Section 3 using the proprietary data from our

industry partner and the publicly available New York City (NYC) data as described in Section 4.

We group adjacent NYC neighborhoods into L= 20 regions: the Bronx, Brooklyn, Newark Lib-

erty International Airport, Central Park, Chelsea, Downtown, Governors Island, Gramercy, Harlem,

Lower East Side, Lower West Side, Midtown, Morningside Heights, Upper East Side, Upper West

Side, Upper Manhattan, JFK International Airport, LaGuardia Airport, Queens, and Staten Island.

Along the time dimension, we partition each operating day into seven blocks to match the shifts

defined by our industry partner: 7-9am (AM peak), 9am-12pm (Late AM), 12-2pm (Midday),

2-5pm (Early PM), 5-8pm (PM peak), 8-9pm (PM off-peak), and 9pm-midnight (Late night).3

Therefore, each shift spans multiple decision epochs. Within each decision epoch and region, we

assume that available matches are made instantly between the active driver and her customer such

that there is no waiting time incurred within the epoch when matched.

Our goal is to estimate three population parameters: β,µC , σC . Recall that β ∈ [0,1] is the

common time-discount factor, whereas the mean µC and variance σ2
C govern the truncated Normal

distribution of driver-specific average cost to work, Ci for driver i, per time epoch.

5.1. Pre-Computation

Our estimation involves computing the values of different work options for each driver at each

time and location for each day. To reduce the computational effort, we pre-compute several key

values from our data prior to estimating for the key population parameters. First, to determine a

reasonable range for our cost parameters, we consult a 2014 report by the American Automobile

Association (AAA). The cost per mile is estimated to be 59.2 cents for an average sedan and 73.6

cents for an SUV (Hunter 2014). The average NYC citywide bus speeds in 2017 were 7.44 miles

per hour (New York City Department of Transportation 2018).4 The hourly cost is then $4.40 for

a sedan and $5.48 for an SUV. Since we consider a 20-minute interval in our model, µC is then

expected to be around $1.47–$1.83 per interval. To be conservative, we set C = 0 and C̄ = 5 as the

support for the drivers’ cost distribution.

3 Our industry partner groups the midday and early PM blocks together into a single midday shift. We break the
shift down into two blocks to make all blocks more comparable in terms of duration.

4 We use the average citywide bus speeds as a proxy for travel speeds in the city as it is the only statistic reported
at the city level. The only other available statistic was the average taxi speeds in the Central Business District
(Manhattan south of 60th Street) which were 7.1 miles per hour.
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We also pre-compute the service parameters specific to each platform from our datasets. The

probability of getting matched with a passenger at each location l and time t on platform j, Rj
lt, is

computed by first summing up the number of trips operated by j starting from location l at time

t (from TLC trip record data) and then dividing it by the number of unique drivers on the focal

platform who were online during the same time in all locations (from our proprietary data). The

transition probabilities πjlkt are computed by dividing the number of trips going from location l to

location k at time t by the number of trips leaving location l at time t. The average trip duration

τ jlk is computed by averaging the durations of all trips from l to k on platform j. We then assume

that these values are fixed as the averages within each location, time block, and day of week.

5.1.1. Expected values of working for a competing firm B. We consider a parameter

grid of a heterogeneous driver’s average cost of working during a decision epoch, Ci ∈ [0,5] with

an increment of 0.05, and a homogeneous forward-looking discount factor per decision epoch,

β ∈ {0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975,0.98}. For each combination of (Ci, β), we compute

the value of working for B at location l and time block b either on a weekday or a weekend:

V B
l,b,weekday(Ci, β) or V B

l,t,weekend(Ci, β). Recall that for an active driver on B, we assume that they

can choose between two options: (i) continue working or (ii) leave the market. The value of leaving

the market is normalized to zero for any time block and any location. We omit the subscript for day

of week for simplicity. For each day type, we solve for the values backward from the last (7th) time

block in which all active drivers are expected to quit at the end of the block (i.e., midnight). The

terminal condition is V B
l,7,midnight(·) = 0 for all l= 1, ...,L. Then, we compute the values of working

for B during the earlier time intervals within the same time block based on the following equation:

V B
l,7,t(Ci, β) =RB

l,7

(
L∑
k=1

πBl,k,7β
τBl,k,7

(
fBl,k,7− (τBl,k,7− 1)Ci + max

(
V B
k,7,(t+τB

l,k,7
)
(Ci, β),0

)))
+ (1−RB

l,7)
(
βmax

(
V B
l,7,(t+1)(Ci, β),0

))
−Ci,

until we obtain convergence: V B
l,7,t(·) = V B

l,7,t+1(·) for all l. The L × 1 vector of converged values

reflects the stationary expected value of working for platform B during the focal time block:

VB
7 = (V B

1,7, ..., V
B
L,7). This vector is then used as a terminal condition for the earlier time block:

V B
l,6,T (·) = V B

l,7(·) for all l = 1, ...,L. In the same fashion, for any time block b < 7, we compute

intermediate values of working for B by

V B
l,b,t(Ci, β) =RB

l,b

(
L∑
k=1

πBl,k,bβ
τBl,k,b

(
fBl,k,b− (τBl,k,b− 1)Ci + max

(
V B
k,b,(t+τB

l,k,b
)
(Ci, β),0

)))
+ (1−RB

l,b)
(
βmax

(
V B
l,b,(t+1)(Ci, β),0

))
−Ci.

The converged values are then the stationary values for the time block to be used as a terminal

condition for the next (earlier) time block: V B
l,b,T (·) = V B

l,b+1(·) for all l= 1, ...,L; b= 1, ..,6.
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5.1.2. Expected values of working for the focal firm A. For each driver i, we observe

whether they worked for the focal platform A on a particular date d, Worki,d, and if so, when and

where they started (tsi , l
s
i ) and ended (tqi , l

q
i ) their work session for the day. Similar to the compu-

tation of the B-related values, we assume that the probability of being matched to a passenger to

provide a ride RA, the transition probability πA, and the trip duration τA, as well as the values

of switching over to platform B, V B, are fixed within each location, time block, and day of week.

