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Abstract

Blockchain technology aims to disintermediate traditional platforms by replacing
centralized governance with decentralized market mechanisms. However, this shift in-
troduces a tradeoff: while decentralization removes the platform’s ability to capture
value, it also eliminates platform-wide mechanisms—such as subsidies, curation, or
pricing strategies—that can support long-term platform performance. Using Ethereum
as a case study, this paper examines how its market-based transaction validation system
affects the allocation of transaction capacity and shapes platform dynamics. Specifi-
cally, we estimate demand elasticities across more than 1,500 decentralized applications
(dApps) and evaluate the effects of transaction fees on various application categories.
To address endogeneity concerns, we leverage Ethereum’s “difficulty bomb,” a protocol
feature that periodically reduces transaction throughput, as an instrumental variable.
This method provides exogenous variation in transaction costs, allowing us to iden-
tify differences in demand elasticities across dApps. Our analysis shows that during
periods of high fees, low-elasticity transactions—such as those associated with ex-
ploitative miner extractable value (MEV) activities—tend to dominate the network.
This crowding out effect disproportionately impacts fee-sensitive categories of applica-
tions—such as gaming, social, and utility dApps—reducing their viability and shifting
transaction capacity toward applications that prioritize short-term profitability over
long-term platform performance. This dynamic helps explain why, despite repeated
promises to disintermediate platforms like Uber, decentralized platforms may struggle
to support fee-sensitive but socially valuable use cases.
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1 Introduction

Over the past decade, blockchain technology has been heralded as a transformative inno-

vation with the potential to disintermediate traditional digital platforms. The blockchain

ecosystem has grown rapidly, with the global market size for blockchain technology reach-

ing $28 billion in 2022 and projections of $825 billion by 2032.1 Platforms like Ethereum

enable decentralized applications (dApps) that operate without centralized oversight. For

instance, decentralized finance (DeFi) applications like Uniswap, Aave, and Curve allow

users to borrow, lend, or trade assets directly with peers, eliminating the need for interme-

diaries such as banks. Similarly, Ethereum Name Service offers decentralized identity and

naming infrastructure, without centralized registrars like ICANN or DNS providers. And

game CryptKitties demonstrated that user-owned digital assets and gameplay could bypass

traditional gaming platforms. Advocates envision extending this model even further — a

common example is a decentralized alternative to Uber, where drivers and riders connect

directly, avoid 30% platform fees, and collectively govern the system. By replacing cen-

tralized governance with decentralized market mechanisms, blockchain platforms promise

transparency, inclusivity, and openness. While there are several reasons why a decentral-

ized application may fail — it may be technically flawed or conceptually incoherent — we

focus on how decentralized market mechanisms can undermine the viability of applications

that could work in principle, thereby endangering the long-term performance of blockchain

platforms.2

This risk arises because, unlike centralized platforms such as Apple’s iOS, which ac-

tively gatekeep, curate and subsidize access to support wide range of user activity to drive

engagement and complementarity, decentralized platforms rely on market-driven allocation

1https://www.fortunebusinessinsights.com/industry-reports/blockchain-market-100072
2We define a decentralized application as “working” if it satisfies three conditions: (1) it is technically

implementable via smart contracts, (2) it is incentive-compatible without centralized enforcement, and (3)
it is usable at scale under real-world blockchain conditions. Many dApps (including the examples in this
paragraph) are demonstrably viable in principle: they meet conditions (1) and (2) and generate meaningful
user value. This paper focuses on condition (3) and how the allocation of transaction capacity affects the
viability of such applications, and long-term performance of the platform.
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through transaction fees. Moreover, as we argue, credible blockchain decentralization re-

quires throughput constraints enforced by the protocol. This raises an economic tradeoff

between decentralization and platform governance: while decentralization removes the plat-

form’s ability to capture value, it may also disproportionally favor financially extractive

activities — such as arbitrage and miner extractable value (MEV) transactions — over appli-

cations that generate broader, long-term value. In the case of the hypothetical decentralized

alternative to Uber, a largre proportion of everyday ride requests could be driven out by

automated agents or bots that extract profit by preempting, reselling, or manipulating ride

allocations. In such a setting, the absence of central control lowers rents but may also weaken

the platform’s ability to ensure availability, affordability, and diversity of service. This dy-

namic illustrates a broader paradox: the very mechanisms that enable decentralization can

also create inefficiencies and distortions — undermining not just individual applications, but

the platform’s resilience and long-term performance. Can decentralized platforms function

as viable alternatives to traditional intermediaries, sustaining a diverse set of transactions,

including fee-sensitive but socially beneficial ones? Or does their reliance on market-based

allocation inherently favor short-term profitability at the expense of long-term platform per-

formance? Understanding whether these platforms can serve as a foundation for the next

generation of digital markets is critical for assessing their economic significance.

This paper explores an inherent paradox in blockchain platforms: while disintermediation

ostensibly limits the monopolistic power of platform providers, it also removes governance

tools that are critical for orchestrating a diverse and healthy ecosystem of complements. A

critical feature of blockchain protocols is their deliberate limitation of transaction supply to

maintain decentralization. Without such limits, validators with the most powerful compu-

tational resources could dominate by increasing the throughput of validated, executed, and

stored transactions to levels that exceed the capacity of less powerful machines, effectively

centralizing control over the blockchain’s core operations. Relying solely on market mecha-

nisms to allocate a limited transaction supply may foster inefficiencies, such as crowding out
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entire categories of applications and reducing platform diversity. The price-driven crowding-

out of certain applications provides insight into the role that governance mechanisms—absent

in decentralized platforms but present in centralized ones—might play in shaping application

variety. These dynamics raise fundamental questions about whether decentralized platforms

can function as general-purpose infrastructure while maintaining the inclusivity and variety

envisioned by Web 3.0.

We use Ethereum—the most prominent blockchain platform for decentralized applica-

tions (dApps)—as a case study. A comprehensive dataset of daily transaction-level and

application-level data from Ethereum, covering over 1,500 dApps across various categories,

enables us to estimate demand curves for transactions, measure their sensitivity to rising

transaction fees, and analyze how variations in transaction fees impact the long-term viability

of different applications. To address endogeneity concerns, we employ Ethereum’s difficulty

bomb, a protocol feature that increases mining difficulty over time, as a novel supply-side in-

strument. The difficulty bomb’s activation is predetermined within Ethereum’s protocol and

unrelated to immediate market conditions. Importantly, it was reset three times arbitrarily

and without prior announcements, creating unexpected exogenous changes in transaction

supply. By requiring greater computational effort during activation periods, the difficulty

bomb reduces transaction capacity, thereby creating exogenous variations in transaction

fees. This ensures that its effects on transaction costs are not influenced by changes in

user behavior or dApp-specific factors, satisfying the exclusion restriction necessary for valid

instrumental variable analysis.

The observed variations in demand elasticities highlight significant disparities in how

different dApp categories compete for transaction capacity. Applications with higher elastic-

ity—often fee-sensitive but socially valuable—are crowded out by low-elasticity transactions,

including those resulting from miner extractable value (MEV) activities. MEV refers to

transactions that exploit the transparent nature of blockchain systems, allowing validators

or bots to reorder, insert, or exclude transactions for profit. For example, front-running

4



in blockchain systems mirrors practices in traditional financial markets, where brokers or

traders use advanced knowledge of pending orders to execute their own transactions first,

capturing profits at the expense of others. These transactions, often involving front-running

or sandwich attacks, drive up fees by bidding aggressively. Their high willingness to pay

stems from their exploitative nature, as they capture value at the expense of other users.

This aggressive bidding dominates the limited transaction capacity, effectively crowding out

fee-sensitive but socially valuable applications. This crowding-out effect reduces the variety

of dApps and prioritizes short-term revenue extraction over long-term platform viability,

underscoring a critical inefficiency in Ethereum’s market-based design. Under centralized

governance, platforms can internalize these externalities by directly curating or subsidizing

applications to sustain a broader ecosystem.

Our contributions are threefold. First, we use Ethereum’s difficulty bomb as a novel

instrument to address endogeneity concerns, enabling us to estimate demand curves for dif-

ferent dApp categories and reveal their varying elasticities. Second, we empirically demon-

strate that the combination of limited capacity and the market mechanism for transaction

validation on Ethereum creates a trade-off between allocative efficiency and platform diver-

sity. Specifically, the allocation of transaction capacity systematically favors low-elasticity

transactions that prioritize immediate profitability. As a result, fee-sensitive but potentially

high-value applications are crowded out, reducing diversity and innovation on the platform.

Third, we examine the broader implications of this dynamic, including the dominance of

exploitative behaviors such as miner extractable value (MEV) activities. MEV undermines

the inclusivity and fairness promised by decentralized platforms, further exacerbating the

inefficiencies of Ethereum’s market-based design.

This study advances the economic literature on platform governance and market-based

resource allocation. By seeing blockchain platforms as a natural experiment in decentral-

ized market design, we provide new insights into how market mechanisms influence platform

ecosystems, challenging prevailing assumptions about the self-regulating nature of decentral-
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ized markets.

While Ethereum serves as the context for our analysis, its transaction validation system

is emblematic of decentralized blockchain platforms more broadly. Like Ethereum, these

platforms enforce supply constraints to maintain decentralization, frequently using auction-

based fee structures to allocate transaction capacity based on willingness to pay. These

mechanisms ensure decentralization but also create systemic inefficiencies and equity chal-

lenges. Our findings about efficiency trade-offs and platform dynamics thus apply broadly

across decentralized blockchain ecosystems, highlighting the foundational role of capacity

constraints and fee structures in shaping both their benefits and limitations. By shedding

light on the systemic challenges posed by market-based transaction allocation, we aim to in-

form both academic discourse and policy debates about the design and regulation of emerging

decentralized economies.

The remainder of this paper is structured in the following way: Section 2 explains how

we relate and contribute to the existing literature. Section 3 introduces the context of

our study, describes all necessary details to understand the process of transacting with

an application on the Ethereum blockchain, and conceptualizes Ethereum as a market for

transactions. Section 4 describes our conceptual framework. Section 5 summarizes our data.

Section 6 discusses the empirical strategy to identify the demand curves for different types

of applications. Section 7 reports the results of our analysis. Finally, Section 8 discusses our

study’s implications and limitations.

2 Related literature

Decentralized digital platforms existed already before the advent of blockchain technology.

Therefore, to understand how blockchain platforms provide a novel way to decentralized dig-

ital platforms, we briefly discuss how they compare to centralized and existing decentralized

platforms before we move on to discussing our work’s theoretical foundations.
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Blockchain platforms are transaction-based platforms that substitute a central authority

with a network of peers who collectively validate, enforce, and record transactions (Hal-

aburda et al. 2022). However, besides the collective validation, enforcement, and recording

of transactions, blockchain platforms also devolve all other platform governance decisions

to the community. For instance, while on centralized platforms the provider decides who is

allowed to offer complements (Wessel et al. 2017), moderate content (Zeng and Kaye 2022),

sets transaction fees (Wang and Wright 2017), or modifies the platform’s underlying tech-

nology and infrastructure (Ondrus et al. 2015), blockchain platforms either remove these

decisions or devolve them to the community.3 Archetypal blockchain platforms are typically

free from censorship and thus neither limit access to the platform nor moderate content

offered on the platform. As blockchain platforms explicate all platform rules in a collectively

maintained protocol, changes to these rules require an ex-ante community consensus. Similar

to blockchain platforms, established decentralized platforms, like open-source software (OSS)

or Wikipedia, also devolve some of these governance decisions to the community. However,

as the pertinent literature has shown, they still rely on some form of central authority (e.g.,

a core developer team or arbitrators in the case of Wikipedia) to settle disputes, moderate

content, or steer development efforts (Puranam et al. 2014). Further, the platform provider

often still owns the intellectual property underlying the technology and decides how to li-

cense it. Therefore, the platform provider can decide to change the technology unilaterally

as long as all platform participants adopt it ex-post. Accordingly, although the commu-

nity contributes most of the work on these platforms, the platform provider often maintains

important governance rights.

