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Abstract 

Robotaxi technology, an innovative advancement within the realm of ride-hailing services, is 

undergoing regional deployments across different countries, and yet its influence on consumer behavior 

remains largely unexplored. Our identification strategy exploits the quasi-random allocation of robotaxi 

services to consumers when they request robotaxi services and employs a difference-in-differences (DID) 

model to estimate the causal impact of robotaxi usage on consumers’ ride-hailing behavior. Our findings 

reveal a significant 23.2% increase in a consumer’s total weekly rides after experiencing the robotaxi 

service on the focal platform. Our further analysis indicates that robotaxi services do not cannibalize a 

consumer’s demand for regular rides but instead lead to a positive spillover effect on the consumer’s 

demand for regular ride-hailing services in robotaxi-accessible areas. This increased demand is observed 

not only among multi-homing consumers, potentially switching from other platforms, but also among 

single-homing consumers, likely due to a category expansion effect. Moreover, we find that multi-homing 

consumers experience a more pronounced increase in demand in robotaxi-accessible areas but significantly 

reduce their usage of the focal platform in inaccessible areas. These findings can be explained by the 

evidence of multi-homing consumers’ shifts in platform preference across regions. These differential 

impacts on single-homing and multi-homing consumers highlight the nuanced implications of robotaxi, as 

an AI-powered innovative service, for consumer demand and preferences in the presence of platform 

competition.   
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1. Introduction 

AI-powered automation is revolutionizing various sectors, including healthcare (Yip et al. 2023), 

finance (Chaboud et al. 2014), and ride-hailing (Noh et al. 2023), with the advent of robotaxi services 

standing out as a prominent example. In cities across the United States and China, companies like Waymo 

and Baidu have launched robotaxi fleets, offering innovative autonomous ride-hailing services to the public. 

Similarly, Tesla has entered the robotaxi market with its ambitious Cybercab project, unveiled in October 

2024 and slated for production by 2026, positioning itself as a key player in autonomous ride-hailing.1 

According to a study by MarketsandMarkets research, the robotaxi market is projected to reach USD 45.7 

billion by 2030.2  

This surge in automation mirrors a broader trend across industries, fueling debates about the “march 

of the machines” (Warwick 2004) and the potential implications for human employment—whether AI will 

displace jobs entirely or transform their nature, for better or worse (Acemoglu and Restrepo 2018, 

Brynjolfsson et al. 2018, Autor et al. 2024). Despite the rapid adoption of robots and algorithms in 

consumer–firm interactions and intense debate about their impact on the labor market, there is still a 

significant gap in understanding how such innovations influence consumer behavior (Granulo et al. 2019, 

Mende et al. 2019). This issue is critical, as demand-side behavior plays a pivotal role in shaping firms’ 

decisions to deploy automation, beyond the traditional supply-side considerations of cost savings and 

productivity gains, which typically assume demand-side behavior remains unchanged. 

Focusing on robotaxis as an example, the impact of such automation on consumer behavior on ride-

hailing platforms remains largely unexplored. On the one hand, robotaxis might not spark significant 

interest from consumers or merely replace a portion of the services currently served by human drivers, 

resulting in a negligible effect on a consumer’s overall demand. On the other hand, as a novel and appealing 

innovation, robotaxis could serve as a differentiating factor in the market (Arrow 1972), potentially 

generating new demand by appealing to certain consumer segments, particularly those navigating across 

 
1 https://www.theverge.com/2024/10/10/24265530/tesla-robotaxi-elon-musk-features-range-price-release-date 
2 https://www.marketsandmarkets.com/Market-Reports/robo-taxi-market-132098403.html 
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multiple platforms, thus increasing those consumers’ demand. Moreover, as a platform gradually introduces 

robotaxis from one area to another, the availability of such innovative services in selected areas may 

influence a consumer’s preference for the focal platform differently in areas with and without access to 

such services, especially in the presence of competition from other platforms.  

This mixed impact highlights a practically important question and at the same time a significant void 

in the existing literature, which has yet to fully address these complexities. First, while recent marketing 

research has begun to explore consumer acceptance of innovative services provided by machines, it 

primarily focuses on consumer preference or choice between human and machine services (Luo et al. 2019), 

providing limited insights into consumer demand when both options are available. Second, existing research 

using field data primarily examines low-stakes consumer purchase decisions, such as AI serving as a 

customer service agent for tasks like ordering food or providing recommendations (Mende et al. 2019, 

Longoni and Cian 2022), with scant attention to high-stakes decision-making contexts. The few studies that 

look at autonomous vehicle (AV) services often rely on theoretical modeling (Castro and Frazelle 2024) or 

hypothetical scenario-based questions (Leung et al. 2018), leaving a gap in understanding real-world 

consumer behavior in such high-stakes situations. Specifically, there is a lack of insight into how such 

innovative offerings influence consumers’ overall consumption patterns, as well as their continued use of 

regular services that are not directly related to these new options. Third, previous research has not examined 

how automation-based innovations may influence consumer preferences in areas with disparate 

accessibility to such services, particularly in environments characterized by platform competition and 

varying levels of consumer loyalty.  

Motivated by these considerations, we aim to address the following research questions:  

1) How does the adoption of robotaxi services on a platform affect a consumer’s overall consumption 

of ride-hailing services on the platform? 

2) How does the adoption of robotaxi services on a platform affect a consumer’s consumption of its 

regular ride-hailing services that do not involve or request robotaxi options? 

3) How do the above effects differ across areas with and without access to robotaxi services? 
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To answer these questions, we obtained a proprietary dataset from a prominent ride-hailing platform 

in Asia that was the first ride-hailing platform to introduce robotaxi services in the region we study. The 

dataset provides granular, consumer-level data and includes detailed characteristics of both robotaxi and 

regular rides. Our study utilizes a difference-in-differences (DID) approach, leveraging the introduction of 

robotaxi services to assess their impact on consumer behavior on ride-hailing platforms. We employ a 

quasi-natural experiment, wherein for consumers who have requested both robotaxi and regular services, 

the assignment to a robotaxi or regular vehicle is randomly determined by real-time availability rather than 

by the consumers’ preferences or characteristics.  

We find interesting results regarding the impact of robotaxi services on ride-hailing consumer 

behavior. First, we observe a significant 23.2% increase in total weekly rides among consumers who 

experienced robotaxi services, indicating that such innovative offerings stimulate additional demand rather 

than merely redistributing demand from regular ride-hailing services to robotaxis. Second, intriguingly, 

even when considering only regular rides from requests that do not include robotaxi, there is a 10.2% 

increase. This suggests that robotaxi services have a positive spillover effect on consumer demand for 

regular rides rather than a cannibalization effect. Third, while the robotaxi experience significantly 

increases consumers’ regular rides in robotaxi-accessible areas, it decreases their rides in inaccessible areas.  

Thanks to the exceptional granularity and comprehensiveness of our proprietary data, which includes 

rides booked both directly through the platform and via a dominant ride-hailing aggregator, we can match 

consumer identities across both platforms to identify multi-homing consumers. This enables us to explore 

the mechanisms underlying the observed treatment effect on consumer behavior following the robotaxi 

introduction. Specifically, we investigate whether this effect is primarily attributable to a shift in platform 

preference among multi-homing consumers by differentiating between single-homing and multi-homing 

consumers and analyzing their orders across different platforms.  

Our findings indicate that the treatment effect of the robotaxi rollout extends beyond a mere uniform 

shift in platform preference among multi-homing consumers. Specifically, our results reveal two distinct 

types of effects that jointly drive the observed treatment effects. First, we offer suggestive evidence of a 
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category expansion effect, where single-homing consumers show an increased frequency of regular rides 

in accessible areas, as demonstrated by their temporal and spatial expansion in ride-hailing consumption. 

Second, the platform preference shift observed among multi-homing consumers appears to be highly 

dependent on the availability of innovative services. They experience a larger increase in rides in accessible 

areas but a decrease in inaccessible areas, suggesting stronger platform preference in the former and a 

diminished preference in the latter. This nuanced shift is further supported by their increased usage of the 

platform’s own app over a dominant ride-hailing aggregator to request regular rides in robotaxi-accessible 

areas, coupled with a significant decrease in its usage in other areas.  

Our findings have important practical implications and highlight the dual impacts—both benefits and 

risks—associated with introducing innovative services amidst platform competition. On the one hand, these 

innovative services enhance overall consumer consumption on the platform by motivating both single-

homing and multi-homing consumers to increase their usage of ride-hailing services (both innovative and 

regular services) in areas where these innovations are accessible. On the other hand, the staggered rollout 

of these services can lead to reduced preferences among multi-homing consumers in areas where the 

services remain unavailable, potentially diminishing their usage of the platform in these regions. Platform 

owners must therefore be mindful of the implications associated with the phased introduction of innovative 

services and strategically manage their consumer communications to sustain their competitive position in 

the broader market. 

This research contributes to related literature on AI and automation, AV services, and digital platforms 

in several ways. First, it advances the literature on the impact of AI and automation, which has primarily 

focused on supply-side effects such as labor displacement and productivity gains (Brynjolfsson and 

Mitchell 2017, Acemoglu and Restrepo 2018, Autor et al. 2024), by shifting the focus to demand-side 

effects. While some prior research has explored consumers’ acceptance of AI-provided customer service or 

recommendations in comparison to those provided by humans (Luo et al. 2019, Longoni and Cian 2022), 

we expand this body of work by examining consumer behavior in settings where both AI-driven services 

(e.g., robotaxi services) and human-provided services (e.g., human-operated ride-hailing services) are 
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available simultaneously. Additionally, we analyze the spillover effects of introducing AI-driven services 

on the demand for regular human-provided services. 

Second, we contribute to the emerging literature on AVs, which has predominantly relied on small-

scale surveys or theoretical models to evaluate consumer perceptions and adoption (Lokhandwala and Cai 

2018, Dai et al. 2021, Yin et al. 2023), with limited understanding of real-world consumer behavior in high-

stakes contexts such as robotaxi usage. Drawing on a large-scale sample of actual consumers, our study 

advances this research by providing empirical evidence on the impact of robotaxi services on consumer 

consumption behavior in real-world environments.  