However, we will estimate the driver- and date-specific value of working for platform A for every

20-minute interval starting from the time the driver started working until midnight for each date

that the driver worked for platform A. For weekdays in July 2017, there are 11,109 driver-date

pairs.

Due to the computational burden, we adopt a sparser grid to compute platform A-related values

for each driver: 13 values of C (0, 0.5, ..., 5) × 6 values ofβ (0.825, 0.85, ..., 0.975). For each

combination of (C,β), we compute the value of working for platform A, V A
i,l,d,t(C,β), for each driver

i at location l on date d and time interval t, where d is taken from the set of dates when the driver

i worked for platform A, and t∈ [tsi + 1, midnight]. The terminal condition at midnight is that the

driver quits: V A
i,l,d,midnight(·) = 0 for all l= 1, ...,L.

Similar to the computation of platform B-related values, we solve backward from midnight, for

every 20 minutes, until we reach 20 minutes after the actual time the driver started tsi . The hourly

offer for driver i at time t of day d is given by wi,d,t. Define b(t) as the time block that the time

interval t is in and wk(d) as an indicator whether the date d is a weekday or weekend. We omit

the subscript for time block and day of week for simplicity.

V A
i,l,d,t(C,β) =

wi,d,t
3
−C +β(1−RA

l )Vi,l,d,t+1 +RA
l

L∑
k=1

πAl,kβ
τAl,k

(
(τAl,k− 1)

(wi,d,t
3
−C

)
+Vi,k,d,t+τA

l,k

)

=
wi,d,t

3
−C +β(1−RA

l ) log

 ∑
j∈(w,s,q)

exp
(
V j
i,l,d,t+1

)
+RA

l

L∑
k=1

πAl,kβ
τAl,k

(τAl,k− 1)
(wi,d,t

3
−C

)
+ log

 ∑
j∈(w,s,q)

exp

(
V j

i,k,d,t+τA
l,k

) ,

where V w
i,l,d,t(·) = V A

i,l,d,t(·), V s
i,l,d,t(·) = V B

l,b(t),wk(d)(·), and V q
i,l,d,t(·) = 0.

5.2. Adversarial Estimation for Population Parameters

Finally, we estimate our population parameters. Our methodology addresses a basic empirical

challenge. Whereas, we observe a large number of heterogeneous drivers’ start and end times and

locations, their intermediate paths are unobserved. Although such data still allow us to identify

location- and time-specific worker outflows that depend upon granular changes in the types of
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trips and fares that are available, a maximum likelihood approach would formally entail the com-

putationally daunting task of simulating and integrating out the possible intermediate paths at

an individual driver level. Therefore, we adopt a machine-learning-based estimation method called

adversarial estimation recently proposed by Kaji et al. (2023) in order to estimate parameters that

describe drivers’ characteristics at an aggregated level.

Outcomes of interest. Since we do not directly observe drivers’ intermediate locations during

their shifts, we perform the estimation based on the aggregated outflows of workers at specific

times and locations. The daily outcome of interest is the array X that captures, at each hour

and location, the fraction of ride-hailing drivers leaving the focal platform A. Let fdl,h be the daily

fraction of drivers who worked for platform A on day d and left the platform at location l and hour

h, such that
∑

l∈L
∑

h f
d
l,h = 1 for any d. For example, a row in X contains the day of week (e.g.,

Wednesday), the hour (e.g., 9-10am), and, across 20 columns, the fraction of drivers quitting at

each of the 20 locations in New York City.

Using our model, we can also simulate such outflows as outcomes. For a set of parameters

θ= (β,µC , σC), we first draw each driver i’s cost of working, Ci, from the truncated Normal(µC , σC)

distribution and then simulate her outcomes Xθ
i that indicates when and from which location she

left the focal platform, aggregated over all days that the driver i worked on the focal platform. We

then obtain the overall outflows Xθ by aggregating Xθ
i across all drivers.

Adversarial estimation. To identify the parameter set θ that generates the simulated outflows Xθ

that match the observed data X as closely as possible, we employ the estimation method proposed

by Kaji et al. (2023) that is inspired by a machine learning algorithm called a generative adversarial

network (GAN) (Goodfellow et al. 2014). GANs are often employed as models that can be trained

and used to generate artificial data (e.g., images) that look real (e.g., have characteristics that

match the real data). In a similar manner, we use GANs to obtain estimates of our structural model

that generate platform outflows that match the patterns produced by real human decision-makers.

The idea of GANs and adversarial estimation is the result of a two-player minimax game. The

first player is a discriminator that evaluates a given row of data and determines whether the data

are real or simulated. The second player is a generator that produces the simulated data from the

model. In each iteration, the model’s parameters are updated to maximally increase the error rate

of the discriminator. As the discriminator, we use a neural network that acts as a classifier of real

versus simulated data using accurate labels.

Ultimately, the adversarial estimation framework consists of two levels of estimation. The objec-

tive of the inner maximization problem is the negative cross-entropy loss function of the discrimi-

nator model. The inner maximization can be written as follows:
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max
D∈D

1

N

N∑
i=1

log(D(Xi)) +
1

H

H∑
i=1

log(1−D(Xθ
i )),

where D(X) is a binary classifier function that decides whether an observed outcome X is from the

actual data (D= 1) or from the simulation (D= 0), N is the number of actual data observations,

and H is the number of simulation trials. Then, the outer minimization problem is the search for

the set of parameter values, θ, that minimizes the discriminator’s level of classification accuracy.

Ideally, these are parameter values under which the real and simulated data are indistinguishable.

min
θ

max
D∈D

1

N

N∑
i=1

log(D(Xi)) +
1

H

H∑
i=1

log(1−D(Xθ
i )).

Kaji et al. (2023) provide theoretical guarantees and characterize the statistical properties of

this GAN-based estimator.

Implementation. We first combine the simulated data Xθ with the actual data X and randomize

the order of the rows. For each row, we set the label Y to be 1 if the row is from the real data or 0

if it is from the simulated data. We use a feed-forward neural network as our discriminator D as it

is known to perform well in terms of classification accuracy under substantial data heterogeneity.