Table 1 compares the different platform types regarding how the most important gover-

nance decisions are made.

———– insert Table 1 about here ———–

3Although some centralized platforms also devolve some of these decisions to their users (see Boudreau
2010, Eisenmann and Parker, Goeffrey, Van Alstyne, Marshall 2009), it still is the platform provider’s decision
to what extent they include the community.

7



To contextualize our analysis, we first examine the foundational perspectives that have

shaped the vision for decentralized platforms before turning to research on governance mech-

anisms and transaction fee dynamics.

2.1 Foundational Perspectives and the Vision for Decentralized

Platforms

In addition to the contemporary strands of literature on platform governance and blockchain

fee dynamics, a set of foundational works has shaped the way we understand the promise

and challenges of decentralized platforms. Seminal contributions such as Nakamoto (2008)

introduced the idea of Bitcoin as a peer-to-peer electronic cash system, laying the groundwork

for a radical rethinking of centralized intermediaries. Building on these ideas, Catalini and

Tucker (2018) and Vergne (2020) have argued that blockchain technology could enable a fairer

distribution of value among network participants, challenging the traditional concentration

of power in digital platforms.

Equally influential is Wood’s (2014a) articulation of the Web 3.0 vision—a decentral-

ized internet where transparency, inclusivity, and the democratization of control replace the

conventional, centrally managed ecosystems. This vision has not only inspired technological

innovation but has also framed the normative debate over how digital economies should be

structured.

However, the early promise of disintermediation has been met with practical challenges.

Research by Pereira et al. (2019) draws attention to the coordination and storage costs that

arise when data is replicated across a decentralized network, highlighting an inherent trade-off

between decentralization and operational efficiency. Similarly, Staub et al. (2022) emphasize

that the removal of centralized governance tools—tools that have traditionally been used

to curate and sustain diverse ecosystems—can create significant challenges for maintaining

a healthy platform complement environment. In line with these concerns, Halaburda et al.

(2020) offer a rigorous microeconomic analysis that underscores how decentralized protocols,
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while promising democratized value distribution, inevitably confront significant coordination

and governance challenges in practice.

While later studies (e.g., Buterin 2014, Wu et al. 2021, Roughgarden 2020, Park 2023)

delve into the empirical and design challenges of Ethereum’s market-based fee mechanism

and its susceptibility to front-running or other inefficiencies, they do so against a backdrop

set by these earlier visionary narratives. This interplay between lofty aspirations and the

economic realities of market-based transaction allocation provides a rich context for our

investigation.

By revisiting these foundational perspectives alongside recent empirical evidence, this

paper aims to bridge the gap between blockchain’s original promise of a democratized dig-

ital infrastructure and the emerging evidence on its practical limitations. In doing so, we

contribute not only to the literature on platform governance and fee dynamics but also to

a broader understanding of how the initial ideals of blockchain technology confront—and

sometimes conflict with—real-world market outcomes.

2.2 Research on platform governance and ecosystem orchestration

Although the vision for decentralized platforms emphasizes openness and transparency, re-

search on platform governance reveals the structural challenges that arise when centralized

coordination is replaced by market-driven mechanisms. The traditional platform governance

literature highlights how centralized platforms actively manage their ecosystems through a

set of governance tools, including pricing, curation, and selective incentives to foster inno-

vation and maintain diversity. Traditional platforms do not rely solely on market forces;

instead, they use strategic price discrimination and participation incentives to sustain a

balanced complement ecosystem (e.g., Church and Gandal 1992, Shapiro and Varian 2010,

Brynjolfsson and Kemerer 1996, Katz and Shapiro 1985, Farrell and Saloner 1986, Choi

1994).4

4For an extensive overview, see (Rietveld and Schilling 2020)
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One key mechanism is selective pricing to attract and retain high-value participants.

Google’s search ad auctions do not allocate placements based purely on the highest bid

but instead factor in quality scores preventing spam-like content from dominating search

results, balancing short-term revenue generation with long-term ecosystem health (Varian

2007, Edelman et al. 2007).

In both digital and physical marketplaces, platforms use targeted pricing strategies to

shape their ecosystems and encourage participation from key players. Visa and Mastercard,

for instance, employ variable interchange fees to attract high-value merchants, such as su-

permarkets, by offering them lower fees, recognizing their role in driving high transaction

volumes (Rochet and Tirole 2003, Prager et al. 2009). Similarly, shopping malls subsidize

key tenants by providing preferential rents to anchor stores, ensuring their presence increases

overall foot traffic and benefits smaller retailers (Caillaud and Julien 2003, Rysman 2009).

At a broader level, research emphasizes that platforms employ governance mechanisms

to carefully orchestrate their ecosystems, shaping the composition and incentives of their

participants. Rosaia’s (2024) spatial equilibrium model and Marra’s (2024) structural auc-

tion analysis both underscore how fee mechanisms and complementor heterogeneity shape

platform ecosystems, introducing inefficiencies that centralized governance might mitigate.

These studies reinforce the idea that governance mechanisms are essential for sustaining a

diverse and innovative platform ecosystem, ensuring long-term sustainability and comple-

ment diversity (e.g., Cennamo and Santaló 2019, Tiwana 2015, Tudón 2022, Boudreau 2012,

Casadesus-Masanell and Ha laburda 2014, Parker and van Alstyne 2018). Building on these

insights, Gutierrez (2021) highlights how platforms such as Amazon Prime enhance welfare

by fostering a diverse complementor ecosystem, while Brynjolfsson et al. (2003) demonstrate

that consumer surplus from variety is a critical component of platform value creation. Sim-

ilarly, platforms like Uber balance immediate profits with long-term ecosystem health by

prioritizing variety and network diversity, even at the cost of short-term revenue (Sullivan

2022, Castillo 2023).
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Our research adds to this stream by using blockchain platforms as a natural experiment

to examine how replacing centralized governance with decentralized market mechanisms im-

pacts ecosystem composition and performance. Decentralized platforms, by design, lack

governance tools such as differential pricing, quality control, and targeted subsidies, expos-

ing participants to externalities like fee-driven competition, congestion costs, and short-term

profit extraction. Without these governance mechanisms, Ethereum’s one-size-fits-all pricing

model fails to differentiate between high value applications and extractive activities, dispro-

portionately disadvantaging fee-sensitive but socially valuable applications while allowing

price-insensitive, often extractive behaviors, such as maximal extractable value (MEV) trans-

actions, to thrive. This dynamic challenges the assumption that network effects alone will

sustain a robust and diverse complement ecosystem, reinforcing the need for governance

mechanisms tailored to decentralized contexts.

2.3 Research on transaction fees on blockchain platforms

Beyond governance challenges, transaction fees play a fundamental role in how decentralized

platforms allocate resources and shape participation. The foundational vision of blockchain

as a decentralized marketplace (as discussed in Section 2.1) is operationalized through these

fee structures, which determine transaction costs and influence platform behavior. Scholars

have characterized blockchains as marketplaces for transaction validation services, where

miners offer computational resources and users compete for blockspace.

For instance, Basu et al. (2019) and Easley et al. (2019) use game-theoretic models

to show how Bitcoin’s transaction fees fluctuate due to competitive bidding, potentially

discouraging both miners and users. Huberman et al. (2021) show that Bitcoin’s transaction

fee mechanism protects users from monopoly pricing. While these studies focus primarily on

Bitcoin’s validation process and miner incentives, recent models have expanded this analysis

to consider how fee structures impact transaction pricing dynamics, including base fees,

parallel execution, and differences in fee policies across blockchain networks (Ndiaye 2024b,a,
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2025).

Ilk et al. (2021) build on earlier theoretical work by providing empirical evidence on Bit-

coin’s transaction fee mechanism, showing that due to a relatively inelastic demand curve

and a comparatively elastic supply curve, Bitcoin’s fee structure can self-regulate. However,

since their study focuses on Bitcoin, it only examines miners and transaction fee stabil-

ity. In contrast, smart contract platforms like Ethereum require an assessment of how fee

mechanisms impact platform participants such as dApp providers.

Empirical research on Ethereum’s fee dynamics remains limited. Some studies examine

network congestion and gas prices (Donmez and Karaivanov 2021) or gas price effects on

throughput (Azevedo Sousa et al. 2021, Spain et al.), while others highlight how high fees

contradict Ethereum’s goal of financial inclusion by disproportionately excluding low-income

users (Cong et al. 2022).

While research in this area focuses on how blockchain fee mechanisms affect validators

and users, these studies primarily treat transaction pricing as a market efficiency problem,

overlooking its broader impact on platform complementors and ecosystem diversity—a key

focus of our research. Notably, there is limited work on how Ethereum’s fee structure shapes

dApp usage across different categories and influences overall platform composition. Our re-

search addresses this gap by focusing on dApp providers as a critical component of blockchain

platforms, analyzing how transaction fees influence their participation and the overall com-

position of these systems. Understanding their role is crucial, as they enable blockchain

platforms to support a more diverse range of services, positioning them as potential alter-

natives to centralized platforms like Apple’s iOS or Google’s Android.

3 Background on Ethereum

Ethereum is the second-largest blockchain platform, with a market capitalization of 236

billion USD and over 1.2 million daily transactions.5 It is the context of our study as it

5https://etherscan.io/ (retrieved on March 21rd, 2025).
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was the first blockchain platform to introduce smart contracts, which enable more complex

transactions than simple money transfers and thus allow complementors to develop their

own dApps—smart contract-based apps running on top of the blockchain (Buterin 2014).

As transactions differ depending on the complexity and thus require differing computational

efforts to be executed by miners, Ethereum introduced a new market mechanism that incen-

tivizes miners to compute transactions independently of their computational intensity. This

market mechanism served as a blueprint for many other blockchain platforms that enable

smart contracts and thus is seminal for the whole industry. In the following, we briefly review

the core features of Ethereum’s market for transactions and particularly focus on the eco-

nomic aspect relevant to our paper. For a more technical review, we refer to Antonopoulos

and Wood (2019) and Wood (2014b).

3.1 Smart contracts and dApps

Smart contracts are immutable and automatically enforced computer programs running on

top of a blockchain (Fröwis and Böhme 2017). They allow developers to specify arbitrary

agreements between two parties in the form of predefined obligations and rules written in

computer code. If triggered by receiving a transaction, a smart contract is automatically

enforced by the decentralized network according to the predefined rules, making it impossible

for parties to unilaterally alter or renegotiate the transaction’s outcome with a smart contract

(Halaburda et al. 2019).

As smart contracts enable arbitrary programs, they can be used to develop so-called

decentralized applications (dApps) (Wu et al. 2021). DApps are blockchain-based apps

that resemble normal web applications regarding their user interface but differ from normal

web applications as they run their business logic as a smart contract on a decentralized

blockchain platform. Due to the immutability and automated enforcement of the underlying

smart contract, users of a dApp do not have to trust the dApp provider or rely on third-party

institutions to fulfill its obligations. Instead, they can read the smart contract and ascertain
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that the promised outcome will be delivered.6 Therefore, the promise of dApps is to solve

problems of centralized control, limited access, downtime, censorship resistance, and trust

issues arising from weak institutions (Leiponen et al. 2021). For example, in the case of

a collectibles game, the ownership of the collectible is not managed by the game provider

but by a smart contract. Therefore, the provider cannot duplicate collectibles or change the

ownership unilaterally and even in the event that the provider’s servers are shut down, the

owner of the collectible will not lose access to it.