Third, our study contributes to the digital platforms literature by empirically documenting the spatial 

spillover effects of the phased introduction of innovative robotaxi services, highlighting their differential 

impact on single-homing and multi-homing consumers. While prior studies have examined innovative 

services as replacements for existing ones to achieve differentiation (Johnson et al. 2006, Hauser et al. 2006, 

Xu et al. 2014), the literature has largely overlooked scenarios involving staggered rollouts of innovative 

services alongside existing offerings. Our study bridges a critical gap by quantifying the spillover effects 

of platforms’ staggered innovative offerings, such as robotaxi services, on the consumption of regular ride-

hailing services in regions where innovative services have not yet been introduced. Furthermore, we 

demonstrate that such spatial spillover effects differ between single-homing and multi-homing consumers, 

offering suggestive evidence of the potential mechanisms driving these variations. Our results can shed 

light on platforms’ rollout strategies for new technological innovations in general, particularly in contexts 

where multi-homing is prevalent. 

2. Literature Review 

2.1. Artificial Intelligence (AI) and Automation 

Our research first builds upon existing literature on AI and automation technology, which has 

examined the potential for automation to replace or augment human labor (e.g., Autor 2015, Brynjolfsson 

and Mitchell 2017). Acemoglu and Restrepo (2018) reveal that while automation can reduce employment 



 

7 

 

and wages, creating new tasks in which labor has a comparative advantage can counteract these effects, 

leading to a balanced growth path and long-term economic stability. Hui et al. (2023) document that 

generative AI significantly decreases the short-term employment and earnings of freelancers in online labor 

markets, implying a notable job replacement effect. While these studies provide valuable insights into the 

supply-side impact of automation technology, they do not study its effect on consumer demand.  

While recent marketing research has started to examine the effect of automation technology on 

consumer demand, it has primarily focused on comparing consumer acceptance of services provided by 

automated machines versus humans. Luo et al. (2019) find that consumers demonstrate a reduced 

willingness to purchase products when they become aware that customer service is provided by machines. 

Mende et al. (2019) observe that the presence of service robots can increase consumer discomfort, which 

in turn leads to an increase in compensatory consumption as consumers seek to alleviate their unease. 

Longoni and Cian (2022) investigate how people choose between recommendations from AI and humans. 

They find that for practical or utilitarian recommendations, consumers tend to prefer AI, whereas for 

recommendations related to enjoyment or pleasure, consumers often favor human advice. Leung et al. (2018) 

also show that automation is often resisted when identity motives play a significant role, as people prefer 

attributing identity-relevant outcomes to themselves rather than automated processes.  

Despite the abundant literature documenting consumers’ purchase decisions in scenarios where 

services are provided exclusively by either humans or machines,3 there is a void in understanding consumer 

behavior when both machine and human services are available concurrently. Advancing this stream of 

literature, we investigate the impact of offering robotaxi as an additional service option and examine how 

this influences a consumer’s overall ride-hailing demand, as well as the spillover effect on regular rides 

provided by human drivers. 

2.2. Autonomous Vehicle (AV) Services 

Our study also ties into the emerging literature on AVs, which generally follows three primary research 

 
3 All the aforementioned studies used a between-subject design, assigning respondents to scenarios with either human-

provided or AI-provided services, but none offered the option to choose both. 
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directions. The first direction explores consumers’ perceptions, evaluations, and adoption of AVs, often 

through surveys. The second direction investigates the broader societal impacts of AVs by leveraging public 

aggregate-level data or simulations. And the third direction examines how the introduction of AVs impacts 

the efficiency and fleet size of ride-hailing platforms and AV ride service companies, mostly using game-

theoretical models or simulations. 

In the first research strand, Dai et al. (2021) survey 383 experienced robotaxi consumers to assess 

factors such as attitudes toward use, perceived ease of use, and perceived usefulness, all of which influence 

continuous use intentions. Based on 485 valid survey responses, Yin et al. (2023)  investigate the impact of 

introducing robotaxis in certain cities on consumer preferences and attitudes by comparing consumers in 

cities with robotaxi services to those in cities without such services. Their findings reveal no significant 

differences in willingness to pay for travel and waiting time between the two groups. However, they do 

observe that the presence of robotaxis influences psychological factors like trust and hedonic motivations. 

The second research strand examines the traffic and environmental impacts of AVs, considering both 

positive and negative implications. On the one hand, Lokhandwala and Cai (2018) demonstrate that 

robotaxis in New York City could significantly reduce carbon emissions while maintaining service levels. 

Complementing this, Li et al. (2023) conduct a systematic review of studies on the efficacy of urban traffic 

control strategies in mixed traffic environments involving regular, connected, and automated vehicles, 

finding that advanced traffic control can alleviate congestion and enhance safety. On the other hand, Wang 

et al. (2024) highlight a negative externality of AVs on public traffic conditions, noting an increase in traffic 

accidents among non-AVs based on city-level data. This phenomenon is attributable to disruptions caused 

by AVs and increased risk-taking behaviors by other drivers, who anticipate AV-integrated traffic 

conditions as safer and more accommodating.  

The third research direction, closely related to our study, explores how AVs impact the efficiency and 

fleet size of ride-hailing platforms. Lokhandwala and Cai (2018) use an agent-based model to analyze the 

performance of ride-hailing platforms incorporating both traditional taxis and robotaxis in New York City. 

Their simulation results indicate that robotaxis could reduce fleet size by more than 50%. Noh et al. (2023) 
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model the dynamic competition between AV ride services and traditional ride-hailing companies. They find 

that traditional ride-hailing firms often outperform AV firms in the market when customers are willing to 

wait, achieving lower customer delays, higher prices, greater market share, and higher profits—even when 

facing higher costs. Castro and Frazelle (2024) explore strategic interactions between human drivers and 

AVs within ride-hailing platforms. Their model results suggest that higher wages for human drivers could 

paradoxically lead to fewer available rides for them, reducing human-driver participation while expanding 

the AV fleet. 

The studies examining the impact of AVs in the ride-hailing context often rely on hypothetical 

scenario-based questions or game-theoretical model assumptions, leaving a gap in understanding real-world 

consumer behavior in high-stakes situations, such as taking robotaxis. Our research addresses this gap by 

providing empirical evidence on the impact of robotaxi services on consumer behavior in a real-world 

setting, drawing on a large-scale sample and capturing both direct and spillover effects across different 

types of consumers.  

2.3. Digital Platforms 

Our research also contributes to the literature on digital platforms, particularly in the area of platform 

competition. In the dynamic world of digital marketplaces, platform competition is intense, especially when 

multi-homing is prevalent on one or both sides of the platforms (Li and Zhu 2021). Prior research identifies 

two general types of competition strategies: pricing and differentiation strategies (McIntyre and Srinivasan 

2017).  

The first body of research focuses on pricing strategies, such as setting lower prices for consumers to 

penetrate the market or subsidizing complementors (such as Uber drivers or app developers) to leverage 

cross-side network effects (i.e., the “seesaw principle”) (e.g., Dou and Wu 2021, Zhang et al. 2022). Bakos 

and Halaburda (2020) further show that the common strategic advice to subsidize one side to maximize 

platform profits can be ineffective when both sides multi-home. 

Our study is most related to the second body of research focusing on differentiation strategies, which 

platforms use to build a distinct platform identity (Cennamo 2021) and reduce substitutability by improving 
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service quality or variety, such as offering innovative services. Chang and Sokol (2022) study the 

competition between hotels and Airbnb. They suggest that low-quality hotels primarily compete with 

Airbnb by lowering prices, while high-quality hotels respond by enhancing their investment in service 

quality to differentiate themselves. Farronato et al. (2024) find that, following a platform merger, the 

increase in platform dominance leads to a reduction in platform differentiation, which outweighs the 

positive effects of elevated network effects and harms a subset of consumers. These studies underscore the 

critical role of differentiation strategies in shaping platform competition outcomes. 

We examine innovative offerings as a platform differentiation strategy. Although not studied 

empirically in the context of platform competition, such offerings have been shown to bolster brand equity 

and loyalty, as evidenced by survey-based studies in consumer behavior research (Johnson et al. 2006, Xu 

et al. 2014, Hauser et al. 2006). For instance, Johnson et al. (2006) demonstrate that tech-innovative 

offerings enhance consumers’ affective commitment to maintaining a relationship with the brand and brand 

equity, which, in turn, increase perceived value and foster stronger brand loyalty. Building on this, Xu et 

al. (2014) find that information and communication technology (ICT) service innovations, particularly 

through service leadership and customization-personalization, enhance brand equity and boost customer 

loyalty. The role of innovations in improving brand equity and loyalty is further supported by Wu (2014) 

and Yao et al. (2019). Hauser et al.’s review (2006) also notes that consumers with higher innovativeness, 

i.e., a higher propensity to adopt new products, tend to respond more positively to innovation.  

Together, these consumer behavior studies highlight the potential of innovation offerings that a 

platform can leverage as a strategy to differentiate and enhance competitive advantage. However, the 

impact of such offerings on consumer behavior in the context of platform competition has not been 

empirically examined, particularly the implications of platforms’ staggered rollout of innovative offerings 

alongside pre-existing options. The phased introduction of innovation raises important questions about 

potential spillover effects in regions where innovative services are not yet available. These effects could be 

positive, driven by factors such as enhanced brand equity, or negative, due to unmet expectations stemming 

from the unavailability of the innovation. These dynamics remain largely underexplored in the literature. 
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Our research advances this stream of literature by examining the impact of a platform’s phased introduction 

of innovative services, specifically robotaxi services, on consumer behavior across regions with varying 

levels of service availability. 

Furthermore, the phenomenon of multi-homing plays a crucial role in shaping platform competition. 

While existing research has examined its implications for competition and market dynamics, relatively little 

attention has been given to the role of innovative offerings. Landsman and Stremersch (2011) find that 

platform owners are incentivized to deter multi-homing, as it can reduce their market shares and sales. Li 

and Zhu (2021) highlight the challenges associated with such a strategy. They note that deterring multi-

homing on one side of a platform’s market (e.g., merchants) can unintentionally increase multi-homing 

(e.g., consumers) on the other side, potentially giving competitors an advantage. In addition, Tian et al. 

(2022) demonstrate that managing multi-homing becomes increasingly critical as platform compatibility 

improves, which can lower barriers to multi-homing and intensify competition among platforms. Our study 

contributes to the multi-homing perspective in the digital platforms literature by investigating the role of 

innovative offerings in shaping single-homing and multi-homing consumer behavior differently, along with 

the associated implications for platform competition. 

3. Research Context and Data 

We obtained our data from a leading Asian ride-hailing platform. The focal platform has its services 

covering over 140 cities, boasting over 800,000 registered drivers and exceeding 250 million registered 

consumers. Our dataset includes detailed consumer demographics and ride-hailing activities, such as ride 

searches and completed rides. 