Our neural network is specified with a three-unit dense layer followed by a batch normalization

and the leakyReLu activation function. We use a dropout rate of 40% between the first and

the second block of dense. The dense, batch normalization, leakyReLu, and dropout pattern are

repeated for three hidden layers before the last sigmoid output later. These are trained with a

batch size of 32. To train the generator network, we use the gradient from the discriminator model

to back-propagate through the cost function, and this allows us to calculate the gradient with

respect to our parameters at the end of each iteration. Additionally, a soft labeling technique is

implemented, to increase the stability of our GAN adaptation. To prevent the discriminator from

overfitting, its weights are reinitialized when a gradient explosion occurs. We use the tensorflow

and keras packages in R and the default Adam optimization algorithm for our implementation.

After we train D̂ using X and Xθ, we then fit it back to the same inputs to predict the labels Ŷ .

We consider a cross-entropy loss function:

Loss=
∑

i s.t. Yi=1

(− log(Ŷi)) +
∑

i s.t.Yi=0

(− log(1− Ŷi))

The advantage of using the off-the-shelf neural network is that we can obtain the gradients using

automatic differentiation. Given D̂, we compute numerical gradient of the loss function with respect

to the input data {X,Xθ}. Using the chain rule, we obtain the gradient with respect to each of

the parameters ∆(θ). This step allows us to update θ(t) to θ(t+1) with one-step gradient descent:
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θ(t+1) = θ(t) − ξ∆(θ(t)), where ξ > 0 is a learning rate. The derivation of our numerical gradient

computation is provided in Appendix A.1. We repeat the procedure until we obtain convergence

(e.g., ∆(θ)≈ 0).

6. Estimation Results

We present the structural estimates we obtain.

6.1. Population-level and Individual-level Parameters

Table 1 reports the population-level paramater estimates with standard errors computed from

10,000 bootstrap runs. As a key empirical finding, we estimate the discount factor to be 0.94985

per a 20-minute decision epoch, which indicates that although forward-looking, drivers are strongly

myopic in prioritizing near-term earnings and costs. For example, drivers treat each US dollar of

net earnings obtainable in 2 hours (4 hours) as though it is worth 73 cents (54 cents) at present.

Under such myopic discounting, drivers are prone to switch platforms (multihome) in response to

short-term differentials in platforms’ immediately available fares, even when the current platform’s

fares will quickly recover so that remaining on the current platform yields better daily earnings

overall.

Over the population of drivers, their per-epoch costs to drive are distributed under the truncated

Normal with mean µC = $0.55358 and standard variation σC = $0.664725. These estimated costs

to drive include, at the lower end of the distribution, some values below the driving cost figures

calculated by AAA,5 which suggests that at least some drivers underestimate their own costs to

drive even after factors such as automobile depreciation are correctly taken into account.

Table 1 Population-level parameter estimates

Discount factor β Mean cost of working µC Std. Dev. cost of working σC

0.94985 (0.00187) $0.55358 ($0.01145) $0.664725 ($0.01197)

Note: Standard errors in parentheses are obtained via bootstrap with 10,000 runs.

Given the population-level distribution of costs, we can determine a posterior estimate of the

perceived costs borne by each particular driver based on her observed choices; each driver’s posterior

type is obtained by Bayesian updating from the population distribution of cost types. Figure 5

plots the distribution of the population’s individual-level posterior cost estimates conditional on

drivers’ recorded decisions.

5 Since 1950, the American Automobile Association (AAA) has published its annual Your Driving Costs study that
breaks down the cost of owning and driving a car. The 2014 report suggests the hourly cost for a sedan (SUV) to be
$4.4 ($5.48), translating into $1.47 ($1.83) for a 20-minute interval.
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Figure 5 Distribution of individual-level cost estimates
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Model fit: Having recovered the operating costs of the individual drivers, we simulate their

decisions to generate an informal comparison of model fit against the data. Under simulation with

the estimated parameters, the average daily work duration on platform A is 7.3 hours, with a

median of 6.3 hours. The simulated daily work hours span from a minimum of 0.3 to a maximum

of 17.3 hours, with a standard deviation of 4.44 hours. These statistics are comparable to those of

the actual work hours observed in the data.

Figure 6 shows the average simulated utilization rate of drivers on the focal platform throughout

an average weekday. We observe that the utilization decreases as the morning proceeds, spikes up

at noon, and remains high until late in the evening. Figure A.1 further illustrates variation across

days.

Figure 6 Simulated utilization rates by the day of week and time of day
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Note: Grey dashed lines represent shift boundaries on the focal platform; the pink dotted line represents noon.

6.2. Multihoming Behavior

In general, drivers cannot be tracked across platforms, and multihoming behavior must therefore

be imputed. Based on our estimates which account for the competing platform, 66.59% of platform

A’s drivers multihome during the majority of the days they work. Of these, 42.23% of all drivers
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Figure 7 Rates of drivers switching to the competing platform by the day of week and time of day
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Note: Grey dashed lines represent shift boundaries on the focal platform; the pink dotted line represents noon.

multihome every day they work, whereas a separate 16.01% of all drivers never multihome. Figure 7

depicts the timing of multihoming switches on an average weekday. Multihoming transitions out

of platform A typically occur at higher rates during the first hour of a new shift. At these times,

drivers’ hourly offer rates shift (as illustrated in Figure 2), causing both inflows and outflows of

drivers, and for certain of these transitions (i.e., 9am, 5pm, and 8pm) they coincide with the

arrival of significant daily shifts in traffic and ride demand patterns. The post-afternoon peak

hours after 8pm feature a continuous outflow of drivers who multihome. In the evenings when

offer rates decline, the platform’s driver utilization rates decrease (see Figure 6). Additionally, the

competing ride-hailing platforms offer ride services that more closely cater to nightlife events in

NYC. These observations highlight how rapidly drivers flow in and out in response to shifts, due

to their short-term focus.