DApps are the complements of interest for our study as they extend the functionality

of the Ethereum network. Without dApps, Ethereum users could use the network only to

send Ether (i.e., Ethereum’s native cryptocurrency) to each other. With dApps, comple-

mentors can offer any arbitrary service. Currently, Ethereum hosts more than 4,900 dApps

across categories such as finance, games, gambling, insurance, social media, property, and

digital identity.7 It is Ethereum’s vision to grow further the number and diversity of dApps

offered on the platform and ultimately pave the way for Web3.0, a more inclusive and demo-

cratic version of the Internet, where apps are available to everyone without any downtime,

censorship, entry restrictions, and central control of the data.8

3.2 Ethereum’s market for transactions

To validate, enforce, and record transactions users send to dApps, Ethereum uses a de-

centralized transaction mechanism that relies on cryptography, a decentralized consensus

mechanism, and economic incentives to substitute a centralized intermediary. Prior scholars

have already characterized Bitcoin mining, which uses a similar mechanism, as a two-sided

market (e.g., Basu et al. 2019) and a market for data space more specifically Ilk et al. (2021).

6Obermeier and Henkel (2022) discusses that smart contracts only remove the necessity of trust if the
users have read and completely understood its source code. In practice, due to the time and effort it takes to
read a smart contract, this is rather unlikely. Still, they also argue that smart contract enables a new form
of trust that is based on the possibility of reading the source code. This form of trust differs from trust in
the dApp provider as it is based on logically provable facts (i.e., what is written in the source code) rather
than on inference about latent characteristics of the dApp provider.

7https://dappradar.com/, last checked 03/21/2025
8https://ethereum.org/en/upgrades/vision/
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We also characterize Ethereum’s transaction validation and execution process as a market

but highlight some important differences due to Ethereum’s capability to run smart contracts

and offer dApps.

Like on the Bitcoin network, transactions on Ethereum are not instantly effective but

have to be validated by special users called miners. At regular intervals, these miners select

transactions from the pool of pending transactions, verify their validity according to rules

specified in Ethereum’s protocol, bundle the transactions together, and participate in a

computationally demanding puzzle known as “proof-of-work” (PoW). Only the winners of

this puzzle get to write their block onto the blockchain and receive the block reward in

addition to all transaction fees paid by the transaction senders. It is important to note that

the mining of transactions comprises two tasks. First, the miner needs to solve the proof

of work puzzle by computing numerous hashes (i.e., a string of character that results from

transforming data a fixed-length string) until one miner finds a block hash that fulfills the

requirements for a new block. Second, the miner needs to compute the transaction and check

it against a list of rules. Only if the transaction fulfills these rules the miner can add it to

the block. If even one transaction in a block would not fulfill the requirements, the whole

block would be rejected by other miners. Both tasks require computational effort. Although

the update from PoW to Proof-of-Stake (PoS; i.e., an alternative consensus mechanism that

does not require to solve a computationally expensive puzzle to decide who gets to write the

next block but randomly assigns the privilege to write a new blocks to miners according to

their stakes tokens) drastically decreased the computational efforts miners have to invest in

finding a new block, it does not impact the effort miners have to invest to validate every

transaction. In essence, the update to PoS will even increase the relative importance of the

effort it requires to validate a transaction.

In contrast to Bitcoin and to facilitate dApps and arbitrary transactions, Ethereum does

not charge a fee per transaction but a fee for the computational effort a transaction requires.

A transaction’s computational effort is measured in units of gas according to a list that
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indicates a fixed gas requirement for every atomic computation.

To preserve decentralization, Ethereum intentionally limits the supply of transactions by

limiting the maximum gas available in each block (block gas limit). Limiting the supply is

necessary to allow as many validators as possible to join and help maintain a decentralized

and secure network. In addition to limiting the total gas a block can use, the Ethereum

protocol also tries to keep the average time it takes to find a new block (average block time)

within a 12 to 14 seconds interval (Wood 2014b). These two limitations imply that the

total amount of available gas has an upper limit. Not limiting the supply of transactions

would favor validators with the most powerful machines as they could increase the transac-

tion throughput to a point exceeding the capacity of the less powerful machines, preventing

them from contributing new blocks and fostering the network’s re-centralization.9 Further,

it prevents the network from getting trapped in an infinite loop of transactions. To allocate

the limited transaction supply, most blockchain platforms like Bitcoin and Ethereum rely

on a market mechanism to determine the price for transacting on the platform (Buterin

2014, Nakamoto 2008). We conceptualize this market mechanism as a market for transac-

tions or, more specifically, a market for the validation and execution service of transactions.

The limited supply of transactions in combination with this market mechanism has led to

skyrocketing transaction fees in the past as even if more validators join the network the

total supply of transactions does not increase. This design has real-world implications; for

instance, high transaction fees have contributed to cases where dApp providers, such as Dap-

per Labs (dapperlabs.com), the developer of the CryptoKitties, a highly popular collectibles

9Even with a limited supply of transactions, Ethereum has experienced a significant increase in hardware
requirements for running a full node. In the early days of Ethereum, when the first decentralized applications
(dApps) launched, a system with 8 GB of RAM, approximately 50 GB of SSD storage, and a moderately
fast internet connection was sufficient to stay synchronized with the blockchain. Today, running a full node
requires at least 16 GB of RAM, 2 TB of SSD storage, and a high-speed internet connection to validate
transactions (https://geth.ethereum.org/docs/getting-started/hardware-requirements). It is important to
note that these specifications apply solely to validating and storing transactions and do not account for
the hardware requirements of mining under the Proof of Work (PoW) consensus mechanism. Consequently,
these requirements have persisted following the transition to Proof of Stake (PoS). Without limiting the gas
supply (which limits the transaction supply), even more powerful machines would be necessary, potentially
excluding a greater number of validators.
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game, exited Ethereum to launch alternative platforms like Flow.

The commodity sold on Ethereum’s market for transactions is the gas required to validate

a transaction.10 Accordingly, users (transaction initiators) are the buyers, whereas miners

are the sellers of this commodity. On the supply side, the supply of gas on each day is fixed

due to the block gas limit and the limited average block time. Although miners can decide

to what extent they use this limit, they cannot change it individually. Changing this limit

requires successful voting by all miners and a protocol update. Also, suppose more miners

join the network and participate in the race to solve the mining puzzle. In that case, the

network will increase the mining difficulty (i.e., the number of hashes it takes on average

to find a new block) to keep the average block time within the target window of 12 to 14

seconds and keep the supply of gas fixed.11

To incentivize miners to provide their computation service, they are rewarded with a

mining reward for every block they find. This reward consists of a static block reward (at

the time of writing, 2 Ether) for finding a new block plus the sum of all gas fees (usually

measured in GWei ; 1 Ether = 109 GWei) paid by all transactions t which a miner includes

in this block.

On the demand side, users cast transactions to other externally owned accounts (i.e.,

simple Ether transfers to other users or wallets controlled by computers) or smart contracts.

To initiate a transaction, users must indicate a transaction gas limit (i.e., the maximum

amount of gas a miner is allowed to use to compute the transaction) and a gas price(e.g.,

the price the user is willing to pay for each unit of gas). If the gas limit is reached before

the transaction is fully computed, the transaction will be aborted and not included in the

block. Users only pay for the used gas if the computation is finished before reaching the

limit. Also, only the actually used gas is considered for the block gas limit. Accordingly, the

fees a user has to pay is the product of gas used and the gas price the users is willing to pay

10It is important to note that the transaction initiator only has to pay the gas fees for the computation
of the transaction but not for the computational effort the miner has to invest solving the PoW puzzle that
is required to find a new block.

11See Appendix A for the formula used to compute the mining difficulty.
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for every unit of gas.

As the supply of gas is limited, transaction senders compete with other senders by choos-

ing a gas price that is high enough that miners pick their transactions from the pool of

pending transactions. Typically, miners engage in profit maximization (Basu et al. 2019).

Hence, they sort transactions by the indicated gas price and requirement and fill up the

block until its gas limit is reached. Especially in times of congestion, offering too low a gas

price means that a transaction will not be picked up by any miner and ultimately be deleted

from the pool of pending transactions. Although, in theory, it is possible for transaction

initiators to observe the gas price bids by other initiators and adjust their bids in response,

we follow Roughgarden (2020) and see this price mechanism as a first-price, sealed-bid auc-

tion. Our reasoning for this type of auction in threefold. First, even though the pool of

pending transactions is openly available, the peer-to-peer nature of the pool implies that

not every participant sees every transaction simultaneously. Thus, it is difficult for initiators

to determine what transactions were available to the miner when they assembled the block.

Second, although a block is found on average every 12-14 seconds, the exact timing of a

block’s discovery cannot be predicted. Therefore, initiators do not know when they need to

be among the highest bidders. Third, some wallets already offer gas price suggestions that

help to gauge a price that has a high likelihood of leading to the inclusion of the transaction

in one of the next blocks. However, these tools are only backward-looking. They suggest a

gas price by extrapolating the gas prices that have led to the inclusion of the transaction on

one of the last blocks. If initiators want to ensure that their transaction is processed with

certainty, they still need to exceed this suggestion and account for the possibility that other

initiators will do so, too. This gas price mechanism has led to considerable fluctuations in

the amount of gas used, and the price users have paid for a unit of gas. For illustration,

Figure 1 depicts the daily gas usage on the left and the daily average gas price on the right.

———– insert Figure 1 about here ———–

In the next section, we develop a conceptual framework that explains the intuition under-
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lying our empirical analysis. As our study focuses on the implications of Ethereum’s market

for transactions on the heterogeneity of complements offered on the network, the framework

mainly focuses on the implications of gas fees on the usage of dApps. For an analysis of how

gas fees impact the user (i.e., transaction senders) and miners in the network, we refer to

Cong et al. (2022) and Basu et al. (2019).

4 Conceptual framework

The driving force behind our framework is that the usage of a dApp—hence its success—on

Ethereum depends on the usage of the platform, which in turn again depends on the usage of

other dApps.12 However, due to two countervailing forces, it is unclear if increasing the user

base and dApp base benefits all dApp providers. On the one hand, entering dApps attract

new users to the platform, which fosters the platform’s adoption, and enlarges the number

of possible users of the focal dApp. On the other hand, the limited supply of transactions

in combination with the first-price auction that allocates this limited supply aggravates the

direct competition among dApps by introducing a negative externality: new dApps and users

increase demand and intensify the competition for the limited supply of gas. The increasing

demand and competition lead to increasing congestion costs and higher gas prices. Because

transaction initiators need to pay transaction fees to interact with every dApp, increasing

gas prices lessen the overall utility and, thus, the usage of dApps. Accordingly, the relative

magnitude of these countervailing effects will determine the effect of Ethereum’s market for

12It is important to note that although our empirical analysis is—due to the selection of our instrumental
variable—limited to a period when Ethereum relied on PoW as a consensus mechanism, our theoretical
arguments also apply to the period when Ethereum updated to PoS. Our arguments also apply to the period
after EIP1559 (Ethereum Improvement Proposal). Although EIP1559 introduced a more flexible block gas
limit and introduced an upper limit to the amount fees users can pay miners to incentivize them to process
their transaction fast, it neither changed the fact that the supply of gas is still fixed and that users can
outbid others by paying higher fees. The update to PoS only removed the computationally expensive puzzle
of finding a new block but did not change the fact that users still need to compensate miners for validating
and enforcing their transactions by paying fees for the gas used by their transactions. In a similar vein,
our arguments should also apply to other smart contract-enabling platforms that rely on an auction-based
transaction validation comparable to the one discussed above (e.g., Aztec Network, Binance Smart Chain,
Optimism, Polygon,).