In May 2022, the platform introduced the robotaxi service in a district of a major Chinese city without 

any pre-announcement, becoming the first ride-hailing platform to offer such a service in the region.4 Prior 

to this launch, consumers only had access to regular (human-driven) ride-hailing services. The launch of 

 
4 This case is similar to Uber’s integration of Waymo’s AV service within its app. A key distinction is that, while 

Waymo consumers can also book rides through Waymo’s own app, the robotaxi service is integrated directly into the 

focal ride-hailing platform, without a separate app dedicated to the robotaxi service. 
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the robotaxi service provided consumers with an additional option, priced in line with mainstream regular 

services similar to Uber X or Didi’s Kuaiche. After the launch, when using the platform’s app within the 

designated district, consumers have the option to request regular ride-hailing services, robotaxi services, or 

both simultaneously. If both options were chosen, a robotaxi or human-driven car would be assigned quasi-

randomly by the platform, which prioritizes platform-wide matching efficiency without considering 

consumers’ preferences, ride histories, or characteristics. 

To casually estimate the treatment effect of robotaxi services, our identification strategy exploits quasi-

random variation in the actual allocation of robotaxi services when consumers requested both robotaxi and 

regular services simultaneously in the district where the robotaxi service was launched. For these consumers, 

who are all interested in robotaxi services, the likelihood of robotaxi fulfillment is exogenous. Such 

exogeneity allows us to employ the DID model to estimate the impact of robotaxi service usage on their 

ride consumption. Specifically, this study focuses on consumers who were active both before and after the 

introduction of robotaxi services and have requested both robotaxi and regular services simultaneously.5 

We categorize these consumers into two groups: 1) the treatment group, including 5,813 consumers who 

have had at least one robotaxi ride within the study period, and 2) the control group, consisting of 9,407 

consumers who, despite requesting robotaxi services, have not received them.  

Compared to prior studies exploiting variation in self-selected treatment status (Xu et al. 2017, Narang 

and Shankar 2019, Son et al. 2023), our study focuses on the quasi-random variation in realized treatment 

status, which is beyond consumers’ control and thus exogenous to consumer characteristics, thereby 

mitigating the potential self-selection bias.6 To address the concern about the potential violation of the 

Stable Unit Treatment Value Assumption (SUTVA) (Rubin 1990), we also conducted robustness checks 

 
5 Note that we require consumers attempting to be treated to have requested both robotaxi and regular services  

simultaneously in all of their ride-hailing requests prior to receiving the treatment. However, once treated (i.e., after 

experiencing a robotaxi ride), we no longer require them to choose regular services simultaneously when requesting 

robotaxi service, as their service choices at that time may be influenced by the treatment effect.  
6 It is worth noting that any changes in supply would affect the treatment and control groups in the same way, given 

our identification approach, thus mitigating the concern that supply-side factors might compromise the validity of our 

findings. 



 

13 

 

using a group of consumers who have never requested robotaxi services in the designated district (Section 

7.1), as well as consumers in another comparable district (Section 7.2) as an alternative control group. 

Our observation window includes four months before and four months after the rollout of the robotaxi 

service, as illustrated in Figure 1. We analyze consumers’ ride-hailing activity at the weekly level, focusing 

on a consumer’s total number of rides completed on the platform per week, including rides requested with 

and without the robotaxi option. Additionally, since the consumers in our sample also travel to other 

districts where robotaxi service is unavailable, we also examine changes in their rides in robotaxi accessible 

and inaccessible areas separately.  

 

  
Figure 1. Observation Window of the Research Context 

The definitions and descriptive statistics of key variables are reported in Table 1. 

Table 1. Definitions and Descriptive Statistics of Variables 

 

Variable Description Obs Mean SD Min Max 

Dependent variable 

All Areas 

Total Rides The number of rides completed by a consumer 

each week 

513,433 0.78 1.97 0 36 

Regular Rides The number of rides completed by a consumer 

each week, considering only those ride 

requests where the robotaxi option was not 

selected 

513,433 0.70 1.88 0 36 

Accessible Areas       

Total Rides The number of rides completed by a consumer 

each week in robotaxi-accessible areas 

513,433 0.25 0.90 0 30 

Regular Rides The number of rides completed by a consumer 

each week in robotaxi-accessible areas, 

considering only those ride requests where the 

robotaxi option was not selected 

513,433 0.17 0.72 0 22 

Inaccessible Areas       

Total Rides The number of rides completed by a consumer 

each week in robotaxi-inaccessible areas 

513,433 0.53 1.66 0 36 

Focal variable 

Treatment A dummy variable that equals 1 for a 

consumer in the treatment group 

513,433 0.38 0.49 0 1 

After A dummy variable that equals 1 since the 

rollout of the robotaxi service 

513,433 0.53 0.50 0 1 
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4. Empirical Model 

Following prior studies (Xu et al. 2017, Narang and Shankar 2019, Son et al. 2023), we employ a DID 

model with consumer-level and week-level fixed effects to estimate the treatment effect of robotaxi 

services, as specified below: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡                                       (1) 

where 𝑦𝑖𝑡  represents the total number of rides completed by consumer 𝑖  in week 𝑡 . 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖  and 

𝐴𝑓𝑡𝑒𝑟𝑡 are defined in Table 1. 𝛼𝑖 denotes consumer-level fixed effects, capturing unobserved consumer 

heterogeneity. 𝛾𝑡 denotes week-level fixed effects, which account for the effect of time-varying factors 

(e.g., seasonality and exogenous temporal shocks). Note that the main effects of 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 and 𝐴𝑓𝑡𝑒𝑟𝑡 

are unidentifiable, as they are subsumed by 𝛼𝑖  and 𝛾𝑡 , respectively. 𝜀𝑖𝑡  is the idiosyncratic error term 

clustered at the consumer level to allow the errors within a consumer to be correlated.  

A key identifying assumption underlying the DID model is the parallel trends assumption (e.g., Autor 

2003, Angrist and Pischke 2009, Burtch et al. 2018). To test the parallel trends assumption in the pre-

treatment period (e.g., Autor 2003, Angrist and Pischke 2009, Burtch et al. 2018), we present the results of 

a dynamic DID specification through a lead and lag analysis. This is achieved by replacing the 𝐴𝑓𝑡𝑒𝑟𝑡 

dummy in Equation (1) with dummies representing the chronological distance in weeks from the treatment 

time, resulting in Equation (2): 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐷𝑖𝑡
−10 + 𝛽2 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐷𝑖𝑡

−9 + ⋯ + 𝛽19 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐷𝑖𝑡
+9 +

𝛽20 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐷𝑖𝑡
+10 + 𝛼𝑖 + 𝛾𝑡 + 𝜀𝑖𝑡                                                           (2)   

where 𝐷𝑖𝑡
−𝜏(𝐷𝑖𝑡

𝜏 ) equals 1 for consumer 𝑖 in the 𝜏-th week before (after) the treatment (𝜏 ∈ [−10, 10]). 

Following the extant literature (Autor 2003, Burtch et al. 2018), we designate the relative time dummy 

(𝐷𝑖𝑡
−1) as the omitted baseline. We expect that the coefficients for pre-treatment relative time dummies will 

not significantly deviate from zero, thereby supporting the validity of the parallel trends assumption. 
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5. Results 

5.1. Parallel Trend Test 

As the parallel trends assumption is a prerequisite for DID estimation, we begin by testing this 

assumption. As illustrated in Figure 2, all lead coefficients are not significantly different from zero, 

suggesting that the treatment and control groups follow a parallel trend before the robotaxi introduction. 

This increases our confidence in the validity of our DID design. Following the launch of robotaxi services, 

consumers in the treatment group completed significantly more rides than those in the control group over 

time, demonstrating a sustained positive impact of robotaxi services on ride-hailing consumption, unlikely 

attributable to a mere novelty effect. 

 
Figure 2. Parallel Trend Test  

Notes: a) The dashed vertical grey line denotes the week in which the platform officially launched the robotaxi 

service (May 2022). b) The colored dash horizontal line denotes the average of lead and lag coefficients. c) Error 

bars represent 95% confidence intervals.  

 

5.2. Main Results on Ride-Hailing   

The results of our DID estimation are summarized in Table 2. As presented in Column 1, consumers 

who have experienced robotaxi services see a 23.2% increase in their total weekly rides (calculated as 

0.175/0.753, where the coefficient is divided by the average number of completed rides in the control 

group). To investigate whether this increase is driven solely by consumers’ direct attempts to use robotaxi 

services, we further decompose their rides into those requesting the robotaxi option and those without 

requesting it. We then focus on the latter to estimate the spillover effect of the robotaxi rollout on the 
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demand exclusively designated for regular ride-hailing services. The analysis reported in Column 2 reveals 

that the robotaxi treatment not only boosts rides involving the robotaxi option but also leads to a significant 

10.2% rise in rides from requests that did not include robotaxis (referred to as “regular rides”) (calculated 

as 0.071/0.694). This increase accounts for roughly 40.6% of the overall rise in rides (calculated as 

0.071/0.175, considering that rides in the control groups are exclusively regular rides). Our findings suggest 

that the robotaxi experience does not cannibalize consumer demand for regular rides; instead, it has a 

complementary spillover effect that boosts regular ride-hailing consumption.7 Results are highly consistent 

when using consumers’ weekly expenditure as the alternative dependent variable (see Appendix A). 

Table 2. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

Dep. Var. Number of Completed Rides  

 Total Rides 

(1) 

Regular Rides 

(2) 

After × Treatment 0.175*** 0.071*** 
 (0.019) (0.017) 

Consumer FE Yes Yes 

Time FE Yes Yes 

Observations 513,433  513,433  
Number of Consumers 15,220 15,220 

R-squared 0.425 0.439 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

5.3. Heterogeneous Treatment Effect: Robotaxi-Accessible vs. Inaccessible Areas 

Having examined how the robotaxi experience affects a consumer’s overall rides and regular rides 

alone, we now investigate how this impact varies across different areas. Specifically, we assess whether the 

treatment effects differ between areas with and without access to these services, shedding light on how the 

availability of the innovative robotaxi service influences consumers’ ride-hailing consumption. 

Intriguingly, in Table 3, we observe a significant uptick in both total and regular rides within robotaxi-

accessible areas (Columns 1 and 2), contrasted with a significant decrease in (regular) rides outside these 

areas (Column 3). This heterogeneous treatment effect (HTE) between accessible and inaccessible areas, 

along with the positive spillover effect on regular rides alone, again suggests that our observed impact is 

 
7 We cannot perform a meaningful DID analysis on rides that specifically include the robotaxi option in their requests, 

as such rides only became available after the robotaxi service was launched. 
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not merely a “novelty effect.” 