7. Counterfactual Analyses

Our estimation results suggest that drivers are relatively myopic in their intra-day behavior. If they

were less myopic, they would likely do a better job of balancing overall supply and demand. Then,

there is potentially an efficiency argument to making platform choices “stickier” so as to keep the

workers longer on platforms. Although at times platforms may want their active workers to switch

to accommodate persistent shifts in supply and demand, getting them to flow out quickly is not

hard. Using counterfactual analyses, we assess the design and the impact of policies employed by

the gig platforms and the government on both the workers’ decisions and the platform operations.

7.1. Managing Long-Term Capacity: Pay-per-work and Dynamic Guaranteed Pay

Gig economy platforms need to constantly manage their service capacity, which depends on an

unpredictable and decentralized labor supply. As the magnitude of the gig economy has drastically

grown, its on-demand services no longer cater only to short-term demand and supply. For example,

the majority of the customers of the focal firm are regular commuters, who have consistent demand

for their work commutes and require reliable service.
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A carefully designed compensation scheme critically underlies the platform’s ability to deliver

consistent operational performance. The platform needs to retain a steady pool of workers and

at the same time compete for temporary workers when unpredictable demand occurs. In practice,

gig platforms use one of two primary schemes to compensate workers: pay-per-work and dynamic

guaranteed wage rates. Both schemes have their advantages and shortcomings.

Ride-hailing platforms Uber and Lyft, as well as the delivery platforms Instacart and Grubhub are

known to employ the pay-per-work scheme that compensates workers only when they perform jobs

on the platform. This policy transparently reflects the market conditions of supply and demand.

Because workers are compensated based on the work that they actually perform, they are attracted

when jobs are available and not when work is scarce. In theory, this allows the firm to respond

quickly and fluidly to real-time changes in demand and supply. Yet, such advantages depend on

workers constantly checking the availability of jobs, and the platform may fail to attract workers

in time to meet sudden surges in demand. At the same time, workers bear the opportunity costs

of idly waiting for jobs when utilization is low, and they are prone to respond by multihoming or

finding better alternatives.

The dynamic guaranteed wage scheme guarantees workers a fixed rate of hourly compensation

during their shifts as long as they are actively available for work on the platform. Our focal company

as well as the grocery delivery platforms GoPuff and Postmates are examples of platforms that offer

a dynamic guaranteed hourly wage. In June 2023, DoorDash started offering options to Dashers

to choose whether they earn a guaranteed hourly rate while delivering or receive compensation for

each order (Browning 2023). The guaranteed pay option allows the platform greater certainty about

its costs while attracting workers who may value income certainty and stable workflows. Research

in organizational behavior such as DeVoe and Pfeffer (2007) has empirically shown that greater

certainty in incentives (e.g., through guaranteed hourly wages) can increase worker productivity

and induce longer work durations. Such a scheme is therefore appealing to firms that seek to deliver

consistent service levels to meet regular demand levels (e.g., daily commuter flows).

When demand is unexpectedly low, however, the platform’s underutilized labor supply may fail

to adjust appropriately. Workers who do not serve customers nonetheless receive their guaranteed

compensation rates by staying active. Unlike under the pay-per-work regimes, the firm bears the

risk, through possibly close-to-fixed labor costs, of mismatched supply. Throughout the relatively

short history of the gig economy, the larger platforms have predominantly utilized the pay-per-work

scheme; nonetheless, as competition for multihoming workers grows between increasingly many gig

platforms, it is an open empirical question whether guaranteed wages’ advantages at retaining such

workers outweighs their relative inability to alleviate real-time demand and supply mismatches.

We therefore ask: what are the operational effects of offering gig workers guaranteed pay rates,

and under what conditions should a platform adopt this scheme?
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Implementation. For this analysis, we evaluate how a platform’s adoption of a pay-per-work

scheme affects its operations, particularly: its capacity in terms of the average number of daily

hours worked on the platform; and its labor supply in terms of the average number of daily trips

a driver completes and the rates of multihoming across platforms. Using the estimated model of

driver behavior, we generate counterfactual outcomes under pay-per-work compensation that we

compare to those under the platform’s practice of using guaranteed wages.

First, for each driver and hour on each day, we determine the pay-per-work rate rit that is

equivalent, on average, to the hourly guaranteed wage rate. That is, during a given hour t, driver

i is paid a per-work rate rit that is related to her hourly guaranteed rate wit through the following

equation:

wit = ritRt ·
60

τt
,

where, during the hour t, Rt is the probability that drivers get a ride (i.e., the rate of getting

matched per decision epoch) and τt is the average trip duration in minutes. We therefore personalize

the per-job pay rates to the individual drivers by the time of day and day of week. However, we

do not tailor the pay rates to the spatial locations of the drivers. Starting from this “equivalent”

pay-per-work scheme, we consider a range of pay-per-work policies that offer pay-per-work rates at

multiples of 0.5×, 0.75×, 1× (the pay-per-work scheme most comparable to the status quo), 1.25×,

1.5×, 2×, 2.5×, 3×, 3.5×, and 4×. Against these, we compare the focal platform’s current use of

guaranteed hourly wages as a base policy. Under each policy, we simulate every driver’s decisions

100 times for each day in the data in order to study the platform’s operational outcomes.

Results. We first investigate the the two types of wages’ impact on the numbers of hours worked

and trips completed on the focal platform. Figure 8 illustrates the impact as it varies by the day

of week.

We find that in order to maintain equivalent levels of service capacity, pay-per-work wages incur

higher labor costs than guaranteed pay rates. Compared to the guaranteed pay rates, the pay-per-

work pay policy (1×) that incurs costs at equivalent rates diminishes the average number of hours

worked and trips completed. The degree of the cost disadvantage varies depending on the time of

day. Overall, the platform must pay a pay-per-work rate that is effectively 1.25 to 1.5 times greater

than the guaranteed pay rate in order to keep the same level of supply. Guaranteed wage rates are

thus clearly cost-effective.

The choice of pay policy further impacts multihoming behavior. Based on drivers’ estimated

discount factors, drivers’ decisions regarding whether to continue working robustly discount their

potential earnings received further into the future. Under the guaranteed pay rates, drivers receive

a steady stream of earnings. Yet, despite compensating each driver at the same effective rate
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Figure 8 Daily hours worked and trips completed, by the day of week, under the guaranteed pay and

pay-per-work wage policies
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Note: The outcomes are compared across the current guaranteed pay policy (“base”) and pay-per-work policies

of different scaling factors across weekdays. ·× represents the pay-per-work policy with an effective wage rate

that is · times the guaranteed pay rate under the base policy. The horizon axis represents each week day (1:

Monday, 5: Friday).