19



transactions on the success of the platform complements.

Although the net impact of increasing gas prices as a response to more platform usage

is theoretically undetermined—due to the countervailing forces described above—we can

analyze which characteristics of a dApp expose it more to changes in the gas price. Under-

standing this is not only useful for the complementors’ decision to enter such a market but

also for the platform provider, as it might have important implications for the heterogeneity

of complements offered on the platforms. We hypothesize that depending on four character-

istics, dApps are more or less sensitive to changes in the gas price and, therefore, better or

worse equipped to compete in a market for transactions.

First, we expect that the type of service a dApp offers influences its sensitivity towards

changes in the gas price. This intuition becomes clear when considering that some dApps

provide social and entertainment services while others provide financial or security-related

services. Although finance dApps do not necessarily provide more utility to users than

leisure-related dApps, it is easier to compute the expected utility of a finance transaction.

Therefore, it should be easier for users to evaluate if they still want to send a transaction

whereas for other dApps the uncertainty and cognitive effort to gauge the expected utility

will deter them from sending a transaction. Further, finance-related transactions are often

more time-sensitive, and as Donmez and Karaivanov (2021) show, users on Ethereum are

more willing to pay higher gas fees for timely transactions. Another reason why types of

services might differ regarding their gas price elasticity of demand might be the frequency

of required interactions. For instance, property and identity-related dApps typically require

only infrequent interaction, whereas gaming or finance dApps require regular interactions.

Through frequent interactions, gas fees can quickly accumulate and deter usage.

Second, even within the same type of service, dApps can substantially differ regarding

the requirements of the transaction. For example, dApps can differ in the complexity of the

underlying transaction and hence the gas required for the computation of it. On the one

hand, the gas requirement correlates with the complexity of the underlying functionality. On
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the other hand, it is also driven by the efficiency of the code itself. Particularly within the

same type of service, where the functionality and complexity of transactions with dApps is

similar, the code’s efficiency should be the main determining factor for the gas requirement.

Especially in times of high gas prices, we expect users to be more sensitive to such differences

and use dApps that require less gas for the same functionality. Another factor determining a

dApp’s gas price sensitivity should be the value transferred in a transaction with a dApp. For

example, finance dApps carry value to transfer money to other accounts or to invest it (e.g.,

provide money to a liquidity pool). Other dApps require users to pay for their services (e.g.,

getting external data from an off-chain data sources called oracle) or to purchase goods (e.g.,

buying NFTs). Considering that some NFTs are sold for well above $100,000,13 it becomes

evident that even gas fees of a few dollars are negligible. Therefore, we expect that depending

on the average transaction value that a dApp usually carries, the dApp should be more or

less sensitive to changes in the gas price.

Third, dApps also differ in the overall quality of their services or their usability and

hence in the value they create for their users. Accordingly, some dApps are more appealing

to users than others. These dApps should not only perform better at baseline but are also

more likely to benefit from the entry of other dApps. Consider, for example, that numerous

new dApps enter Ethereum. This should attract additional users since users appreciate

product variety. But once the users join, they will disproportionately choose the dApp

offering more utility. This effect can be exacerbated if the dApp itself benefits from network

effects, which should be the case for dApps such as currency exchanges, marketplaces, or

social messengers. For such dApps, the increasing utility due to the larger network could

counterbalance the additional fees resulting from the intensified competition for gas among

dApp users.

Fourth, the current performance of a dApp should influence users’ willingness to pay for

a transaction with the dApp. Again, especially for dApps that rely on network effects, the

13For example, see CryptoPunk which are sold for as much as 8,000 Ether:
https://opensea.io/collection/cryptopunks
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number of other users of a dApp should increase the value of transacting with this dApp.

To understand how Ethereum’s market for transactions influences dApp usage, we next

empirically investigate the drivers of dApps’ transaction fee sensitivity as hypothesized above.

5 Data and sample construction

5.1 Research context and data

We combine daily block and transaction-level data publicly stored on the Ethereum blockchain

with three different data sources that provide supplementary off-chain data, such as the cat-

egory of the dApp or the exchange rate for one Ether or other tokens. Below we explain the

data sources and the resulting sample and then discuss the variables in our data set.

5.2 Data collection procedure and sample

We obtained our data from four different sources. First, we use the Ethereum ETL14 to down-

load all block-level and transaction-level data publicly stored on the Ethereum blockchain

for our study period (July 1st, 2017, until December 31st, 2020).15 The block-level data

include a unique identifier (i.e., block hash), a timestamp, the difficulty of the block, the gas

limit, which indicates the maximum of gas miners are allowed to use in this block, and the

gas used, which is the sum of computational effort the validation of all transactions in this

block required. The transaction-level data contain the block hash, a sender and recipient

address, the gas used by this transaction, and the gas price the sender has paid for one unit

of gas in GWei (1 GWei = 10-9 Ether). Second, we use two websites that provide a curated

list of dApps (stateofthedapps.com and defillama.com) to identify dApps that are running

on Ethereum, the addresses of their associated smart contracts, and the category of the

14https://ethereum-etl.readthedocs.io/en/latest/
15We chose this study period as it allows us to observe three periods where the additional difficulty

induced by the difficulty bomb caused a shortage in gas supply (see Figure 2 and Ethereum Improvement
Proposal (EIP) 649, 1234, and 2384).
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application. This step allows us to map the pseudonymous smart contract addresses on the

blockchain to their respective dApp and is necessary because a dApp can rely on multiple

smart contracts. Overall, we identified 1,590 dApps with 4,680 associated smart contracts

active in our study period. As neither stateofthedapp.com nor defilama.com provides an

exhaustive list of all smart contracts associated with a dApp, we further collect a list of

all verified smart contracts from the Etherscan API16 and manually match 1,316 additional

smart contracts to the dApps in our sample. Through the address of the smart contracts, we

can link transactions with their associated dApps. We also use the Etherscan API to collect

further daily network-level data, such as network utilization, which measures the extent to

which the block gas limit has been used. Finally, we retrieve the daily prices for one Ether

and other tokens associated with the dApps in our sample from the CoinGecko API.17 To

ensure that all variables are on the same level and to mitigate high-frequency variation in

the data, we first merge the block-level and transaction-level data by using the block hash

reported for every transaction and then aggregate the resulting data at the daily level. Our

consolidated dataset covers 1,279 days. Table 1 provides an overview of the number of dApps

per group of categories. We obtained the groups by a cluster analysis based on variables

describing the dApps’ usage pattern (e.g., daily transaction count, transaction value, average

gas requirement) .

——– insert Table 2 about here ——–

5.3 Data sets, variables, and measurement

Besides the daily aggregation, we further aggregate transactions on the level of a dApp.

Our main variable of interest is the quantity of gas used (gasUsedt). It refers to the daily

amount of computational validation effort demanded by all transactions with a dApp. It is

measured in Giga gas units. This variable operationalizes the goods supplied by the miners

16https://etherscan.io/apis
17https://www.coingecko.com/en/api/
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and demanded by the transaction senders.

The gas price is the price (in GWei) transaction initiators must pay for each gas unit.

As the gas price an initiator pays varies according to the outcome of a first-price auction,

we define the gas price in times of the marketGasPricet a sender would have had to pay

for their transaction to just make it into one of the blocks on a given day. We proxy this

market price with the daily average of the bottom fifth percentile gas price recorded on each

block on that day in GWei. We use this proxy because there are some blocks where miners

circumvent the market mechanism and add their own transactions at a gas price close to

zero or even zero. Accordingly, using the minimum gas price (i.e., the lowest gas price on a

day at which a transaction is just included in a block) would not correctly reflect the market

mechanism. We also run several robustness checks with alternative gas price variables (e.g.,

different percentiles of the gas price in USD).

We define the variable difficulty bomb (difficultyBombt) as the average additional dif-

ficulty induced by Ethereum’s difficulty bomb on a given day. Next to the automated

adjustment of the mining difficulty, the difficulty bomb is the second mechanism encoded

in Ethereum’s protocol that influences the total network difficulty (i.e., the average number

of hashes it takes to find a block). The goal of the difficulty bomb is to force miners to

switch from PoW to PoS once the PoS update is available. To this end, the difficulty bomb

exponentially increases the mining difficulty until it is almost impossible to find new blocks

by solving the PoW puzzle. As Ethereum planned right from its start to switch to PoS

at some point, the difficulty bomb was always part of the protocol. However, because the

update to PoS was delayed several times, the difficulty bomb increased the difficulty too

fast, resulting in a disproportionate increase that was not reflected by the network hash rate

and the discovery of significantly fewer blocks per day. Because the resulting shortage in

gas was not intentional (the plan was that PoS-blocks would grow at the same rate as the

PoS-blocks would decline), the Ethereum community issued a protocol update that turned

back the additional difficulty. Over our study period, this pattern occurred three times and
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is reflected in three protocol updates (EIP649, EIP1234, and EIP2384). As the difficulty

induced by the difficulty bomb is not reported in any database, we leverage the fact that

Ethereum’s protocol continuously tried to keep the block time within the target window of

12-14 seconds and constructed the variable as follows. The difficulty induced by the difficulty

bomb on a day d is the difference between the total observed difficulty and the theoretical

difficulty required to reach the target block time, given the current hash rate in the network.

Accordingly, the difficulty bomb on a day d is:

difficultybombd = difficultyobserved,d − (networkhashrated × targetblocktime)

The unit of this variable is the number of Tera hashes it requires on average to find a new

block. Due to the exponential growth and the fluctuation of the network difficulty within

the target window, especially at the beginning of the activity of the difficulty bomb, the

added difficulty is not always distinguishable from zero. To account for this fact, although

the difficulty bomb is always active, we only assign a positive value to the difficulty bomb if

the block time is noticeably above the target window (> 14s). According to this conservative

approach, we only observe on 16% (182 days) of all days in our sample a difficulty bomb above

zero. To establish robustness, we also use different cutoffs and approaches to measure the

activity of the difficulty bomb. We will discuss our instrument’s relevance and exogeneity

later in the empirical strategy and results section. Figure 2 overlays the network hash

rate with the observed total mining difficulty. Gaps between both curves indicate excessive

difficulty added by the difficulty bomb.

———– insert Figure 2 about here ———–

To account for the degree to which miners fill the blocks on a given day, we measure

the network utilization (networkUtilization) as the fraction of total available gas (sum of the

gas limit of all blocks) on a day that is used by all transactions on that day in percent. It

captures the platform’s usage level and has been used by prior researchers as a measurement
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for congestion (Donmez and Karaivanov 2021).

In addition to these variables, we compute several measures that allow us to study the

transaction requirements of each dApp or their usage patterns. To reflect the complexity

of an interaction with a dApp, we measure the average gas requirement (avgGasRequire-

ment) of a transaction with a dApp. To reflect the requirements of a transaction with a

dApp, we measure the average value of Ether (avgValue) or (avgTokens) a dApp receives

as a proxy for how much value transactions with the dApp usually carry. In addition, we

measure the following performance indicators for every dApp: average daily transaction ac-

tivity (avgDailyTxn), average number of unique externally owned accounts (avgDailyEOA)

that transactions with a dApp (i.e., our proxy for users),18 the average gas price users pay

for a transaction with a dApp (avgGasPricePaid), the average number of transactions per

externally owned account on a given day (avgTxnPerEOA), and the surplus gas price the

transaction senders paid beyond the market gas price on a given day surplusGasPrice.