Table 3. HTE on by Robotaxi-Accessible vs. Inaccessible Areas 

Dep. Var. Number of Completed Rides  

Area Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total (Regular) Rides 

(3) 

After × Treatment 0.209*** 0.105*** -0.033** 
 (0.010) (0.008) (0.015) 

Consumer FE Yes Yes Yes 

Time FE Yes Yes Yes 

Observations 513,433  513,433  513,433  
Number of Consumers 15,220 15,220 15,220 

R-squared 0.260 0.269 0.470 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

Moreover, the starkly contrasting effects observed in accessible and inaccessible areas suggest that 

different mechanisms may be at play, highlighting the potential complexity of the factors driving these 

positive and negative spillover effects. In particular, these effects likely result from a shift in consumer 

preferences for the ride-hailing category, the platform, or both. We will present additional analyses in 

Section 6 to investigate the potential mechanisms underlying these positive and negative spillover effects.  

6. Suggestive Evidence for Potential Underlying Mechanisms 

Our main results suggest that the robotaxi treatment has a positive spillover effect on consumers’ 

regular rides (where they did not request robotaxis) in robotaxi-accessible areas and a negative spillover 

effect in inaccessible areas. Two potential mechanisms may contribute to these spillover effects.  

First is the category expansion effect. Prior research in promotion contexts has found that advertising 

or platform recommendations can lead to increased consumption of related products or services in the same 

category (e.g., Liu et al. 2015, Li and Agarwal 2017, Liang et al. 2019). While such an effect has not been 

examined in the context of introducing an innovative offering (e.g., robotaxi), the robotaxi rollout can 

trigger a similar category expansion effect, resulting in a broader shift in consumer preferences toward the 

ride-hailing category as a whole, leading to increased usage.  

Another potential mechanism could be a shift in consumer preferences specifically toward the platform 

offering innovative services. Prior consumer behavior literature has found a positive impact of innovative 
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offerings on brand equity and consumer loyalty (e.g., Johnson et al. 2006, Xu et al. 2014, Wu 2014). By 

differentiating the platform through innovation, robotaxis have the potential to strengthen consumer loyalty 

and preference. Correspondingly, the availability of robotaxis might influence consumers’ preference for 

the focal platform, thereby impacting their ride-hailing consumption on this platform. However, this 

positive spillover effect may depend on the geographic availability of robotaxis and could weaken—or even 

reverse—in areas where they are not accessible, a possibility that warrants further empirical investigation. 

To deepen our understanding, we begin by identifying and differentiating between single-homing and 

multi-homing consumers in Section 6.1 by leveraging the exceptional granularity and comprehensiveness 

of our proprietary dataset. This is followed by the HTE analysis in Section 6.2. Typically, single-homing 

consumers’ consumption is based primarily on preferences for ride-hailing services, while multi-homing 

consumers’ consumption on the focal platform is influenced by their preferences for both this service 

category and the platform. Disentangling their behaviors informs how robotaxi services reshape consumer 

preferences. Following this, we examine the validity of these proposed mechanisms in Sections 6.3 and 6.4, 

respectively. 

6.1. Identification of Single-Homing and Multi-Homing Consumers 

Notably, our data captures all ride-hailing services fulfilled by the focal platform, which can be 

requested through two main channels: the platform’s own app or Gaode, a dominant ride-hailing aggregator 

in China. Gaode embeds its aggregate ride-hailing request services within its widely used mapping and 

navigation app (i.e., Gaode Maps). Through Gaode, consumers can simultaneously request ride-hailing 

services from most major ride-hailing platforms in China, including our focal platform. The platform 

assigned to fulfill the ride request is automatically decided by Gaode based on the estimated price and 

waiting time. The robotaxi service can only be requested on the platform’s own app.  

Building on existing platform studies (Li and Zhu 2021, Farronato et al. 2024) and recognizing the 

potential differences in consumption patterns between consumers who use Gaode for multi-homing and 

those who never use it, we managed to cross-reference consumers’ ride requests made via both platforms 
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before the rollout of robotaxis, using their mobile phone numbers.8 We then categorized them into three 

groups: 1) multi-homing consumers, who ordered rides from the focal platform via both its app and the 

aggregator; 2) single-homing consumers, who appeared to order rides from the focal platform only via its 

app; and 3) an unknown group, whose multi-homing behavior could not be determined due to limitations 

in data matching. Given the high uncertainty among consumers in the unknown group, we exclude this 

group when examining how robotaxi usage affects single-homing and multi-homing consumers 

differently.9 It is worth noting that our classification method yields a conservative sample of multi-homing 

consumers due to constraints in data matching and may over-identify single-homing consumers as some of 

them might use other ride-hailing aggregator services not captured by our data sources. This presents 

challenges in discerning variations in consumer behavior between single-homing and multi-homing 

consumers, thus making our estimated HTE in Section 6.2 a conservative estimate of the actual difference 

in effects. 

6.2. Heterogeneous Treatment Effect: Single-Homing vs. Multi-Homing Consumers 

To examine the heterogeneity in the treatment effect of robotaxi services across single-homing and 

multi-homing consumers, we interact 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡  with the consumer-level moderator 

𝑀𝑢𝑙𝑡𝑖ℎ𝑜𝑚𝑖𝑛𝑔𝑖, which indicates whether consumer 𝑖 is in the multi-homing group, in Equation (4) below: 

𝑦𝑖𝑡 = 𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝐴𝑓𝑡𝑒𝑟𝑡 × 𝑀𝑢𝑙𝑡𝑖ℎ𝑜𝑚𝑖𝑛𝑔𝑖 

+𝛼𝑖 + 𝛾𝑡 + 𝜃𝑖𝑡 + 𝜀𝑖𝑡                                                                                            (4) 

Similar to Section 5.4, considering the potential differential time trends across consumer subgroups, 

 
8 Due to the sensitivity of the mobile phone data, the consumer matching process was conducted by the focal platform’s 

employees using all ride data prior to the rollout of robotaxis, which is not limited to the observation window of our 

analysis. Because only the first four and last four digits of the mobile phone numbers are provided by the aggregator, 

the employees first compare ride orders from the platform’s own app and the aggregator by matching mobile phone 

numbers that share the same first four and last four digits. If a consumer’s mobile number from requests made via the 

platform’s app does not have any matches in the aggregator’s data, they are classified as single-homing. For cases 

where mobile numbers appear in both datasets, accounts are identified as belonging to the same individual if (1) their 

mobile numbers share the same first and last four digits, and (2) they have at least one pair of corresponding ride 

requests across platforms that occur nearly simultaneously with identical origins and destinations; otherwise, accounts 

are classified into an unknown group. 
9 Results are highly consistent when the unknown group is included as a separate group in our analysis (see Appendix 

B). 
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we allow the week-level fixed effects to vary across single-homing and multi-homing consumers by 

interacting calendar week dummies with two subgroup dummies, captured by 𝜃𝑖𝑡, thereby subsuming the 

interaction term 𝐴𝑓𝑡𝑒𝑟𝑡 × 𝑀𝑢𝑙𝑡𝑖ℎ𝑜𝑚𝑖𝑛𝑔𝑖. 

The HTE results reported in Table 4 reveal three key observations. First, there are no significant 

differences in the treatment effect on total rides between single-homing and multi-homing consumers. 

However, notable heterogeneity emerges when analyzing rides in different areas. Second, the treatment 

effect on rides within robotaxi-accessible areas is positive for both consumer types, with a more pronounced 

effect observed among multi-homing consumers. For single-homing consumers, the positive effect 

underscores an enhancement in their general preference for ride-hailing services, supporting a category 

expansion effect. Additionally, the larger increase in rides among multi-homing consumers implies that 

robotaxi services not only boost their general preference for ride-hailing but also enhance their preference 

for the focal platform in accessible areas, supporting an additional platform preference shift.  

Table 4. HTE on Single-homing vs. Multi-homing Consumers 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.155*** 0.076*** 0.159*** 0.080*** -0.004 
 (0.029) (0.027) (0.014) (0.011) (0.024) 

After × Treatment × Multihoming -0.042 -0.073 0.097***  0.066** -0.139** 
 (0.068) (0.064) (0.037) (0.029)   (0.055) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 249,881 249,881 249,881 249,881 249,881 

Number of Consumers 7,433 7,433 7,433 7,433 7,433 

R-squared 0.449 0.464 0.252 0.261 0.490 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown 

group whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table 2. Results 

are highly consistent when the unknown group is included (see Appendix B). c) Results are highly consistent if we 

control for overall time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group 

and Time FE for the multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 

 

Finally, the treatment effect on single-homing consumers for rides outside the district is insignificant 

in contrast to a significantly negative effect on multi-homing consumers (coefficient = -0.143, p-value < 

0.01). This implies that while the absence of robotaxi services does not affect consumers’ overall preference 
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for ride-hailing, it considerably reduces multi-homing consumers’ preference for the specific platform in 

inaccessible areas. Specifically, for consumers who have used robotaxi services, such services can become 

a “phantom decoy” (an attractive but unavailable option) (Farquhar and Anthony 1993) in those inaccessible 

areas. Its unavailability can evoke a sense of perceived loss, akin to the endowment effect (Trueblood and 

Pettibone 2017), which may result in a decreased preference for the specific platform compared to other 

platforms with consistent offerings across areas. 

6.3. Category Expansion among Consumers 

To assess whether and to what extent consumers expand their ride-hailing category consumption, we 

consider two types of expansion: temporal expansion (increasing usage across more days) and spatial 

expansion (using ride-hailing services in more locations). First, regarding temporal expansion, we use the 

number of days per week on which a consumer uses ride-hailing services provided by the focal platform as 

the dependent variable and rerun the DID model. The results in Table 5 indicate that the robotaxi experience 

significantly increases the number of ride-hailing usage days per week for single-homing consumers, but 

only in accessible areas. This finding supports the proposed category expansion effect on their ride-hailing 

consumption in accessible areas.  