Figure 9 Distribution of daily hours worked and trips completed under the guaranteed pay and pay-per-work

wage policies
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outcome. Grey dashed lines are the average fractions under the current guaranteed pay policy.
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on average, the 1× pay-per-work pay policy delivers earnings only after each trip is completed

and with uncertainty regarding when trips are matched—thus potentially delaying pay into the

future. By reducing the expected discounted value of continuing to work for the focal platform, the

pay-per-work policy raises the likelihood that drivers switch to the competing platform.

To shed further light on multihoming, we classify drivers into three types based on the multi-

homing behavior we observe over time. The first group, which we call “never-switchers”, does not

switch to the competing platform after working for the focal platform. As a group, they are the

most loyal to the focal platform. The second group, “mostly-switchers”, multihome frequently by

switching from the focal platform to the competing platform on at least 50% of their workdays.

The third and final group, “always-switchers”, switch to the competing platform on every workday

started on the focal platform. Each plot in Figure 10 illustrates the fractions of drivers belong-

ing to each of the three groups under the current guaranteed pay rates (labeled as 0) and under

the pay-per-work policy at various multipliers of the equivalent rates of effective pay (labeled 0.5

through 4).

Figure 10 Driver multihoming behavior, by group, under guaranteed pay and pay-per-work wage policies
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Note: The fractions are compared across the current guaranteed pay policy (“base”) and pay-per-work policies of

different scaling factors across weekdays. ·× represents the pay-per-work policy with an effective wage rate that

is · times the guaranteed pay rate under the base policy. Grey dashed lines are the average fractions under the

current guaranteed pay policy. “Never-switchers” refers to drivers who never switch to the competing platform

after working on the focal platform. “Mostly-switchers” refers to drivers who switch to the competing platform

after working on the focal platform at least 50% of the days that they work. “Always-switchers” refers to drivers

who always switch to the competing platform after working on the focal platform.

In order to retain loyal drivers as effectively as under guaranteed pay rates, we find that the

pay-per-work rates must be between 2.5× and 3× the current hourly offer (see Figure 10a). In

other words, a guaranteed pay rates save the platform up to 75% of the per-unit labor cost to

maintain the same pool of loyal drivers. Similarly, to keep the same fraction of drivers who switch

most of the time, the pay-per-work rate has to be between 1.5× and 2× (see Figure 10b). Finally,

to keep the same fraction of drivers who always switch, the wage multiple should be between 1×

and 1.25× (see Figure 10c).
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These findings suggest that to determine the pay-per-work rate the platform needs to decide

the targeted fraction of loyal workers needed for their service capacity. This segment of the never-

switchers is most affected by the change in the pay-per-work rate multiplier. Managing the pay

impact on loyal workers is therefore critical for the platform to maintain its desired service capacity.

Again, these effects vary by the day of the week as illustrated in Figure 11.

Figure 11 Driver multihoming behavior, by group and weekday, under guaranteed pay and pay-per-work wage

policies
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Note: The fractions are compared across the current guaranteed pay policy (“base”) and pay-per-work policies

of different scaling factors across weekdays. ·× represents the pay-per-work policy with an effective wage rate

that is · times the guaranteed pay rate under the base policy. The horizon axis represents each week day (1:

Monday, 5: Friday).

In general, driver outcomes follow the platform’s earnings. We calculate the pay-per-work rate

rit (1×) that leads to the drivers earning a comparable amount of income to what they would

have earned under the guaranteed wage policy. Figure 12 compares the simulated earnings across

policies. Compensating workers per trip at a 1× rate translates into fairly higher (30.16%) hourly

earnings compared to the guaranteed wage policy as seen in Figure 12a. However, aggregating

within each day, the 1× pay-per-work rate generally maintains the level of daily earnings on the

focal platform as seen in Figure 12b.

In summary, we observe that a schedule of dynamic guaranteed pay rates outperforms the pay-

per-work scheme. Based on estimating drivers’ individual costs to work, we find that such a scheme

better motivates loyal workers who prioritize income certainty in the short run. The retention of

these workers is important to the platform, which matches their labor to handle the majority of

demand. In part, this finding suggests that being able to reliably cover the regular demand patterns

of customers requires aligning the wage policy to maintain a stable and consistent labor supply

of available drivers. By accommodating drivers’ preferences for consistent workload and pay, the

platform can deliver its customers consistent service levels, reasonable wait times, and lower prices

based on reduced labor costs.
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Figure 12 Comparison of simulated driver earnings (a: hourly, b: daily) from the current pricing scheme

(“base”) and pay-per-work policies of different scaling factors.
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that is · times the guaranteed pay rate under the base policy. Grey dashed lines are the average outcomes under

the current guaranteed pay policy.

7.2. Managing Short-Term Capacity: Bonuses and Delays

Beyond their everyday pay schemes, platforms must react to demand and supply shocks in real

time. Perhaps most critically, at times of relatively high demand, platforms ought to retain the

workers they have available to them instead of losing them to competitors or letting them quit.

A key leverage point is that workers on a platform are less likely to switch over to a platform’s

competitors when kept active. Thus, a platform can hinder multihoming by keeping workers active;

although high utilization naturally helps and arises in situations of high demand, the platform may

use additional means.

In this section, we investigate two common levers that received attention in industry and

academia: offering bonuses for continued work and imposing procedural frictions that delay work-

ers from leaving. We examine the impact of these policies on platform operations and on drivers’

multihoming decisions.