We also control for the following network-level variables: Ether price (EtherPrice) is the

exchange rate of one Ether in USD on the day the transaction was executed; Ether volatility

EtherVolatility measures the daily change in the exchange rate of one Ether; gas limit gas

Limit measures the sum of all block gas limits on a day and accounts for the fact that over our

sample period, the total units of gas that can be used in a block has been increased several

times; and finally day of the week (weekday) and year (year2017-2020 ) dummy variables,

and a trend (trend).

Based on this data, we created two data sets. The first data set is aggregated on the

network level and has one time series for all transactions on Ethereum (including Ether

transfers between wallets), one for all dApp transaction in our sample, and one for every

group. This data set allows us to estimate a demand curve for each group of dApps in

our sample and compare it to the demand curve of all transactions. The second data set

18Technically it is possible to differentiate between smart contract addresses and wallet addresses, but
not if a wallet address is controlled by a bot. To account for this fact, we refrain from calling wallet ad-
dresses “users” and call them instead “externally owned accounts” to emphasize that they do not necessarily
correspond to human users. Therefore, this variable is only a proxy.
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is a panel data set on the dApp-day level. It only comprises transaction to dApps in our

sample. It allows us to control for dApp level fixed effects and to conduct further moderation

analyses.

Table 3 provides descriptive statistics and correlation scores for all variables in our

network-level data set. Table 11 in Appendix 9 show descriptive statistics and correla-

tions for our dApp-level data set.

—– insert Table 3 about here —–

6 Estimation strategy

In this section, we discuss our baseline specification and the instrumental variable (IV) we

use to address the endogeneity of the gas price.

6.1 Baseline specification

The specification for our dApp-level analysis is:

log(gasUsedt) = α0 + α1 log(marketGasPricet) + α2networkUtilizationt+

α3networkUtilization
2
t + α4 log(EtherPricet) + α5 log(EtherVolatilityt)+

α6 log(gasLimitt) + µday of week + µyear + trend + ut

where gas used is the equilibrium gas demand aggregated over all executed transactions on

the network or per group of dApps in the period t (day), µdayofweek denotes the day of week

effects, µyear the year effects, and ut is the error term. We chose a log-log specification for

gas used and market gas price to be able to interpret α1 as the price elasticity of the demand.

Due to the skewed distributions of Ether price, Ether volatility, and the gas limit, we use log-

transformed versions of these variables in our specification. In addition, we also control for

the level of network utilization. This allows us to control for the degree to which miners use
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the available block gas limit on a given day and has been used by prior scholars as a measure

of network congestion (Donmez and Karaivanov 2021). We also add a quadratic term to

account for the nonlinear relationship between gas price and network utilization.19 Our

specification for the dApp-level data set resembles the equation above but adds a dApp-level

fixed effect (see Appendix 9 )

6.2 Validity of the instrument

In this model, log(gasUsedt) and log(marketGasPricet) are the endogenous variables, as both

are jointly determined in equilibrium. To address this simultaneity issue, we use the diffi-

cultyBomb as an instrumental variable in a two-stage least squares approach (2SLS). In the

first stage, we use the difficulty and all other control variables listed above to predict the

log(marketGasPricet). In the second stage, we estimate the specification above by replacing

the log(marketGasPricet) with its predicted value. The economic intuition underlying our

approach is that we leverage the difficulty bomb as an exogenous supply shifter. Due to

the consistent adjustment of the network difficulty and the resulting constant block time,

the gas supply curve resembles a fixed vertical line. When the difficulty bomb is active, the

added difficulty increases the block time and thus decreases the number of blocks on a given

day. As the maximum gas a block can contain is limited, fewer blocks lead to a decrease in

the gas supply and hence a horizontal shift of the supply curve to the left. We exploit this

supply shift to identify the demand curve.

We argue that the difficulty bomb is exogenous and influences the gas demand only

through the increased gas price for three reasons. First, it is programmed into the Ethereum

protocol, and changing it requires a successful protocol update (called Ethereum Improve-

ment Proposal or EIP) which is only possible after a majority vote and hence unlikely to be

a response to a short-term market situation. Therefore, the difficulty bomb and its resets

19We also compute the same model with a threshold specification where we added only the linear term
and dummy variable that takes on the value one if the utilization level exceeds 90%. The were qualitatively
the same regarding the magnitude and significance of the coefficients we obtained.
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bomb can be seen as exogenous policy interventions. Second, as the difficulty level is not

reported in wallet applications or by an API and has to be manually calculated (see Section

5.3), it is plausible to assume that ordinary Ethereum users were not aware of the existence

of the difficulty bomb. Third, even if users were aware of the existence of the difficulty bomb,

it is difficult for them to comprehend its exponential growth and differentiate its impact—at

least in the initial phase—from normal fluctuations due to the exit and entry of miners.

Further, it would also be difficult for users to predict the mining power and cost structure

of every single miner and to evaluate when they cannot keep up with the difficulty level.

7 Results

In this section, we report and discuss four sets of results. First, we report the results of

our baseline estimation and our finding of a downward-sloping demand curve. Second, we

report our results regarding different gas price elasticities for each group of dApps. Third, we

present our analysis regarding further characteristics of a dApp that determine its sensitivity

towards changes in the gas price. Finally, we discuss the additional checks we conduct to

establish the robustness of our results.

7.1 Baseline Network-level results

Following the network-level specification, Table 4 reports the results of our 2SLS demand

curve estimation. Column 1 presents the first stage results, where we predict the gas price

(log(Market gas price)) with our IV (difficulty bomb). Column 2 presents the second stage

results, where we use the predicted gas price to estimate the price elasticity of the gas demand

(log(Gas used)). Finally, column 3 provides an OLS model for comparison.

—– insert Table 4 about here —–

Consistent with our prediction, Columns 2 and 3 suggest a downwards-sloping demand

curve for gas on Ethereum. The first stage reported in Column 1 shows that an increase in
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additional difficulty due to the difficulty bomb is significantly associated with increased gas

prices. This is in line with our explanation that the added difficulty reduces the supplied

gas—by reducing the number of blocks explored per day—and thus intensifies price compe-

tition among transaction senders. The coefficient of the difficulty bomb is highly significant

even though we control for network utilization (i.e., the degree to which miners use the

available block space), network utilization squared,20 the exchange rate of Ether to USD,

the daily fluctuation of this exchange rate, the block gas limit, as well as day of the week

and year dummies and a common trend.

Regarding the validity of our instrument, by comparing the first-stage with and without

the instrument, we obtain an incremental F (305.20) that is well beyond the suggested cut-

off of 10 (Stock and Yogo 2005) and thus suggests that our instrument strongly correlates

with the endogenous gas price. To test the relevance of our instruments, we compute the

Stock-Yogo test for weak instruments, which shows that the Cragg-Donald-Wald F Statistic

(85.6) exceeds the predetermined critical value (16.38). Further, we compute the Kleibergen-

Paap LM Statistic (4.18) for under-identification, which is highly significant. These tests

suggest that our instrument is both strong and relevant. Regarding the exogeneity of our

instrument, we have already explained above that the difficulty bomb does not impact the

gas demand through means other than an increase in gas price as the mining difficulty simply

is a “production factor” for miners that is unlikely to be tracked by the casual Ethereum

user.

When comparing the 2SLS estimate with the OLS results, we find that although it is

still negative and significant, the OLS estimmate is smaller in size (2SLS: -0.69 vs -0.04). To

understand this underestimation of the true effect of the gas price on the demand, consider

a positive but unobserved shock in demand. This shock shifts the demand curve upwards.

20The inclusion of the quadratic term is suggested by a scatterplot that shows a highly nonlinear rela-
tionship between the network utilization and the gas price. Especially, when the network utilization exceeds
90% the gas price increases dramatically. We also performed a robustness check using a threshold effect at
90% network utilization in form of a binary variable that is equal to 1 if the utilization is above 90% and 0
otherwise which we then interact with the linear term. This finding is similar to Donmez and Karaivanov
(2021) who test the impact of congestion on the gas price for a shorter observation period.
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Given the fixed supply of gas this demand shift leads to a higher intersection of the demand

curve with the supply curve and an increase in the equilibrium price. As a result, the

unobserved error and the gas price are positively correlated which leads to a downward

bias when not controlling for the endogeneity of the gas price. Accordingly, without our

instrument the true effect of the gas price on the demand for gas would be underestimated.

To interpret the magnitude of the effect of the gas price (log(marketGasPricet)) on the

demand of gas log(Gas used), the coefficient of -0.69 implies that a 1% increase in the market

price of a unit of gas decreases the amount of gas demanded by 0.69%. Considering that

the average transaction on Ethereum consumes 184,000 units of gas (which corresponds to

a normal smart contract interaction), this equals a decrease of approximately 1,750 smart

contract transactions per day or 15,000 Ether transfers which require 21,000 units of gas.

Considering that the median dApp only receives eight transactions per day, the order of

magnitude of this effect can have significant economic implications.

In sum, this analysis provides first empirical evidence that the well-established “law of

demand” (Gale 1955) also applies to the validation service of transactions on Ethereum.

It also provides evidence that Ethereum’s gas price mechanism introduces a form of price

competition among transaction senders that counteract the main prediction of the two-sided

market literature (Rochet and Tirole 2006), i.e., that, due to the same-side network effect,

an increase in the demand side draws even more consumers into the market and leads to

subsequent increases in demand. On Ethereum, an increase in transaction senders increases

not only the utility of transacting on Ethereum but also price competition. However, as the

demand for gas is negatively associated with its price, the market mechanism underlying

Ethereum’s transaction validation process dampens the effectiveness of same-side network

effects.
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7.2 Differing demand curves per group

In addition to estimating a demand curve for all transactions on Ethereum, we also estimate a

specific demand curve for every group of dApps along with their confidence intervals. Table 5

reports the second stage result of this estimation. Each of these models uses the aggregated

daily gas used by all dApps within the respective group as the dependent variable. Columns

2-6 depict that the coefficients of log(Market gas price) significantly vary between the groups

of dApps and thus signal that the groups differ regarding their sensitivity to changes in the

gas price.

—– insert Table 5 about here —–

To compare the different gas price elasticities, we also compute their 95 percent confi-

dence intervals. Figure 3 depicts these intervals and shows that not all elasticities can be

distinguished with enough confidence, but some significant differences are still noticeable.

Especially games and marketplaces (group 3) seem to be far more sensitive to changes in

gas prices than dApps in group 1 and group 2. Considering that group 3 mainly comprises

collectible games, such as crypto kitties, where the timing of the transaction does not mat-

ter as much as, for example, finance or cryptocurrency exchange dApps, where the timing

often matters due to swift changes in prices of cryptocurrencies, this result seems plausible.

Further, the one-time nature and relatively high transaction values in group 2 (identity and

property dApps) can explain why users are relatively insensitive to changes in the gas price.

—– insert Figure 3 about here —–

7.3 Heterogeneous effect of Ethereum gas price mechanism

Beyond the category of a dApp, we use our rich data to explore further the characteristics

of dApps that impact their sensitivity toward the gas price. For this analysis, we use our

dApp-level data set. Appendix 9 shows the baseline results for this data set. The first
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set of characteristics pertains to the formal requirements of a transaction with a dApp.