Table 5. HTE on Consumption Days among Single-homing vs. Multi-homing Consumers 

Dep. Var. Number of Days with Ride-hailing Consumption per Week 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.095*** 0.052*** 0.106*** 0.061*** -0.011 
 (0.016) (0.015) (0.010) (0.008) (0.013) 

After × Treatment × Multihoming 0.013 -0.008 0.076***  0.055*** -0.063** 
 (0.038) (0.036) (0.025) (0.021)   (0.029) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 249,881 249,881 249,881 249,881 249,881 

Number of Consumers 7,433 7,433 7,433 7,433 7,433 

R-squared 0.442 0.457 0.274 0.281 0.488 

Notes: a) In this analysis, we have excluded the unknown group whose multi-homing behavior is undetermined, 

resulting in a reduced sample size compared to Table 2. Results are highly consistent when the unknown group is 

included. b) Results are highly consistent if we control for overall time FE instead of subgroup-specific time trends 

(captured by Time FE for the singlehoming group and Time FE for the multihoming group). c) Robust standard errors 

clustered at the consumer level. d) * p<0.1, ** p<0.05, *** p<0.01. 
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Compared to single-homing consumers, the positive treatment effect on usage days is larger in 

accessible areas but turns significantly negative in inaccessible areas among multi-homing consumers 

(coefficient = -0.074, p-value < 0.01). This is likely driven by the additional effect of platform preference 

shift among multi-homing consumers, which will be further examined in the next subsection. 

Second, with respect to spatial expansion, we conduct a similar analysis using the number of distinct 

pick-up hexagons (the platform’s unit for indexing equal-sized areas)10 per week in which a consumer uses 

ride-hailing services provided by the platform as the dependent variable. As delineated in Table 6, we 

consistently find that the robotaxi experience significantly expands single-homing consumers’ ride-hailing 

consumption spatially within accessible areas, further supporting the proposed category expansion effect. 

Moreover, the HTE analysis regarding multi-homing consumers also indicates a similar platform preference 

switching pattern, as observed in Table 5. 

Table 6. HTE on Location Diversity among Single-homing vs. Multi-homing Consumers 

Dep. Var. Number of Distinct Departure Hexagons per Week 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.084*** 0.054*** 0.072*** 0.042*** 0.012 
 (0.015) (0.014) (0.007) (0.006) (0.013) 

After × Treatment × Multihoming -0.011 -0.026 0.061***  0.046*** -0.072** 
 (0.034) (0.033) (0.016) (0.014)   (0.029) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 249,881 249,881 249,881 249,881 249,881 

Number of Consumers 7,433 7,433 7,433 7,433 7,433 

R-squared 0.398 0.414 0.204 0.211 0.446 

Notes: a) In this analysis, we have excluded the unknown group whose multi-homing behavior is undetermined, 

resulting in a reduced sample size compared to Table 2. Results are highly consistent when the unknown group is 

included. b) Results are highly consistent if we control for overall time FE instead of subgroup-specific time trends 

(captured by Time FE for the singlehoming group and Time FE for the multihoming group). c) Robust standard errors 

clustered at the consumer level. d) * p<0.1, ** p<0.05, *** p<0.01. 

 

6.4. Platform Preference Shift among Multi-homing Consumers 

To provide more direct evidence of the shift in platform preference among multi-homing consumers, 

 
10 Mirroring Uber’s approach, this platform employs a hexagonal hierarchical spatial indexing system and divides 

cities into equally sized hexagons. Since most rides occur within the city to which the robotaxi-accessible areas belong, 

we focus solely on considering and measuring their distinct pick-up hexagons within that specific city and estimate 

the treatment effect accordingly.  
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we examine the treatment effect on their platform selection when requesting ride-hailing services. As 

outlined in Section 6.1, multi-homing consumers can request services from the focal platform either directly 

via the platform’s app or through the aggregator, which then sends ride requests to multiple platforms 

simultaneously. Since ride requests through the aggregator are not designated to be fulfilled by the focal 

platform and reflect a less committed relationship with the platform brand, we use the ratio of regular ride 

requests via the platform’s own app to the total regular ride requests across both platforms as a proxy for 

consumers’ preference for the focal platform. 

The results in Table 7 reveal distinct patterns in multi-homing consumers’ ride-hailing behavior across 

different areas: the proportion of regular ride requests via the platform’s own app increases in accessible 

areas (Column 2) and decreases in other areas (Column 3). This aligns with our earlier findings that 

introducing innovative services in certain areas can shift multi-homing consumers’ preferences towards the 

focal platform in those areas, whereas their unavailability in other areas may lead to reduced platform 

preference compared to other platforms. 

Table 7. Treatment Effect on Ratio of Rides via the Platform’s Own App 

Dep. Var. % of Ride Requests via Its Own App 

Area 
All Areas 

(1) 

Accessible Areas 

(2) 

Inaccessible Areas 

(3) 

After × Treatment -0.006 0.062*** -0.045*** 
 (0.012) (0.021) (0.011) 

Consumer FE Yes Yes Yes 

Time FE Yes Yes Yes 

Observations 30,195 13,930 24,647 

Number of Consumers 2,008 2,008 2,008 

R-squared 0.552 0.642 0.681 

Notes: a) The analysis is conducted on the multi-homing consumers only. b) Robust standard errors clustered at the 

consumer level. c) Observations are removed for a consumer in a week with no requests. d) * p<0.1, ** p<0.05, *** 

p<0.01. 

 

Collectively, our findings indicate that the observed treatment effects across different regions and 

among single-homing versus multi-homing consumers may be jointly influenced by both the category 

expansion effect and the platform preference shift effect. The positive spillover observed in regular ride-

hailing services within robotaxi-accessible areas, particularly among single-homing consumers, likely 

stems from a category expansion effect, supporting an increased preference for the ride-hailing category as 
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a whole. In contrast, for multi-homing consumers, the heightened positive spillover in accessible areas, 

coupled with the negative spillover in inaccessible areas, suggests a shift in platform preference. 

Specifically, there is an increased platform preference in areas with greater accessibility to robotaxis and a 

decreased preference in areas lacking such accessibility. 

7. Robustness Checks 

We conduct a series of robustness checks to validate the reliability of our findings, as summarized in 

Table 8.  

Table 8. Summary of Robustness Checks 

Robustness Check Objective Section 

Alternative Treatment and Control Groups 

Alternative control group of consumers 

without robotaxi requests 

Alleviating the concern of potential “contamination” 

in the control group 

7.1 

Alternative control group from a district 

without robotaxi services  

Alleviating the concern of potential violation of 

SUTVA 

7.2 

Expanding treatment group by including 

those consumers who have exclusively 

requested robotaxi services before being 

first served by a robotaxi 

Evaluating the generalizability to a broader consumer 

base interested in robotaxi services 

Appendix C 

Alternative DID Designs  

Staggered DID design (based on the timing 

of consumers’ first robotaxi experience) 

Evaluating the robustness of observed treatment 

effects to an alternative DID design  

7.3 

HTE-robust staggered DID design Alleviating the concern of potential bias in staggered 

DID estimates with two-way fixed effects 

7.4 

Falsification test using non-treated 

observations 

Safeguarding against spurious causality 7.5 

Other Robustness Checks 

Placebo test with random treatment 

assignment 

Safeguarding against spurious causality 7.6 

Log-transformation of dependent variables Demonstrating result robustness to alternative model 

specification  

Appendix D 

Alternative dependent variable  Demonstrating result robustness to alternative 

measure 

Appendix A 

 

First, we test the robustness of our results to alternative treatment and control group definitions. This 

includes using two different control groups: those who have never requested robotaxi services (see Section 
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7.1) and those from a comparable district without robotaxi services (see Section 7.2). Additionally, we 

refine the treatment group to further include consumers who have exclusively requested robotaxi services 

before their first experience with a robotaxi (see Appendix C). 

Second, we perform several robustness checks with alternative DID designs to address concerns about 

spurious causality. We first apply a staggered DID approach, using the timing of consumers’ first robotaxi 

experience as the treatment time (see Section 7.3), rather than relying on a static DID design. We then 

demonstrate that our DID estimates remain robust to potential biases associated with the two-way-fixed-

effect (TWFE) staggered DID design (see Section 7.4). To further validate that the effects are driven by the 

actual treatment, we conduct two sets of falsification tests (see Section 7.5). 

Furthermore, we conduct additional robustness checks to further validate our findings, including a 

placebo test (see Section 7.6), the use of log-transformation to dependent variables (see Appendix D), and 

analysis with an alternative dependent variable (see Appendix A). In all the robustness checks, the results 

remain highly consistent. 

7.1. An Alternative Control Group of Consumers without Robotaxi Requests 

While the DID design in our main analysis, which leverages the quasi-random variation in the 

treatment assignment from the platform’s car dispatch algorithm, effectively mitigates self-selection 

concerns, there remains a potential concern about “contamination” in the control group. Specifically, this 

concern arises if consumers in the control group, who requested but were not served by robotaxis, might 

still be indirectly affected by the treatment. 

To alleviate this concern, we employ an alternative control group comprising consumers who have 

never requested robotaxi services. To better align the treatment and control groups, we retain consumers 

who began using the platform prior to the introduction of robotaxi services and had requested at least one 

(regular) ride in the accessible area after the introduction of robotaxi services. To further strengthen the 

comparability between the two groups, we apply the Coarsened Exact Matching (CEM) method (Blackwell 

et al. 2009) for one-to-one matching without replacement. This process results in 5,252 matched pairs of 

treated and control consumers. Appendix E details the covariates used in the matching process, along with 
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balance check results, which indicate that the matched sample is balanced across all covariates.  

The results, presented in Tables 9 and 10, consistently indicate a positive spillover effect on regular 

rides in robotaxi-accessible areas for both single-homing and multi-homing consumers and a negative 

spillover effect for multi-homing consumers only in inaccessible areas (coefficient = -0.113, p-value < 0.05).  