Real-time bonuses are meant to incentivize higher supply to match demand in different locations

or time periods. One particular type of bonuses aims to keep workers working on a platform by

awarding bonuses when they accept and complete a required number of consecutive jobs or stay

active for a minimum duration. For example, Lyft awards a “Ride Streak” bonus to drivers who

accept a ride within the set offer period and complete all required rides (e.g., meeting the quantity

threshold) before the period is over. The dollar value of the Streak offers and the times they will

be available are communicated to drivers ahead of time, and drivers could receive multiple bonuses

during an offer period. DoorDash offers a similar promotion (“Guaranteed Earnings”); for example,
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delivery workers could earn at least $500 in total earnings if they complete 50 deliveries within a

week.

Such quantity-based threshold or consecutive work bonuses work well for two reasons. First,

the marginal benefit of completing an additional job on the platform becomes higher than that of

accepting and completing work elsewhere. In a ride-hailing context, threshold incentives have been

found to be more effective at motivating drivers than linear incentives (Kabra et al. 2017), and the

positive impact is more pronounced for full-time drivers compared to part-time drivers (Liu et al.

2023). Second, it presents workers with a goal; behavioral science research shows that having a

clear goal is a strong motivator (e.g., Locke 1996). The main downside of this type of policy is that

it requires platforms to commit to these relatively longer-term incentives with specific threshold

requirements compared to real-time, on-off, surge pricing. Thus, if market conditions change, such

bonus schemes may not elicit the desired response in a timely manner.

On the other hand, rather than paying more to workers for staying, platforms can impose costs

or frictions on workers who consider leaving. For instance, Uber has experimented with psycholog-

ical nudges in the form of short time delays to keep active drivers from leaving (Scheiber 2017). In

addition, ride-hailing platforms often assign drivers new trips before they complete their previous

trips in order to lock them in. Appealingly, this policy comes at no direct cost to the platform.

However, it could conceivably backfire. Over time, it may induce workers to become highly antic-

ipatory in terms of actively surveying and comparing their work options and outside options in

order to avoid being locked in. The additional time between when the workers might have wanted

to leave and the actual time they may result in a negative experience, hampering their intention

to work on the platform in the future. This is similar to the finding in Tadepalli and Gupta (2020)

on the negative impact of driver latency in a single-homing setting.

Implementation. We study both threshold bonuses and time-delay frictions in our counterfactual

analysis. Specifically, the time delay policy impedes drivers from leaving the platform immediately

at will. Under this policy, after a driver opts to leave the platform, she faces a short time delay of

one decision epoch (20 minutes in our setting) until she is actually logged off. During the delay,

the driver still receives her base pay for her time, and she may be assigned an additional trip. If

the additional trip outlasts the time delay of 20 minutes, the driver is logged off immediately after

she drops off all passengers.

Second, we study a consecutive work bonus policy that awards drivers hourly bonuses whenever

they work for an entire regular hour of the day (e.g., for the entire 60 minutes starting at 9am

and ending at 10am). We choose one hour as our threshold as it is the minimum threshold that is

commonly used by gig economy firms in practice. Our robustness checks that use different durations

as thresholds yield qualitatively consistent insights.
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Figure 13 Hours worked and multihoming rates under the time delay and consecutive work bonus policies

(a) Number of hours worked on the focal platform (b) Multihoming rates

Note: The outcomes are compared across the current guaranteed pay policy (“Base”), the time delay policy

in which drivers have to wait at least one decision epoch before quitting (“Delay”), and the consecutive work

bonus policy in which drivers are rewarded for staying active for an hour (“Cons. Bonus”). Each red dashed

line represents the mean level of the corresponding outcome under the base policy.

Results. We compare the two policies of bonuses and time delays against a baseline scheme of

guaranteed wages without either of them. We are interested in four key operational outcomes: the

rates of utilization and multihoming among drivers active on the platform, respectively, the drivers’

daily earnings, and their daily hours worked.

In certain respects, we find surprisingly little divergence in the key outcomes across the policies.

First, compared to the baseline, we find that each of the policies appears to decrease utilization

rates but not at a statistically significant level. Drivers’ daily earnings increase compared to the

baseline, but again not at a statistically significant level.

In contrast, the policies do impact drivers’ hours worked and multihoming, yet they do so with

considerable differences between them. First, both the time delay and consecutive work bonuses

induce workers to work significantly longer hours. Figure 13a reports the number of hours worked

per driver on the focal platform under each policy and the baseline without them. Drivers who are

offered consecutive work bonuses work slightly longer than those facing time delays. Figure 13b

illustrates drivers’ intra-day multihoming rates of switching over to work for the competitor firm.

Under the baseline policy, we find that multihoming rates are high at close to 70%. Under the time

delay policy, multihoming rates rise significantly to over 80%. In contrast, under the consecutive

work bonus policy, multihoming rates fall significantly. Thus, whereas both policies increase the

number of hours worked, the use of time delays causes workers to opt into switching platforms

anticipatorily to avoid getting locked in.

Our results produce interesting prescriptive insights for different demand scenarios. During peak

hours, the platform needs to expand its service capacity and encourage workers to stay reliably

engaged. By offering drivers temporary additional income for a specified duration on top of the

certainty of the guaranteed wage rates, the consecutive work bonus helps address this need for

additional labor supply. Several on-demand platforms have incorporated the consecutive work

bonuses and similar forms of gamification into their worker retention efforts; examples include
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Uber’s Consecutive Trips and Lyft’s Ride Streaks promotions. For the consecutive work bonus to

be effective, however, platforms need a consistent stream of work to justify the income certainty

that the policy provides.

Unlike bonuses, incorporating time delays does not deter multihoming. In fact, imposing time

delays can be an operationally effective way to encourage strategic multihoming. By forcing workers

to wait before being able to leave, it triggers them to plan ahead. Empirically, drivers appear prone

to multihoming when facing low utilization, and they do not want to be stuck in low-demand

locations or be forced to be idle for longer due to the time delay. Thus, perhaps counterintuitively,

time delays can help gig economy platforms encourage timely and efficient multihoming outflows

from the least utilized portions of their service networks.