These characteristics are the amount of gas a transaction with a dApp requires and the

value of Ether and tokens a transaction with a dApp usually carries. To analyze these

characteristics, we computed the total average for all these variables over all transactions

a dApp has received. Because this average is time-invariant, we interacted these variables

with the gas price and group in different models: In Table 6, Columns 1 and 4 show the

two-way and three-way interaction models regarding the average gas requirement; Columns

2 and 5 show the interaction models with the average Ether value sent; and Columns 3 and

6 the models with the average token value sent.

—– insert Table 6 about here —–

Regarding the gas requirement of a transaction with a dApp, we do not find a significant

two-way interaction effect between the gas price and the average gas requirement (Column

1), but we find significant three-way interactions between gas price, gas requirement and

group two, three, and four (Column 4). These interactions indicate that for some groups

of dApps, the two-way interaction significantly differs from the reference category (group

1). For instance, for gambling dApps, the negative coefficient of the three-way interaction

(-0.24) implies that the negative impact of the gas price on the gas demand is even stronger if

the gambling dApp demands a high amount of gas for a transaction. On the other hand, for

dApps in group 2, the coefficient of the three-way interaction is positive (0.58). This implies

that, in comparison to the dApps in group 1, for identity and property dApps, a high gas

requirement counteracts the downward slope of the demand curve to some extent, leading

to a decrease in the sensitivity towards changes in the gas price. One possible explanation

for this finding could be the required frequency of interaction with a dApp. In contrast to

gambling and finance applications, where users obtain utility from regularly interacting with

dApps, identity and property dApps only require sporadic transactions. If a property dApp

bundles more functionality into one transaction, not only the gas requirement but also the

utility of the transaction increase. Accordingly, the user might be willing to accept high gas
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prices for this transaction as the additional gas fees become less relevant in relation to the

one-time transaction effort. For gambling and finance applications, however, users generate

utility through more frequent interactions. Here, more functionality in a single transaction

might increase the utility but, in the long-run, also pile up more transaction fees. Thus, users

might be less inclined to higher gas requirements as they prefer less complex but dedicated

functions realized through singular transactions. Another explanation could be that due to

the frequent interaction gambling dApps require, there is more pressure for such dApps to

improve the efficiency of their smart contracts in terms of gas requirement.

Regarding the average value (in Ether or other tokens) sent with a transaction to a

dApp, we find a positive moderation of the negative demand curve (Columns 2 and 3).

The positive interaction coefficients between the log(marketGasPrice and the log(avgValue)

(0.14) and log(avgTokenValue) (0.31), in combination with the negative linear coefficient

of the gas price (-0.64 and -0.74) are an indicator that the gas price elasticity of dApps

decreases with a higher average transaction value. This finding is in line with prior studies

that find users’ fee sensitivity declines with the transaction value (e.g., Wang and Wright

2017).

Regarding the three-way interactions (log(marketGasPrice) × log(avgValue) × group2-5

and log(marketGasPrice) × log(avgTokenValue) × group2-5 ), we only find that one out of

the eight coefficients is significant. This indicates that, apart from group 5, the positive and

significant interaction of the transaction value with the gas price does not differ across the

groups of dApps and suggests that dApps that receive a higher average transaction value

exhibit a less elastic demand curve.

Next to the requirements of a transaction with a dApp, we also computed average perfor-

mance indicators for each dApp. Table 7 reports the interaction result regarding the average

daily number of transactions, the average daily number of externally owned accounts (EOA),

and the average daily transactions per EOA.

—– insert Table 7 about here —–

34



For the average daily transactions and average daily EOA, we find a positive and sig-

nificant two-way interaction with the gas price. This suggests that the demand for gas for

transactions with dApps with a high average of daily transactions and users is less impacted

by changes in the gas price. However, by adding the group dummies to these two-way inter-

actions, we find that this interaction significantly differs between dApps in group one and

all other groups. Whereas dApps in group 1 still seem to benefit from more transactions

and EOAs—as indicated by the positive and significant two-way interactions between the

gas price and the average number of transactions (Column 4, 0.39) and the average number

of daily EOA (Column 5, 0.39)—the three-way interactions with all other groups are highly

significant and negative. This indicates that for dApps in these groups, the effect of receiv-

ing, on average, more transactions or having more unique EOAs transacting with them is less

prevalent or even makes them more sensitive to changes in the gas price. Again, network

effects could be a plausible explanation for this observation. Particularly, finance dApps

and cryptocurrency exchange dApps should highly benefit from network effects. A gas price

increase caused by an influx of additional users could be compensated by the additional util-

ity the growing number of users provides to finance and exchange dApps. Simultaneously,

because dApps from other groups benefit less from network effects, they cannot compensate

for the additional gas fees their users would have to pay to transact with them. Especially,

for dApps that already have a high average number of users but fail to benefit from network

effects, this effect can lead to an increase in the sensitivity towards the gas price and a

decline in demand for transactions with these dApps—especially in times when there is less

supply of gas and fierce price competition. For the average number of transactions per EOA

(Columns 3 and 6), we only obtain a few significant results that do not allow us to infer

systematic patterns.

—– insert Table 8 about here —–

To further investigate network effects, we analyze the impact of dynamic usage indicators

that vary for each dApp over time. Table 8 reports the interaction results of the daily ratio
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of transactions per EOA and the average price users were willing to pay above market gas

price. Regarding the number of transactions per EOA, we find a positive interaction (0.08,

Column 2) between the number of transactions per EOA and the gas price (log(Market gas

price)). According to the three-way interactions, except for group 5, this moderation does

not significantly differ between the different groups of dApps. Because for dApps in group

five, the interaction is even stronger than for all other dApps, attracting heavy users might

be a valid strategy for these dApps to survive the competition in a market for transactions.

Considering that group 5 comprises dApps such as storage or energy services and given the

strong lock-in effects these services typically exhibit, also these findings seem plausible.

Finally, regarding the average surplus gas price transaction senders are willing to pay on

a given day for transacting with a dApp, we also observe a positive interaction with the gas

price (0.16, Column 5). Again, except for group 5, this moderation approximately remains

its direction and magnitude across the different groups. Only for group 5, the three-way

interaction has a negative sign. This implies that, in comparison to dApps in group 1,

dApps in group 5 are more sensitive to changes in the gas price in periods where their users

overpay the market gas price. Such periods could be periods with high fluctuations in the

gas price that expose users to high uncertainty regarding the gas price and forces them to

overpay for a certain inclusion of their transaction. Therefore, a possible explanation for the

negative three-way interaction could be that users of dApps in this group are more sensitive

to this form of uncertainty related to overpaying and thus react by becoming more price

sensitive.

7.4 Additional robustness checks

To assess the robustness of our analysis, we tested them against several alternative measures

and samples. For example, we used the transaction count instead of gas used, applied

different levels of winsorization to restrict the impact of possible outliers, used different

percentile and levels of winsorization for the market gas price together with the average
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gas price, and also a different measurement of the difficulty bomb where we subtracted the

observed number of blocks from the target number of blocks given the targeted block time.

Further, we also conducted our analysis only for the periods where the difficulty bomb was

active. Table 13 reports the coefficients we obtain through the robustness tests. Overall, we

find the results to be consistent with the results of our baseline specification.

———— insert Table 9 about here ————

Moreover, we further report two additional analyses that corroborate our results in the

appendix. The first analysis replicates parts of our analysis on the network level. For this

analysis, we aggregated all transactions on the network and group level instead of the dApp

level. Rather than using the group as an interaction term, this allows us to estimate a

dedicated demand curve for each group of dApps. The results we obtain are qualitatively

the same, except that we do not observe an upwards-sloping demand curve for group 1

(finance dApps) but a slightly downwards-sloping demand curve. The second analysis is a

survival analysis that shows that dApps from different groups are subject to different hazard

rates.

8 Discussion

8.1 Interpretation of results

Blockchain technology allows substitution a centalized platform intermediary with a de-

centralized market mechanism and thus has induced a paradigm shift in how we think of

platform designs. Although there is a burgeoning stream of theoretical (Easley et al. 2019,

Basu et al. 2019, e.g.,) and empirical (Ilk et al. 2021, Donmez and Karaivanov 2021, Cong

et al. 2022, e.g.,) research that has started investigating the consequences of replacing a

platform intermediary with a market mechanism for the validators and users, there is a lack

of research focusing on the consequences of such a mechanism for the complements offered
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on blockchain platforms. Addressing this gap is important for three reasons. First, it pro-

vides an interesting opportunity study to what extent the invisible hand of the market can

orchestrate an appealing ecosystem of platform complements. Second, it allows studying a

new source of negative network effect induced by the competition of complements for the

same resource. Finally, as we know from the platform literature (Rietveld and Schilling 2020)

how crucial complements are for the success of a platform, addressing this gap also helps us

understanding if and how blockchain platforms will be able to compete with their central-

ized counter parts. To address this gap, our goal was to test our hypothesis that a market

mechanism that forces all sorts of complements to compete for the same resources (i.e., the

verification of transactions) and allocates these resources only based on the users’ willingness

to pay might be efficient in the short run but lead to undesirable long term consequences.

Our empirical analysis has provides three main insights into this hypothesis. First, using

a novel instrumental variable (i.e., Ethereum’s difficulty bomb), we address the simultaneity

issues of demand and supply and estimate a demand curve for transactions on a blockchain

platform that offers third-party complements. Although the downward-sloping demand curve

we find aligns with basic economic theory and might seem trivial, this finding is significant

because scholars previously questioned the applicability of economic theory to transactions on

blockchain platforms due to the prevalence of malicious and erroneous transaction behavior

(Donmez and Karaivanov 2021). Our results confirm that economic theory can indeed be

applied to transactions on blockchain platforms, providing a necessary foundation for further

analysis of blockchain fee markets. Furthermore, this result is crucial as it reveals the

magnitude of the effect of changes in the gas price on transaction demand. According to our

estimation, a 1% increase in the gas market price reduces demand by 1,703 smart contract

transactions per day or 14,923 Ether transfers. Our instrumental variable also indicates that

without addressing the endogeneity issue surrounding the gas price, we would underestimate

the price sensitivity of demand and the detrimental effect of increasing gas prices. Given

that the majority of dApps have fewer than a few hundred daily transactions, this finding
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emphasizes that even small price increases can significantly reduce transaction volumes for

many dApps. Consequently, stabilizing gas price fluctuations should be a top priority for

platform providers.

Second, as predicted by our hypothesis, we confirm that different types of dApps exhibit

varying sensitivities to changes in the gas price. While this finding may not be surprising, the

magnitude of the effect is noteworthy. On average, users on Ethereum demonstrate relatively

inelastic demand (α1, all dApps =-0.45) However, the elasticities of demand for different types of

dApps vary significantly. For instance, with a coefficient of -2.09, the demand for transactions

with gaming dApps is highly elastic. A 1% increase in the gas market price is expected to

decrease daily gas demand by 17.2 million units of gas or 172 transactions, assuming a

simple transaction with a gaming dApp requires 100,000 units of gas. Considering there

are, on average, 18,985 daily transactions with gaming dApps during our sample period, a

10% increase in the daily gas market price (e.g., from an average of 14.11 to 15.52 GWEI)

will result in a 9% decrease in transactions with gaming dApps, potentially causing many

gaming dApps to receive no transactions at all. Although our estimates indicate less elastic

demand curves for groups 2, 4, and 5, Figure 5 empirically shows that transactions to dApps

in these groups are also crowded out by finance dApp transactions when gas prices rise. This

analysis reveals that, contrary to the claims of Ethereum’s market fee mechanism proponents,

dApps with higher sensitivity do not merely experience longer wait times for transaction

processing. Instead, sustained periods of high gas fees imply that their transactions will

never be validated and ultimately dropped from the pool of pending transactions.