Table 9. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

(Using Consumers Never Requesting Robotaxi as Control) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

After × Treatment 0.227*** 0.017 0.271*** 0.061*** -0.043*** 
 (0.020) (0.019) (0.011) (0.009) (0.015) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 355,702  355,702  355,702  355,702  355,702  
Number of Consumers 10,504 10,504 10,504 10,504 10,504 

R-squared 0.357 0.365 0.259 0.259 0.401 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

Table 10. HTE on Single-homing vs. Multi-homing Consumers  

(Using Consumers Never Requesting Robotaxi as Control) 

Dep. Var. Number of Completed Rides 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.214*** 0.048* 0.208*** 0.042*** 0.006 
 (0.029) (0.027) (0.016) (0.013) (0.023) 

After × Treatment × Multihoming 0.015 -0.059 0.134***  0.059* -0.119** 
 (0.072) (0.066) (0.042) (0.034)   (0.053) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 167,195 167,195 167,195 167,195 167,195 

Number of Consumers 4,944 4,944 4,944 4,944 4,944 

R-squared 0.353 0.360 0.247 0.243 0.391 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown 

group whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table 9. Results 

are highly consistent when the unknown group is included. c) Results are highly consistent if we control for overall 

time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time FE for 

the multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 

 
7.2. An Alternative Control Group from a Different District  

To address potential violations of SUTVA among treatment and control consumers in the same 

robotaxi-accessible district, we utilize an alternative control group comprising consumers from a 

counterfactual district that is highly comparable to the robotaxi-accessible district in terms of population 
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and economic characteristics.11 This alternative district is carefully selected from a different city in the same 

province.12  

Table 11. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

(An Alternative Control Group from a Different District) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

After × Treatment 0.321*** 0.112*** 0.342*** 0.132*** -0.021 
 (0.019) (0.018) (0.010) (0.008) (0.015) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 379,948  379,948  379,948  379,948  379,948  
Number of Consumers 11,132 11,132 11,132 11,132 11,132 

R-squared 0.361 0.369 0.238 0.228 0.404 

Notes: a) In the control group, “accessible” and “inaccessible” areas are defined as the counterfactual district and all 

areas outside of this district, respectively. b) Although the overall spillover effect on consumers’ regular rides in 

inaccessible areas is not significantly negative, we consistently observe a significant negative spillover effect among 

multi-homing consumers in Table 13. As the proportion of multi-homing consumers may vary across districts, the 

overall spatial spillover effect could differ accordingly. c) Robust standard errors clustered at the consumer level. d) 

* p<0.1, ** p<0.05, *** p<0.01. 

 

Table 12. HTE on Single-homing vs. Multi-homing Consumers  

(An Alternative Control Group from a Different District) 

Dep. Var. Number of Completed Rides 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.243*** 0.079*** 0.237*** 0.073*** 0.006 
 (0.027) (0.025) (0.015) (0.012) (0.021) 

After × Treatment × Multihoming 0.079** 0.012 0.129***  0.062*** -0.050* 
 (0.037) (0.035) (0.021) (0.016)   (0.030) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 320,360 167,195 167,195 167,195 167,195 

Number of Consumers 9,398 9,398 9,398 9,398 9,398 

R-squared 0.354 0.363 0.235 0.230 0.398 

Notes: a) In the control group, “accessible” and “inaccessible” areas are defined as the counterfactual district and all 

areas outside of this district, respectively. b) In this analysis, we have excluded the unknown group whose multi-

homing behavior is undetermined, resulting in a reduced sample size compared to Table 11. Results are highly 

consistent when the unknown group is included. c) Results are highly consistent if we control for overall time FE 

instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time FE for the 

multihoming group). d) Robust standard errors clustered at the consumer level. e) * p<0.1, ** p<0.05, *** p<0.01. 

 

 
11 Similar to Section 7.1, we align the treatment and control groups by retaining consumers who begun using the 

platform before the introduction of robotaxi services and had requested at least one (regular) ride in their respective 

districts after May 2022. Additionally, we exclude all consumers in the counterfactual district who had taken any rides 

in the focal district where the robotaxi service was rolled out. 
12 Based on the most recent Census and government reports relevant to our observation period, the focal district and 

the counterfactual district have similar population sizes and comparable GDP figures. 
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To ensure that the treatment and control groups are comparable, we also apply the CEM method for 

one-to-one matching, similar to our approach in Section 7.1, and obtain 5,566 pairs of matched treated and 

control consumers. Detailed balance check results are reported in Appendix F, confirming that the matched 

sample is highly comparable across all covariates. The results in Tables 11-12 confirm the robustness of 

our main results. 

7.3. Cohort-based Staggered DID Design  

In addition to the static DID design, we implement a cohort-based staggered DID design. 

Specifically, each consumer in the treatment group is matched with a control group cohort who 

has similar characteristics, comparable prior ride-hailing behavior, and requested robotaxi services 

in the same week, with the treated consumer fulfilled by the robotaxi service and the matched 

control cohort receiving regular ride-hailing services. This process results in 4,433 matched pairs 

of treated and control consumers. The balance checks detailed in Appendix G verify the 

comparability of the matched sample across all covariates.  

In the staggered DID model, we define the treatment time as the actual timing of each treated 

consumer’s first experience with robotaxi rides. Table 13 presents consistent evidence of the 

overall positive treatment effect on consumers’ total ride-hailing consumption, along with the 

differential spillover effects in accessible and inaccessible areas, reinforcing confidence in our 

findings. Additionally, Table 14 corroborates these results by demonstrating a similar HTE pattern. 

Table 13. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption (Staggered DID) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

Treated 0.250*** 0.105*** 0.290*** 0.146*** -0.041** 
 (0.026) (0.022) (0.017) (0.012) (0.017) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 299,369 299,369 299,369 299,369 299,369 

Number of Consumers 8,866 8,866 8,866 8,866 8,866 

R-squared 0.331 0.316 0.265 0.189 0.350 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 
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Table 14. HTE on Single-homing vs. Multi-homing Consumers (Staggered DID) 

Dep. Var. Number of Completed Rides 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

Treated 0.226*** 0.106*** 0.233*** 0.113*** -0.007 
 (0.038) (0.033) (0.023) (0.016) (0.026) 

Treated × Multihoming -0.036 -0.071 0.142**  0.108** -0.178** 
 (0.114) (0.103) (0.070) (0.055)   (0.083) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 140,344 140,344 140,344 140,344 140,344 

Number of Consumers 4,166 4,166 4,166 4,166 4,166 

R-squared 0.342 0.330 0.258 0.176 0.358 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown 

group whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table 13. Results 

are highly consistent when the unknown group is included. c) Results are highly consistent if we control for overall 

time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time FE for 

the multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 

 

7.4. HTE-robust Staggered DID Design 

In the above cohort-based staggered DID setting, the TWFE DID estimator is a weighted average of 

three types of DID comparisons (Goodman-Bacon 2021): (1) treated vs. never-treated, (2) earlier-treated 

vs. later-treated, and (3) later-treated vs. earlier-treated. The third type becomes problematic if there exists 

significant heterogeneity in treatment effects over time or across cohorts (Borusyak et al. 2021, Callaway 

and Sant’Anna 2021). Through decomposition, we find that a large portion (77.8%) of the estimated 

treatment effects arises from treated versus never-treated comparisons, while the proportion of potentially 

problematic third-type DID comparisons is relatively low, at only 5.4%.  

Despite this small proportion, we apply the BJS estimator (Borusyak et al. 2021) to the cohort-based 

matched sample from Section 7.3 to address this potential concern. To provide an estimator robust to HTE 

across time periods and cohorts, this method uses pre-treatment observations to impute the counterfactual 

outcomes for treated units. This avoids the negative weight issue, thereby reducing bias. As shown in Table 

15, the treatment effects estimated using the BJS estimator align with our main findings, indicating that our 

findings are robust to TWFE-related biases in staggered DID models. 
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Table 15. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption  

Using the HTE-Robust Staggered DID Estimator 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

Treated 0.339*** 0.116*** 0.377*** 0.154*** -0.037** 
 (0.025) (0.021) (0.018) (0.013) (0.015) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 299,369 299,369 299,369 299,369 299,369 

Number of Consumers 8,866 8,866 8,866 8,866 8,866 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

7.5. Falsification Test Using Non-Treated Observations 

Our primary identification strategy uses the introduction timing of robotaxi services as the treatment 

timing, providing a conservative estimate of the treatment effect of actual robotaxi service adoption on ride-

hailing consumer behavior. To further validate that the effects are driven by the actual treatment, we conduct 

two sets of falsification tests. First, we exclude observations of treated consumers after their actual treatment 

timing. The results, presented in Table 16, Columns 1-3, show no significant effects on their regular rides, 

both in accessible and inaccessible areas, confirming that the observed effects are indeed driven by the 

actual treatment. Second, we exclude observations of all consumers in our sample after their first request 

for robotaxi services. The results, shown in Table 16, Columns 4-6, also indicate no significant effects on 

their regular rides in both accessible and inaccessible areas. This further strengthens our confidence that the 

results are driven by the robotaxi treatment. 

Table 16. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

Dep. Var. Number of Completed Regular Rides  

Observation Window Before the Actual Treatment Before the First Robotaxi Request 

Area All Areas 

(1) 

Accessible Areas 

(2) 

Inaccessible Areas 

(3) 

All Areas 

(4) 

Accessible Areas 

(5) 

Inaccessible Areas 

(6) 

After × Treatment -0.019 0.005 -0.024 -0.008 0.009 -0.017 
 (0.016) (0.006) (0.014) (0.016) (0.006) (0.015) 

Consumer FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 458,074 458,074 458,074 339,594 339,594 339,594 

Number of Consumers 15,220 15,220 15,220 15,220 15,220 15,220 

R-squared 0.453 0.267 0.481 0.481 0.301 0.507 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 
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7.6. Placebo Test 

Following the existing literature (Abadie et al. 2015, Burtch et al. 2018), we conduct a placebo test by 

randomly reassigning consumers into the treatment and control groups, and subsequently re-run our DID 

models with this new randomized treatment variable to assess placebo effects. We repeat this permutation 

procedure 1,000 times and capture the distribution of placebo effects. We then compare the observed 

treatment effect of the robotaxi service from our main results with the distribution of placebo effects to 

determine its significance. 

As shown in Table 17, the mean of placebo effects is close to zero, and the probability of observing a 

treatment effect of a similar magnitude in our main analysis by chance is less than 0.2%. This indicates that 

our results are very unlikely to be driven by a spurious causal relationship. 

Table 17. Results of the Placebo Test 

Dep. Var. Number of Completed Rides  
 All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

µ of placebo effects  0.001 -0.000 0.000 -0.000 0.000 

σ of placebo effects 0.018 0.016 0.009 0.007 0.014 

Actual treatment effect  0.175*** 0.071*** 0.209*** 0.105*** -0.033** 

Replications 1,000 1,000 1,000 1,000 1,000 

z-score -9.657 -4.394 -22.782 -15.562 2.381 

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.015 

 

7.7. Additional Robustness Checks 

We conduct additional robustness checks to further validate our findings. First, we consider an 

alternative treatment group by including consumers who exclusively requested robotaxi services in our 

sample to enhance the generalizability of our findings to a broader group of consumers interested in robotaxi 

services. We then rerun our analysis, finding that the results remain consistent, as reported in Appendix C. 