7.3. Designing Regulations: NYC’s Driver Income Rules Case Study

In the gig economy, workers lack traditional employment protections, and platforms’ decisions

regarding wages and compensation can impact worker welfare. Low pay is a major public concern:

14% (29%) of gig economy workers earned less than the federal (state) minimum hourly wage (Zip-

perer et al. 2022). For policymakers and regulators, a natural remedy is to enforce a minimum wage

for gig work. However, theoretical analyses indicate that enforcing minimum wages without accom-

panying regulations and platform actions may lead to negative welfare effects, such as through

flooding the gig market with drivers competing for too few jobs. Asadpour et al. (2023) offers a

theoretical prediction that a minimum wage-type policy is only feasible for loose labor markets. If

the minimum wage is too high, the optimal response for the platform is to cap its supply, i.e., only

allowing a fixed number of workers to work for the platform. The limited access to gig work could

then negatively affect worker welfare (Lao 2017).

In this section, we investigate whether policymakers should account for platforms’ compensation

schemes when evaluating new minimum-wage regulations. We take a minimum-wage policy for ride-

hailing drivers instituted in New York City as our case study. In December 2018, New York City’s

TLC promulgated its “Driver Income Rules”, requiring that ride-hailing drivers be compensated at

wage rates exceeding $17.22 per hour of work, and that the rates must fairly reflect the times and

distances involved in the work.6 In early 2019, the rules became enforced for most major ride-hailing

platforms; our industry partner was exempted due to its different compensation scheme.

Because our data from 2016–2017 precede the enforcement of this regulation, we use counter-

factual simulations to compare different implementations of the rules and their consequences for

platform operations and worker welfare. We continue to assume a labor market with two compet-

ing, on-demand platforms that source labor from multihoming workers: our industry partner and

6 The approved rules can be found at https://nyc.gov/assets/tlc/downloads/pdf/driver_income_rules_12_04_2018.pdf.

https://nyc.gov/assets/tlc/downloads/pdf/driver_income_rules_12_04_2018.pdf
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a representative competitor. The competitor compensates workers (pay-per-work) in line with the

two platforms that held the largest market shares. We further assume that customer fares are not

affected by the new rules. This assumption is supported by the findings of Parrott and Reich (2018)

that the fare increase after the enforcement was not significant—e.g., only three to five percent

higher than prior to enforcement. We compare the following four scenarios:

a. Pre-2019 baseline of no enforced minimum wage for gig platforms. The baseline scenario cap-

tures the platforms’ decisions and outcomes based on the market conditions prior to the the

minimum wage rules being enforced in 2019. The scenario is evaluated using the estimated

driver characteristics from our earlier analyses as well as the market conditions obtained from

the public data.

b. Enforced on pay-per-work gigs only. The second scenario reflects the minimum wage rules as they

were implemented in early 2019. These rules were only enforced on the pay-per-work competitors

to our industry partner’s platform. In our counterfactual analysis, we therefore simulate the

policy’s effects on the drivers’ outside option of multihoming (i.e., their value of working for

the competing platform), before simulating and analyzing the follow-on effects on our industry

partner’s platform operations and driver decisions.

c. Enforced on guaranteed wage gigs only. The third scenario implements a hypothetical reversal

of the actual enforcement regime by applying the minimum wage rules only to our industry

partner but not to its pay-per-work competition.

d. Universal enforcement. The fourth and final scenario hypothetically applies the minimum wage

rules universally to all platforms.

Results. We compare each of the latter three scenarios against the baseline without enforced

minimum wages. Under the actually implemented second scenario, we find that workers earn 3.5%

less and spend 2.1% more time idling. Our simulated findings are consistent with the regulation’s

actual outcomes in practice: drivers generally failed to earn more and spent more time waiting for

work assignments due to an influx of drivers attracted by the new minimum wage. In response,

ride-hailing platforms ultimately capped the number of drivers at certain times of day to avoid

leaving them idle.

Under the second, hypothetical scenario, the rules were only enforced on guaranteed wage gigs.

As a result, workers earned 3% more but also spent 3.3% more time idling compared to the pre-

2019 baseline. In contrast, the universal enforcement scenario results in workers earning 1.2% less

and spending 7% more time idling than pre-2019. These results indicate that enforcing minimum

wages on pay-per-work platforms in particular consistently harms workers’ earnings and utilization

rates. Whereas such results alone do not negate the public interest in minimum wage standards,

they suggest that additional regulations or steps are required (e.g., capping the number of drivers
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at certain hours) in order to raise worker welfare and avoid inefficient congestion and competition

among idling workers. The guaranteed gigs respond to minimum wage standards more in line

with expected outcomes at traditional employers. Lastly, it is interesting to compare the effect

of universal enforcement against that of enforcement on pay-per-work gigs only—i.e., the former

additionally brings guaranteed gigs up to the minimum wage. With the influx of labor supply,

the overall earnings effects are still negative but less so than before, since unlike pay-per-work

gigs, guaranteed wages are not diluted by low utilization. However, drivers still suffer, relative to

pre-2019, from a diminished outside option at the competitor’s platform, and utilization naturally

falls even further under the broadened minimum wage that attracts drivers.

For policymakers, our findings highlight the importance of considering platforms’ compensation

schemes when designing minimum wage rules and other gig labor regulations. Similar analyses can

help reveal which and when platforms will react more similarly to traditional employment markets

and when additional regulations or steps should be deployed in tandem in order to achieve policy

goals such as improving worker welfare.

8. Concluding Remarks

By exercising their flexibility to choose gigs, gig economy workers often work for multiple platforms.

A growing number of platforms competes ever more fiercely to win over a limited pool of workers.

Therefore, understanding how workers respond to multihoming incentives is becoming critical, but

empirical studies have been limited by data that cannot directly capture workers’ other options.

In this paper, we combine proprietary data from a ride-hailing industry partner and publicly

available data documenting trips on all platforms in order to estimate a structural model of gig

workers’ sequential dynamic decisions that does account for the availability of work opportunities

on other platforms. Methodologically, we contribute the modeling and structural estimation of

gig workers’ dynamic labor decisions using the aforementioned combined data and econometric

techniques that leverage machine learning. Based on the estimated population parameters, our

counterfactual analyses provide novel prescriptive insights for on-demand platforms and policy-

makers.