———— insert Figure 5 about here ————

Third, according to our moderation analysis, dApp providers have almost no strategic

tools to influence their price sensitivity and mitigate being crowded out by finance transac-

tions. One valid attempt would be to optimize the dApp’s smart contract gas requirements.

However, depending on the smart contract’s intended functionality, the optimization po-

39



tential might be limited 21 and also available to finance dApps and hence will not help to

counteract their users’ comparatively lower willingness to pay. Another approach revealed

by our analysis is to increase the transaction value, as transactions with higher value are less

price sensitive. While this approach might be feasible for identity and property dApps (group

2) and could explain why they are less sensitive to changes in the market gas price, other

dApps, such as gaming (group 3) or social messenger dApps (group 4), require transactions

with little to no transaction value. Finally, dApps could also try to create network effects.

However, building artificial network effects is more difficult for most applications compared

to finance dApps, particularly DeFi dApps, which naturally benefit from network effects.

Given this limited toolset to counteract the implications of Ethereum’s market mechanism

and the limited strategic tools available to platform providers to protect disadvantaged com-

plements, especially applications with a high sensitivity to changes in the gas price, might

not be viable on such platforms in the long run.

8.2 Unintended consequences of Ethereum’s market mechanism

Our empirical results provoke an important discussion about efficiency versus fairness on

blockchain platforms that use a market mechanism to allocate the limited supply of trans-

actions and ensure decentralization. On the one hand, allocating transaction supply to the

parties with the highest willingness to pay is efficient, as it leads to a Pareto-optimal al-

location and maximizes returns for validators. Additionally, it provides an objective basis

for the optimal allocation decision, which can be automatically enforced by a decentralized

protocol. On the other hand, assessing the fairness of a purely market-based transaction

supply allocation is more challenging, as it depends on the platform’s goals and definition of

equitable benefits and burdens. Blockchain platforms typically follow a utilitarian approach

and claim decentralization is “fair” because they replace a centralized, profit-maximizing

platform provider with a market mechanism. However, from a more socially focused per-

21https://www.vibraniumaudits.com/post/gas-optimization-in-ethereum-smart-contracts-10-best-
practices
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spective on fairness, one can argue that a market mechanism is not fair in terms of social

equity, as it does not ensure a basic level of service to all parties. For instance, Cong et al.

(2022) show that despite claims that blockchain helps to bank the unbanked, platforms like

Ethereum exclude poorer individuals from transacting on the platform.

Our goal is not to resolve this debate. Instead, we aim to highlight the potentially un-

intended consequences of a purely market-based transaction allocation mechanism and to

shed light on the mismatches between the economic reality of blockchain platforms using

such mechanisms and the Web 3.0 rhetoric they employ to advertise the value they create.

The first unintended consequence is a long-run loss in complement heterogeneity. As some

types of dApps are more sensitive to increasing gas fees than others, rising gas prices—driven

by the entry of less price-sensitive dApps—imply that more price-sensitive dApps will receive

fewer transactions. Our analysis shows that even small to moderate gas price increases can

cause some dApps to stop receiving transactions and leave the market. This mechanism is

problematic because factors other than the quality of the dApp (e.g., the type of application

or transaction value) determine its sensitivity to changes in the gas price. Finance appli-

cations, in particular, exhibit lower gas price sensitivity and may crowd out other types of

applications. Figure 6 illustrates this dynamic. It depicts the number of active finance (red

line) and non-finance (blue line) dApps together with the gas market price in GWEI.number0

We can see that in 2020, the gas price significantly increased as more finance dApps entered

the market. At the same time, the high transaction fees prevented non-finance dApps from

receiving transactions, forcing them to exit the platform. This loss of complement diversity

is problematic because platform users value the diversity of complements offered on a plat-

form (Rietveld and Schilling 2020). Furthermore, it contradicts the Web 3.0 goal of enabling

a wide range of applications on decentralized platforms.

———— insert Figure 6 about here ————

The second unintended consequence is closely related to the first and is a loss of the

0A supplementary survival analysis in Appendix9 confirms this crowding-out effect.
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platform’s experimentation and innovation capability. As the market mechanism prioritizes

current willingness to pay over the future potential of a dApp, high gas fees prevent new and

small dApps from entering the platform, as they will not receive any transactions. With-

out transaction activity, these dApps cannot validate their product-market fit, especially

when their product depends on network effects. Consequently, a market mechanism that

allocates the supply of transactions might prevent promising new applications from growing

and reaching a critical mass of users that would justify paying higher transaction fees, even

if the dApp would be beneficial for the platform in the long run. Figure 7 provides evidence

for this argument. It splits the gas price history depicted in Figure 6 into three regimes

and plots the number of dApps over their age when they exit the platform. In the first

two periods, there is a lot of experimentation, with many young dApps entering and leaving

the market. In the third period, when gas prices are high, this experimentation vanishes.

This loss of experimentation capability is especially problematic as blockchain technology

is still searching for its ”killer application” that will bring the technology into the main-

stream. It is questionable whether we would have seen innovations like NFTs (non-fungible

tokens) if they had been introduced after the DeFi hype. Furthermore, with the current

price regime, it is unlikely that we will see promising new applications outside of DeFi. In

terms of Web 3.0 rhetoric, the fact that this mechanism helps incumbent dApps protect their

market share and concentrates transaction traffic on a few powerful dApps contradicts the

idea of a decentralized market.

———— insert Figure 7 about here ————

The third and most concerning consequence is a phenomenon called miner– or maximal

extractable value (MEV). MEV refers to the value miners or validators can extract directly

from smart contracts due to their control over the ordering of transactions (Daian et al. 2020).

As pending transactions are typically observable in the pool of pending transactions, parties

with access to these pools can exploit the market mechanism and front-run transactions by

paying higher fees to get their transaction executed before the targeted transaction. Since the
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market mechanism prioritizes transactions based solely on the gas price the sender is willing

to pay, it explicitly enables this type of value extracting transactions. MEV transactions do

not enhance the overall welfare. They do not create value but rather extract value created

by others, clearly contradicting most notions of fairness. There is ample research attempting

to measure the extent of MEV activity (Qin et al. 2021, Park et al. 2024, Daian et al. 2020).

Although it is difficult to measure the exact extent of MEV transactions, evidence suggests

that these transactions constitute a considerable share of all transactions on Ethereum. 22

MEV parties, often trading bots, compete with other parties for the MEV, engaging in bid

wars. These bid wars further inflate gas prices and crowd out normal transactions.

MEV activity is particularly prevalent in decentralized finance (DeFi) applications, espe-

cially automated market makers (AMMs), which are among the most popular decentralized

finance platforms due to their ability to facilitate swift transactions that dominate limit order

markets under certain conditions (Capponi and Jia 2021, Lehar and Parlour 2021, Hasbrouck

et al. 2022). However, conceptual flaws in their design make AMMs especially susceptible

to sandwich attacks—a specific MEV strategy that combines front-running with at least

one back-running transaction (Park 2023). These attacks significantly exacerbate network

congestion by tripling the number of transactions required for a single operation. Therefore,

beyond exploiting individual users, our empirical findings reveal that this increase in high-

paying transactions imposes broader negative externalities on all platform participants as all

participants compete for the same supply of gas by offering higher fees. Ironically, the very

mechanism that creates this externality is what facilitates this form of MEV.

To explore the demand dynamics of MEV transactions, we use a sample of 5.5 million

MEV transactions provided by Park et al. (2024) and estimate a demand curve for these

transactions. As Table 10 suggests, the demand curve for MEV transactions is upward

sloping, providing further evidence for bid wars and the gas price inflating effect of MEV

transactions.

22https://studio.glassnode.com/metrics?a=ETHm=transactions.TxTypesBreakdownRelative
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———— insert Table 10 about here ————

8.3 Potential solutions and future research

There are three potential ways to mitigate the problem of high transaction fees and their

consequences on blockchain platforms. Each method carries its own trade-offs, and further

research is necessary to evaluate their costs and benefits.

The first approach is to rely on the invisible hand of the market and wait for it to

self-correct by creating new platforms that cater to the needs of various non-finance dApps.

However, this approach might be problematic because permissionless platforms do not control

platform entry. Consequently, they cannot prevent finance dApps from entering the platform

and restarting the cycle unless the platform provider relinquishes full decentralization and

assumes control over who is allowed to enter the platform.

The second approach is to directly address the problem of limited supply by scaling the

platform and increasing its throughput. This method is currently most actively pursued by

the Ethereum community.23 To increase throughput, either the data to be processed needs

to be reduced or compressed to fit more transactions into a block (e.g., Bitcoin’s SegWit

update), or the block size needs to be increased. As most platforms already strive to be

as efficient in their data usage as possible, and further updates would require significant

alterations to their protocols, changing the block size is often considered easier. However,

increasing the block size creates a trade-off with decentralization. Validators with less pow-

erful machines may not be able to stay synchronized with the blockchain, thus excluding

them from participating in the consensus. Another approach to scaling throughput involves

layer two (L2) scaling solutions. These solutions take transactions off the main blockchain,

process them on a separate platform, and only post the result of the transaction back on

the main blockchain(Cong et al. 2023). Often, these platforms rely on only one or a few

validators. While this approach significantly increases throughput and reduces transaction

23https://ethereum.org/en/roadmap/scaling/

44



costs, it compromises decentralization. Therefore, none of the approaches in this category

fully resolves the inherent problem that decentralization relies on creating redundancies,

which leads to more capacity constraints compared to centralized platforms. These solu-

tions merely postpone the issue. Future research is necessary to identify which types of

transactions might benefit from different trade-offs between decentralization and scalability.

The third approach to addressing the problem of high transaction fees and their conse-

quences is to accept the limited supply and focus on allocating it differently. This approach

is currently underexplored and stands to benefit the most from future research. One poten-

tial solution within this framework is the use of subsidies. For example, a recent Ethereum

update proposes account abstraction24, which allows dApp providers or third parties to pay

the fees instead of users. While this might help new dApps overcome the critical mass prob-

lem by using venture capital to subsidize early users, the costs will ultimately be passed

on to the users in the long run. As this update is relatively new, we do not yet know

how these dynamics will play out, and more research is required to investigate under what

conditions this method of subsidizing transactions is a useful tool. Alternatively, instead

of subsidizing transactions through account abstraction, dApps could run their own nodes

and include transactions with their dApps at lower fees. However, this approach incurs

opportunity costs, and its feasibility depends on the dApp’s block production costs (e.g.,

electricity and hardware costs in PoW or cost of capital in PoS). Another alternative is to

experiment with different transaction allocation mechanisms. Random allocation, charging

fixed costs, or rationing come to mind as possible alternatives to allocating based on the

highest willingness to pay. Random allocation or ”first-come-first-served” could be alter-

native approaches that do not require active monitoring or interference. However, these

are technically difficult to implement due to the pseudonymous nature of transactions and

unlimited entry, which would allow more affluent parties to create multiple accounts and

transactions. Charging fixed costs would mitigate bidding wars and price hikes but would

24https://ethereum.org/en/roadmap/account-abstraction/text
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not allow users to express preferences regarding their transaction confirmation time. More-

over, fixed prices might become outdated and require updating, which is challenging as it

necessitates knowledge about demand and supply. Rationing could be implemented by as-

signing a fixed amount of supply to different types of transactions. Ethereum’s introduction

of blob space and danksharding25 can be seen as such an approach. Solana, another popular

blockchain platform, also experiments with a form of rationing in the form of neighborhood

fees. These fees increase only for similar dApps if their demand for transactions increases

disproportionately compared to other types of dApps. While this approach might mitigate a

crowding-out effect, it also limits the potential of ”superstar” complements, which we know

are crucial for the success of the entire platform(Rietveld and Schilling 2020). Furthermore,

there is a small stream of literature proposing multidimensional blockchain fees(Diamandis

et al. 2023, Angeris et al. 2024) that consider not only block space but also other dimensions

such as bandwidth. Although this research shows that multidimensional fees can enhance

welfare and improve network performance, more research is required to investigate if they

also help preserve a diverse dApp ecosystem.