Second, we apply a log transformation to the dependent variables to address potential skewness and ensure 

that our results hold under alternative specifications. Detailed results can be found in Appendix D. Third, 

we perform analyses using an alternative dependent variable to demonstrate the robustness of our findings. 

Results are available in Appendix A. Results from all these robustness checks remain consistent, reinforcing 

the validity of our main findings. 
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8. Discussion and Conclusion 

The impact of introducing automation-driven innovative technologies on consumer demand has been 

a relatively unexplored area in the existing literature on AI and automation. In this paper, we investigate 

one such emerging technology—robotaxi—which is expected to become a core component of ride-hailing 

services13 and is currently being experimentally introduced in various cities by pioneering companies.14  

Leveraging the quasi-random allocation of robotaxi services to consumers when they request robotaxi 

services, we employ a DID model to estimate the causal impact of robotaxi experience on consumers’ ride-

hailing consumption behavior. Our analysis reveals that the robotaxi experience can significantly increase 

a consumer’s total weekly rides on the platform by 23.2%. Notably, this growth in demand is not 

accompanied by cannibalization of the consumer’s regular ride-hailing usage. Instead, we observe a positive 

spillover effect on regular ride-hailing services in robotaxi-accessible areas. This demand growth and 

spillover effect are evident among both multi-homing and single-homing consumers, suggesting a possible 

category expansion effect. We further find that multi-homing consumers experience a more pronounced 

increase in demand in robotaxi-accessible areas but significantly reduce their usage of the focal platform in 

inaccessible areas. This pattern aligns with their shift in platform preference, evidenced by their greater 

reliance on the focal platform’s own app (as opposed to an aggregator) for regular ride requests in robotaxi-

accessible areas, and a decreased preference in inaccessible areas. These findings highlight the differential 

impacts of robotaxi, as an automation-driven innovative service on single-homing and multi-homing 

consumers across regions, which contributes to a deeper understanding of the broader potential of 

automation to reshape consumer preferences and platform competition.  

Our study underscores the often-overlooked potential impact of automation innovations on consumer 

demand. Existing literature has predominantly focused on the supply-side effects of automation (e.g., Autor 

 
13 https://www.bloomberg.com/news/articles/2024-11-17/trump-team-said-to-want-to-ease-us-rules-for-self-driving-

cars 
14 https://waymo.com/blog/2024/09/waymo-and-uber-expand-partnership/ and 

https://techcrunch.com/2024/11/06/lyft-partners-with-may-mobility-mobileye-to-bring-autonomous-vehicles-to-the-

app/ 

https://waymo.com/blog/2024/09/waymo-and-uber-expand-partnership/
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2015, Acemoglu and Restrepo 2018, Brynjolfsson and Mitchell 2017), such as cost savings, productivity 

gains, job displacement, and wage inequality, typically assuming that the demand-side behavior remains 

unaffected. Under this assumption, services enabled by automation are generally expected to cannibalize 

those traditionally provided by human workers. Our findings challenge this expectation, demonstrating that 

automation, in the form of robotaxis, may not only avoid cannibalization but also lead to an expansion in a 

consumer’s demand. 

Our study suggests significant managerial implications for technology companies offering innovative 

services such as robotaxis. For one thing, introducing innovative services may not necessarily cannibalize 

the demand for existing services but can increase consumer preference for the product category, thereby 

imposing a positive spillover effect and boosting overall demand. Our study context mirrors the scenario 

where Uber partners with Waymo to offer robotaxi services to consumers of the Uber app. As a pioneer in 

rolling out robotaxi services into a mainstream ride-hailing platform, Uber’s strategy could potentially boost 

consumers’ consumption across all ride-hailing services, including regular rides. Moreover, our findings 

reveal that during the four-month post-treatment period, consumers exhibit a tendency to develop habitual 

consumption patterns, expanding their ride-hailing usage across both temporal and spatial dimensions. 

These insights offer valuable guidance for platform growth strategies, suggesting that platforms can drive 

sustained consumer engagement and increase consumption by leveraging in-house innovations or by 

forming partnerships with innovative startups to introduce novel offerings. 

For another, innovative services can attract multi-homing consumers by serving as a differentiating 

factor in competition with other platforms, thereby enhancing their preference for the focal platform. 

However, for markets where a large proportion of consumers are multi-homing, staggered deployment of 

innovative services in certain areas may backfire in regions without access to these services. Companies 

must therefore strategically manage the expansion and communication of their service rollout to retain 

consumer preference and mitigate unintended negative spillover effects to underserved areas. Our findings 

thus provide valuable insights for ride-hailing platforms as well as other stakeholders navigating the 

evolving landscape of AI-driven services. 
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Our study is not without limitations. First, we assess the impact of the robotaxi service on consumer 

ride-hailing consumption and find that the treatment effect can last up to four months post-treatment, which, 

along with the heterogenous spillover effects, alleviate concerns about a “novelty effect.” However, this 

period may be insufficient to capture the long-term impact on consumer retention and changes in 

commuting habits. Future research looking into the long-term impact would be valuable if such data is 

available. Second, we have done our best to cross-reference consumer identities across the partner 

platform’s own app and a leading ride-hailing aggregator with the most granular data available (i.e., 

partially masked mobile phone numbers and ride requests). However, our measurement of single-homing 

and multi-homing variables is not perfect, leaving a group of consumers unclassified. Moreover, our 

analysis is limited to multi-homing behaviors between the platform’s own app and a leading aggregator, 

which could make our estimated HTE a conservative estimate of the actual difference in effects. While our 

results are robust to the inclusion of the unknown group in the analysis, future research could further explore 

the potential differential treatment effects among consumers with varying types of multi-homing behaviors. 

Third, while our data can reveal the treatment effect of the robotaxi service on consumers’ actual ride-

hailing consumption behavior, we can only provide suggestive evidence for the proposed mechanisms 

behind the observed impact, as with most studies based on archival data. Future studies could consider 

leveraging different methodologies, such as surveys or interviews, and richer data to further explore how 

this innovative service influences consumers’ perceptions of various commuting options (e.g., regular ride-

hailing, robotaxis, buses) and their attitudes toward the platform, particularly when the availability of 

robotaxis varies. Fourth, we acknowledge that the size of the treatment effects of robotaxis may vary 

depending on their supply. In our study, the supply of robotaxis was constrained and remained relatively 

stable over time, limiting our ability to examine the potential moderating effect of robotaxi availability. Our 

findings suggest that robotaxis could have a positive spillover effect on demand for regular rides in areas 

where robotaxis are accessible, while potentially causing unintended negative effects in areas without 

access. Although the effect size may vary, we believe that the observed patterns of category expansion and 

platform preference shift likely transcend our specific context. Future studies should continue to investigate 
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how the supply of robotaxis influences different aspects of treatment effects on consumer demand for 

various ride-hailing options across different areas. 

Overall, we hope that our study serves as a pioneering effort that inspires further research into the 

broader and exciting economic and social implications of robotaxis and AVs broadly. Our findings can also 

assist practitioners in making more informed decisions and refining their strategies for innovative offerings 

powered by AI. 
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Appendix A. Alternative Dependent Variable 

Our findings remain consistent when we use an alternative dependent variable, i.e., consumers’ total 

expenditure, as detailed in Tables A1 and A2. 

Table A1. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

(DV: Weekly Expenditure) 

Dep. Var. Weekly Expenditure 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

After × Treatment 2.761*** 1.487*** 3.379*** 1.849*** -0.618* 
 (0.455) (0.431) (0.206) (0.168) (0.363) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 513,433  513,433  513,433  513,433  513,433  
Number of Consumers 15,220 15,220 15,220 15,220 15,220 

R-squared 0.393 0.401 0.231 0.229 0.427 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

Table A2. HTE on Single-homing vs. Multi-homing Consumers (DV: Weekly Expenditure) 

Dep. Var. Weekly Expenditure 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 2.436*** 1.224* 2.635*** 1.423*** -0.199 
 (0.754) (0.723) (0.307) (0.252) (0.626) 

After × Treatment × Multihoming -2.167 0.039 1.534**  1.142** -3.701*** 
 (1.643) (1.557) (0.701) (0.574)   (1.369) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 249,881 249,881 249,881 249,881 249,881 

Number of Consumers 7,433 7,433 7,433 7,433 7,433 

R-squared 0.424 0.434 0.234 0.233 0.454 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown 

group whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table A1. 

Results are highly consistent when the unknown group is included. c) Results are highly consistent if we control for 

overall time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time 

FE for the multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 

 

 

  



 

42 

 

Appendix B. Including Consumers with Unidentifiable Multi-Homing 

Behavior in the HTE Analysis 

In the analysis presented in Table 5 (Section 6.2), we excluded consumers with undetermined multi-

homing status. To assess robustness, we reran the model including these unknown groups. As shown in 

Table B1, the results remain consistent, indicating that the inclusion of an additional consumer subgroup 

does not impact the overall findings. 

Table B1. HTE on Single-homing vs. Multi-homing Consumers (Including the Unknown Group) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.155*** 0.076*** 0.159*** 0.080*** -0.004 
 (0.029) (0.027) (0.014) (0.011) (0.024) 

After × Treatment × Multihoming -0.042 -0.073 0.097***  0.066** -0.139** 

 (0.068) (0.064) (0.037) (0.029)   (0.055) 

After × Treatment × Unknown 0.015 -0.022 0.056***  0.019 -0.042 
 (0.038) (0.036) (0.020) (0.016)   (0.031) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Time FE for Unknown Group Yes Yes Yes Yes Yes 

Observations 513,433  513,433  513,433  513,433  513,433  
Number of Consumers 15,220 15,220 15,220 15,220 15,220 

R-squared 0.428 0.442 0.263 0.271 0.472 

Notes: a) Robust standard errors clustered at the consumer level. b) Results are highly consistent if we control for 

overall time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group, Time FE 

for the multihoming group, and Time FE for the unknown group). c) * p<0.1, ** p<0.05, *** p<0.01.  
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Appendix C. Incorporating Consumers Exclusively Requesting Robotaxi Services 

Our main analysis focuses on consumers who request both robotaxi and regular services to leverage 

the quai-random assignment in addressing the self-selection concern. To assess the generalizability of our 

findings to a broader group of consumers interested in robotaxi services, we conduct a supplementary 

analysis by expanding the treatment group to include not only those who have always requested robotaxi 

and regular services simultaneously before their first robotaxi experience, but also those who have 

exclusively requested robotaxi services prior to their first robotaxi experience. This approach results in a 

sample of 6,483 treated consumers and 9,407 control consumers. The results, presented in Tables C1-C2, 

are consistent with our main results. The treatment effect on multi-homing consumers remains significantly 

negative in inaccessible areas (coefficient = -0.142, p-value < 0.05).  