Specifically, our analysis shows that workers are short-sighted and value consistent rewards over

variable rewards. As a result, we find that consistent pay dominates variable pay-per-work at

retaining multihoming workers in order to maintain a stable platform workforce. Platforms can

further control their labor supply by rewarding uninterrupted work or delaying quits, where the

latter can, counterintuitively, encourage multihoming. More generally, our research yields insights

into multihoming behavior that can guide the design of optimal incentive schemes and gig economy

regulations.
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Our study offers a first empirical step towards understanding prevalent multihoming behavior.

As more data become available, researchers could improve the approximation and estimation of

a wider range of work options available to workers. In this study, we use the varying levels of

imbalance between pick-ups and drop-offs in each region across the city as a proxy for time-specific

and location-specific outside promotions and incentives. Although we do not directly observe the

actual incentives and workload on other platforms, we argue that these approximated options could

serve as a lower bound on the values of potential outside options. In addition, our counterfactual

analyses focus on simple implementations of select interventions. Future researchers could delve

more deeply into studying the variations of these policies, as well as other policies not explored in

this study. Our estimation framework could also be extended to other settings involving human

agents’ sequential decisions, where only aggregated outcomes are observed, and traditional max-

imum likelihood estimation methods are infeasible. Finally, our study highlights that while gig

economy workers are drawn to flexibility, they largely prefer certainty when it comes to earnings.

Our industry partner is one of several firms that offer guaranteed pay to their workers. Therefore,

we believe that our findings are not specific to this particular company’s operations, but instead

reflect broader patterns in the gig economy. Future research could investigate the interplay between

competing platforms that offer different pay schemes and what the equilibrium mix of payment

schemes across competing platforms should be.

By shedding light on the dynamic decision-making processes of gig workers and how incentives

affect their decisions, we provide valuable insights into the challenges faced by platforms and

policymakers. We believe that our findings have the potential to inform more effective strategies

for managing multihoming workers in the gig economy, thereby improving their well-being.
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Appendix A: Model Derivations

A.1. Numerical Gradients Computation

We use the following loss function:

Loss=
∑

i s.t. Yi=1

(− log(Ŷi)) +
∑

i s.t.Yi=0

(− log(1− Ŷi)).

Our input X has a (D ·H)×L dimension, where D is the number of days in the data, H is 17 (e.g., 17

hours from 7am to 11pm), and L is 20 (e.g., 20 regions in NYC). Keras automatic differentiation provides

us with ∂Loss/∂X,
∂Loss

∂θ
=
∂Loss

∂X
· ∂X
∂θ

.

We need
∂X

∂θ
=

[
∂X

∂β

∂X

∂µ

∂X

∂σ

]
.

Formulation of X: Each cell is a fraction of drivers quitting at location l at time h on day d.

Xl,h,d =
1

|Droved|
∑

i∈Droved

qil,d,h,

where Droved is the set of drivers who worked on day d and qil,d,h is an average quitting decision for driver

i at location l at time h on day d.

∂Xl,h,d

∂θ
=

1

|Droved|
∑

i∈Droved

∂qil,d,h
∂θ

Aggregation across drivers: For each driver i, their cost ci is drawn from TruncatedNormal(µ,σ2). We

also set c= 0 and c̄= 5 as the range of possible costs. Technically, we draw the error term for each driver: εi

from Uniform[0,1]. Then,

ci = Φ−1(Φ(c) + εi(Φ(c̄)−Φ(c)))σ+µ.

So we have
∂ci
∂β

= 0,
∂ci
∂µ

= 1,
∂ci
∂σ

= Φ−1(Φ(c) + εi(Φ(c̄)−Φ(c))).

In the pre-computation, we have already computed qil,d,h(β, c) for a specific β and c. We do bi-linear

interpolation using the four nearest points: (β1, c1), (β1, c2), (β2, c1), (β2, c2), such that β1 < β < β2 and

c1 < c< c2.

qil,d,h(β, ci) =
[β2−β β−β1]

(β2−β1)(c2− c1)

[
qil,d,h(β1, c1) qil,d,h(β1, c2); qil,d,h(β2, c1) qil,d,h(β2, c2)

]
[c2− ci; ci− c1]

=
1

(β2−β1)(c2− c1)
· [qil,d,h(β1, c1)(β2−β)(c2− ci) + qil,d,h(β2, c1)(β−β1)(c2− ci)

+ qil,d,h(β1, c2)(β2−β)(ci− c1) + qil,d,h(β2, c2)(β−β1)(ci− c1)]

∂qil,d,h(β, ci)

∂β
=

1

(β2−β1)(c2− c1)
· [−qil,d,h(β1, c1)(c2− ci) + qil,d,h(β2, c1)(c2− ci)

− qil,d,h(β1, c2)(ci− c1) + qil,d,h(β2, c2)(ci− c1)]
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∂qil,d,h(β, ci)

∂µ
=

1

(β2−β1)(c2− c1)
· [−qil,d,h(β1, c1)(β2−β)

∂ci
µ
− qil,d,h(β2, c1)(β−β1)

∂ci
µ

+ qil,d,h(β1, c2)(β2−β)
∂ci
µ

+ qil,d,h(β2, c2)(β−β1)
∂ci
µ

]

=
1

(β2−β1)(c2− c1)
· [−qil,d,h(β1, c1)(β2−β)− qil,d,h(β2, c1)(β−β1)

+ qil,d,h(β1, c2)(β2−β) + qil,d,h(β2, c2)(β−β1)]

∂qil,d,h(β, ci)

∂σ
=

1

(β2−β1)(c2− c1)
· [−qil,d,h(β1, c1)(β2−β)

∂ci
σ
− qil,d,h(β2, c1)(β−β1)

∂ci
σ

+ qil,d,h(β1, c2)(β2−β)
∂ci
σ

+ qil,d,h(β2, c2)(β−β1)
∂ci
σ

]
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Appendix B: Additional Results
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Figure A.1 Utilization rates by day of week and time of day. Grey dashed lines represent shift boundaries on

the focal platform and the pink dotted line represents noon.
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Figure A.2 Probability of switching to the competing platform by day of week and time of day. Grey dashed

lines represent shift boundaries on the focal platform and the pink dotted line represents noon.
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