Table C1. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

(Including Exclusive Robotaxi Requesters) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

After × Treatment 0.178*** 0.043** 0.214*** 0.079*** -0.036** 
 (0.018) (0.017) (0.010) (0.008) (0.014) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 534,735  534,735  534,735  534,735  534,735  
Number of Consumers 15,890 15,890 15,890 15,890 15,890 

R-squared 0.423 0.436 0.288 0.285 0.468 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 
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Table C2. HTE on Single-homing vs. Multi-homing Consumers  

(Including Exclusive Robotaxi Requesters) 

Dep. Var. Number of Completed Rides 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.135*** 0.037 0.150*** 0.052*** -0.015 
 (0.028) (0.027) (0.014) (0.012) (0.023) 

After × Treatment × Multihoming -0.012 -0.054 0.115***  0.072** -0.127** 
 (0.067) (0.063) (0.035) (0.029)   (0.054) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 260,409 260,409 260,409 260,409 260,409 

Number of Consumers 7,768 7,768 7,768 7,768 7,768 

R-squared 0.448 0.462 0.294 0.299 0.488 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown group 

whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table C1. Results are 

highly consistent when the unknown group is included. c) Results are highly consistent if we control for overall time FE 

instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time FE for the 

multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix D. Log-transformation of Dependent Variables 

In the main analysis, we do not log-transform the dependent variables to ensure that the estimated 

treatment effect on rides across all areas equals the sum of the estimated treatment effects on rides in 

robotaxi-accessible and inaccessible areas. To demonstrate the robustness of the results, we also apply a 

log transformation to the dependent variables and report the findings. As reported in Tables D1-D2, the 

results remain consistent with our main analysis. The treatment effect on multi-homing consumers remains 

significantly negative in inaccessible areas (coefficient = -0.028, p-value < 0.05). 

Table D1. Impact of Robotaxi Services on Consumers’ Ride-Hailing Consumption 

(Log-transformation to Dependent Variables) 

Dep. Var. Number of Completed Rides  

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total (Regular) Rides 

(5) 

After × Treatment 0.061*** 0.031*** 0.075*** 0.043*** -0.005 
 (0.005) (0.005) (0.004) (0.003) (0.004) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes 

Observations 513,433  513,433  513,433  513,433  513,433  
Number of Consumers 15,220 15,220 15,220 15,220 15,220 

R-squared 0.405 0.419 0.256 0.259 0.459 

Notes: a) Robust standard errors clustered at the consumer level. b) * p<0.1, ** p<0.05, *** p<0.01. 

 

Table D2. HTE on Single-homing vs. Multi-homing Consumers  

(Log-transformation to Dependent Variables) 

Dep. Var. Number of Completed Rides 

Area All Areas Accessible Areas Inaccessible Areas 

 Total Rides 

(1) 

Regular Rides 

(2) 

Total Rides 

(3) 

Regular Rides 

(4) 

Total Rides 

(5) 

After × Treatment 0.050*** 0.030*** 0.056*** 0.033*** 0.002 
 (0.008) (0.008) (0.005) (0.004) (0.007) 

After × Treatment × Multihoming -0.0001 -0.011 0.035***  0.025** -0.030** 
 (0.018) (0.018) (0.012) (0.011)   (0.015) 

Consumer FE Yes Yes Yes Yes Yes 

Time FE for Singlehoming Group Yes Yes Yes Yes Yes 

Time FE for Multihoming Group Yes Yes Yes Yes Yes 

Observations 249,881 249,881 249,881 249,881 249,881 

Number of Consumers 7,433 7,433 7,433 7,433 7,433 

R-squared 0.435 0.452 0.250 0.259 0.485 

Notes: a) Robust standard errors clustered at the consumer level. b) In this analysis, we have excluded the unknown 

group whose multi-homing behavior is undetermined, resulting in a reduced sample size compared to Table D1. 

Results are highly consistent when the unknown group is included. c) Results are highly consistent if we control for 

overall time FE instead of subgroup-specific time trends (captured by Time FE for the singlehoming group and Time 

FE for the multihoming group). d) * p<0.1, ** p<0.05, *** p<0.01. 
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Appendix E. Balance Checks of the Matched Sample in Section 7.1 

In Section 7.1, we use a sample of consumers who have never requested robotaxi services as an 

alternative control group and apply the Coarsened Exact Matching (CEM) method for one-to-one matching 

to the treatment group. Table E1 presents the covariate statistics for the treatment and control groups after 

matching. The means of all the variables show no significant differences between the two groups, 

suggesting that the matching is successful and results in balanced groups. 

Table E1. Balance Check for the Matched Sample in Section 7.1 

Variable Definition Mean of 

Treatment 

Group (SD) 

Mean of 

Control 

Group (SD) 

t-

Statistic  

(p-value)  

Age A consumer’s age  28.358 

(3.699) 

28.364 

(3.702) 

0.084 

(0.933) 

Multihoming A dummy variable that equals 1 if a 

consumer is in the multi-homing group 

0.297 

(0.457) 

0.297 

(0.457) 

0.000 

(1.000) 

Unknown A dummy variable that equals 1 if a 

consumer’s multi-homing behavior is 

unknown 

0.529 

(0.499) 

0.529 

(0.499) 

0.000 

(1.000) 

Prior_Weekly_Total_Rides A consumer’s average weekly number of 

total rides prior to the introduction of the 

robotaxi service 

0.422 

(0.847) 

 

0.432 

(0.849) 

 

0.608 

(0.543) 

 

Prior_Weekly_Acc_Rides A consumer’s average weekly number of 

rides in accessible areas prior to the 

introduction of the robotaxi service 

0.128 

(0.344) 

 

0.136 

(0.344) 

 

1.274 

(0.203) 

 

Prior_Weekly_InAcc_Rides A consumer’s average weekly number of 

rides in inaccessible areas prior to the 

introduction of the robotaxi service 

0.294 

(0.764) 

 

0.296 

(0.767) 

 

0.101 

(0.919) 
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Appendix F. Balance Checks of the Matched Sample in Section 7.2 

In Section 7.2, we use a sample of consumers from a different district as an alternative control group 

and perform one-to-one matching with the treatment group, using the CEM method, without replacement. 

Table F1 reveals that the means of all the variables do not differ significantly between the treatment and 

control groups. This indicates that the matched treatment and control consumers are highly comparable.  

Table F1. Balance Check for the Matched Sample in Section 7.2 

Variable Definition Mean of 

Treatment 

Group (SD) 

Mean of 

Control 

Group (SD) 

t-

Statistic  

(p-value)  

Age A consumer’s age  28.295 

(4.000) 

28.312 

(3.956) 

0.226 

(0.821) 

Multihoming A dummy variable that equals 1 if a 

consumer is in the multi-homing group 

0.321 

(0.467) 

0.321 

(0.467) 

0.000 

(1.000) 

Unknown A dummy variable that equals 1 if a 

consumer’s multi-homing behavior is 

unknown 

0.515 

(0.500) 

0.515 

(0.500) 

0.000 

(1.000) 

Prior_Weekly_Total_Rides A consumer’s average weekly number of 

total rides prior to the introduction of the 

robotaxi service 

0.427 

(0.876) 

 

0.427 

(0.873) 

 

0.021 

(0.983) 

 

Prior_Weekly_Acc_Rides A consumer’s average weekly number of 

rides in accessible areas prior to the 

introduction of the robotaxi service 

0.100 

(0.256) 

 

0.099 

(0.256) 

 

-0.301 

(0.763) 

 

Prior_Weekly_InAcc_Rides A consumer’s average weekly number of 

rides in inaccessible areas prior to the 

introduction of the robotaxi service 

0.326 

(0.836) 

 

0.328 

(0.832) 

 

0.115 

(0.909) 

 

Notes: a) For the control group, “accessible areas” are defined as the counterfactual district, while “inaccessible areas” 

refer to all regions outside of this district. 
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Appendix G. Cohort-Based Matching in the Staggered DID Analysis 

While it is impossible to randomly assign robotaxis to consumers to identify the impact of the robotaxi 

experience on consumers’ ride-hailing behavior, given that these are high-stakes decisions that cannot be 

directly imposed by platforms, we leverage the quasi-random assignment of robotaxis to consumers who 

request both robotaxis and human-driven cars simultaneously to estimate the treatment effect. To further 

minimize the differences between the two groups, we focus only on the treatment and control users who 

requested both robotaxis and human-driven cars within the same week and match them based on their 

demographics and prior ride-hailing behavior. Specifically, we employ the CEM method to perform one-

to-one matching without replacement between the control and treatment groups, leveraging the quasi-

random variation in the assignment of robotaxis among consumers attempting to use them within a given 

week. When doing so, we require that consumers in both the treatment and control groups have made at 

least one robotaxi request during the cohort’s treatment week. As shown in Table G1, the distribution of all 

key covariates is well-balanced between the treatment and control groups.  

Table G1. Balance Check for the Matched Sample in Section 7.3 

Variable Definition Mean of 

Treatment 

Group (SD) 

Mean of 

Control 

Group (SD) 

t-Statistic  

(p-value)  

Age A consumer’s age  27.842 

(3.082) 

27.582 

(3.065) 

0.149 

(0.882) 

Multihoming A dummy variable that equals 1 if a 

consumer is in the multi-homing group 
0.218 

(0.413) 

0.218 

(0.413) 

0 

(1.000) 

Unknown A dummy variable that equals 1 if a 

consumer’s multi-homing behavior is 

unknown 

0.530 

(0.499) 

0.530 

(0.499) 

0 

(1.000) 

Prior_Weekly_Total_Rides A consumer’s average weekly number of 

total rides prior to the introduction of the 

robotaxi service 

0.308 

(0.613) 

 

0.306 

(0.610) 

 

-0.206 

(0.837) 

 

Prior_Weekly_Access_Rides A consumer’s average weekly number of 

rides in accessible areas prior to the 

introduction of the robotaxi service 

0.064 

(0.140) 

 

0.062 

(0.139) 

 

-0.656 

(0.512) 

 

Prior_Weekly_Inaccess_Rides A consumer’s average weekly number of 

rides in inaccessible areas prior to the 

introduction of the robotaxi service 

0.241 

(0.602) 

 

0.241 

(0.598) 

 

0.047 

(0.963) 

 

 