In summary, this discussion demonstrates that all solutions involve trade-offs. Therefore,

decentralized platforms must carefully consider these trade-offs and ideally vote on them.

Future research could support this process by developing various measures of economic and

social welfare specific to decentralized platforms and evaluating different transaction alloca-

tion approaches based on these measures.

8.4 Limitations

This paper has some limitations that open opportunities for further research. One limita-

tion is that we only observe one platform. Even though our analysis suggests that the gas

price mechanism on Ethereum might lead complementors to leave the network and join other

platforms, this paper abstains from addressing cross-platform competition and substitution

25https://ethereum.org/en/roadmap/danksharding/text
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patterns. A natural extension of our work is to extend our analysis to other blockchain

platforms that offer dApps, and study platform complements’ switching and multi-homing

behavior. One particularly interesting platform is Solana which relies on a different ap-

proach to prioritize transactions and thus might provide a promising case to investigate if

their approach is able to strike a better balance between prioritizing high in demand dApp

and protecting innovation on the edges. Another limitation is our sample of dApps and

their associated smart contracts. Although we tried to include as many dApps as possible in

our analysis and even manually matched smart contracts to these dApps, more dApps are

running on Ethereum than our sample reflects. Particularly, dApps only accessible through

Chinese or Russian websites might have slipped our attention and are not represented in

our sample. Therefore, and although in some periods, our sample accounts for as much as

85% of all Ethereum transactions, our results should be seen as initial empirical evidence

and would profit from replications that incorporate a different set of dApps or take a more

fine-grained perspective on the rich available data. Particularly, zooming in on single days

and following the bidding behavior of individual users or studying the usage pattern of a

single dApp in light of changing gas prices could be promising. Finally, due to the infancy

of and the rapid development in this field, our results should be treated as preliminary and

could be reevaluated after major protocol updates. One such change was Ethereum’s long-

announced update from PoW to PoS. As this update only removed the computationally

expensive puzzle of finding a hash that fulfills some properties required by the protocol but

not the computation, validation, and recording of the transaction, the gas price mechanism

should be even more important as now it is the most important driver of the costs of vali-

dating transactions. As we discussed above, we have good reasons to believe that the main

mechanism behind our results is not affected by the switch to PoS. Nonetheless, it would be

interesting to see empirical evidence on how validators prioritize transactions and influence

the usage of dApps under PoS and on platforms that use similar transaction verification

mechanisms.
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9 Conclusions

Blockchain platforms aspire to create an equitable, decentralized economy by replacing a

rent-extracting platform intermediary with a decentralized network of participants and an

auction-based market mechanism for transaction allocation. We show that this approach

introduces a tradeoff: while decentralization eliminates platform-level rent extraction, it

creates an auction-based environment that disproportionately favors financially extractive

activities — such as arbitrage and maximal extractable value (MEV) transactions — over

applications that generate broader, long-term value.

MEV refers to a class of trading strategies in which market participants—such as miners,

validators, or automated trading bots—strategically reorder, insert, or exclude transactions

within a blockchain’s validation process to extract profit. These strategies often rely on front-

running and sandwich attacks (a combination of front- and back-running), which exploit the

transparency of blockchain transaction queues. Because MEV extractors are willing to pay

high transaction fees to secure priority, they can outbid other applications for transaction

capacity.

On decentralized blockchains, transaction capacity is inherently limited to reduce the

risk of centralization. Unlike centralized platforms that can scale computational resources

as needed, most blockchain networks impose limits on throughput to avoid allowing only the

most well-resourced parties to participate in transaction validation. These constraints mean

that transactions must compete for scarce block space, with priority determined by users’

willingness to pay fees. This process influences the allocation of transaction resources on the

platform, shifting capacity toward applications that prioritize short-term revenue extraction

over other uses.

Using Ethereum as a case study, we analyze transaction data from over 1,500 decen-

tralized applications (dApps) to examine this dynamics. DApps are software applications

that operate on a blockchain rather than being hosted on centralized servers. They are

used for a range of purposes, including financial services, gaming, marketplaces, and social
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networking. To estimate how different categories of dApps respond to transaction fees, we

leverage Ethereum’s difficulty bomb, a protocol feature designed to gradually make adding

blocks more computationally expensive over time. This feature was introduced as part

of Ethereum’s long-term plan to transition from Proof-of-Work (PoW)—where miners vali-

date transactions by solving complex computational puzzles—to Proof-of-Stake (PoS), where

transaction validation is based on capital commitments rather than computational effort.

The difficulty bomb artificially slowed down block production, raising transaction fees. How-

ever, because the Ethereum’s core developers arbitrarily reset the difficulty bomb multiple

times through protocol updates, the resulting changes to transaction fees were not driven

by market forces or user demand. This exogenous variation in fees allows us to estimate

demand curves in different application categories.

Our findings show substantial differences in price sensitivity between dApp categories.

When transaction fees increase, demand for transactions declines most sharply in applica-

tions that rely on frequent, low-cost interactions, such as gaming, social, and marketplace

applications. In contrast, financial services applications, particularly those related to decen-

tralized finance (DeFi)—which include arbitrage and MEV transactions mentioned earlier—

exhibit lower price elasticity and maintain activity even as fees increase. The asymmetric

effects of transaction fees create a feedback loop: as financial applications sustain activity in

high-fee environments, they contribute to congestion, further limiting participation by more

fee-sensitive applications.

Although our findings are derived from the Ethereum platform during its PoW era, the

underlying mechanisms we document—capacity constraints and auction-based transaction

allocation—are present across almost all decentralized blockchain platforms, including those

using PoS. Unlike centralized platforms, which can curate applications, subsidize usage, or

differentially price transactions to maintain ecosystem balance, decentralized platforms lack

governance tools to correct congestion-driven exclusion that prioritizes short-term revenue

extraction. As a result, there are no straightforward solutions to mitigating the distortions
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we identify. This raises concerns about whether decentralized platforms can fulfill their

envisioned role as inclusive and diversity-enhancing general-purpose infrastructure for Web

3.0 and become a viable alternative to currently dominant centralized platforms.

However, our study provides insights into how alternative transaction allocation mecha-

nisms could better balance efficiency with platform inclusivity while mitigating inefficiencies

without relying on centralized coordination. Several approaches—layer-2 scaling solutions,

differential pricing models, or alternative auction mechanisms—could help address fee-driven

exclusion, but each involves tradeoffs. Scaling solutions may increase throughput but risk

weakening decentralization, while rationing or subsidies require governance mechanisms that

may not be feasible within existing blockchain structures. Further research on the economic

design of transaction pricing and resource allocation in decentralized markets could inform

both platform development and regulatory considerations.
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Tables and Figures

Figures

Figure 1: Daily gas used and gas price

Figure 2: Hash rate and the impact of the difficulty bomb
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Figure 3: Price elasticities of demand per group of dApps

Figure 4: Gas used by MEV vs Defi vs. non-finance dApps

Figure 5: Gas used by gas price bucket and group
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Figure 6: Active dApps finance vs. non-finance
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Figure 7: Histogram of dApp age at exit (finance vs. non-finance)
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Tables

Table 1: Governance decisions on centralized and decentralized platforms

Governance tools
centralized platforms

(e.g., iOS, Android, Amazon, Youtube)
established decentralized platforms

(e.g., Wikipedia, OSS)
Blockchain platforms

Transaction validation platform provider community peer-to-peer network

Platform access platform provider unlimited unlimited

Content moderation platform provider moderators and arbitrators none

Setting transaction fees platform provider no fees market mechanism

Changes to the infrastructure platform provider
ex-post community

consent required
ex-ante community

consent required

Table 2: Groups of dApps

dApp categories examples dApps

Group 1
finance, exchanges, wallets,
insurance, security

Sushi swap, OmiseGo, Status,
Nexus Mutual, Chainlink

507

Group 2 identity, property ENS Manager, Decentraland 45

Group 3 games, marketplaces Axie Infinity, Cryptokitties 464

Group 4 gambling, social, health FunFair, Minds, BEAT 397

Group 5 energy, governance, media, storage
Dovui, Aaragon, CryptoTunes,
XCloud

177
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Table 3: Descriptive statistics and correlations (network level)

Variables N Mean S.D. 1 2 3 4 5 6 7 8 9 10 11 12

1. gasUsed 1,280 45.42 17.15 1
2. gasUsed group 1 1,280 18.96 18.65 0.88 1
3. gasUsed group 2 1,280 0.39 0.66 -0.5 -0.28 1
4. gasUsed group 3 1,280 2.43 1.77 -0.04 -0.25 -0.23 1
5. gasUsed group 4 1,280 0.86 0.61 -0.09 -0.27 -0.12 0.46 1
6. gasUsed group 5 1,280 0.56 0.53 -0.21 -0.2 0.09 -0.14 -0.42 1
7. marketGasPrice 1,280 6.75 12.29 0.73 0.86 -0.16 -0.33 -0.33 -0.15 1
8. difficultyBomb 1,280 1.08 2.92 -0.48 -0.23 0.25 -0.25 -0.06 -0.05 -0.12 1
9. networkUtilization 1,280 0.83 0.13 0.73 0.53 -0.6 0.01 -0.2 0.03 0.45 -0.18 1
10. EtherPrice 1,280 327.48 218.96 0.1 0.11 -0.04 -0.19 -0.62 0.64 0.13 -0.16 0.27 1
11. EtherVolatility 1,280 0.36 23.46 0.03 0.05 -0.01 0.04 -0.01 0.04 0.05 0.01 0.03 0.07 1
12. gasLimit 1,280 0.01 0.002 0.93 0.9 -0.41 -0.08 -0.02 -0.29 0.75 -0.31 0.53 0.001 0.03 1
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Table 4: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2) (3)
2SLS 1st stage 2SLS 2nd stage OLS

log(marketGasPrice) log(gasUsed) log(gasUsed)

difficultyBomb 0.10*** (0.02)

log(marketGasPrice) -0.69*** (0.16) -0.04** (0.02)

networkUtilization -3.03*** (0.35) -1.58*** (0.43) 0.20 (0.19)

networkUtilization2 17.51*** (1.85) 10.38*** (2.60) -0.33 (0.87)

log(EtherPrice) 0.09 (0.13) 0.06 (0.08) 0.12** (0.05)

log(EtherV olatility -0.02 (0.02) -0.01 (0.01) 0.001 (0.003)

log(GasLimit) 3.08*** (1.11) 3.02*** (0.99) 0.53* (0.28)

DThursday -0.04 (0.03) -0.03 (0.02) -0.001 (0.002)

DFriday 0.01 (0.03) 0.005 (0.02) -0.001 (0.003)

DWednesday -0.02 (0.02) -0.01 (0.02) 0.0002 (0.002)

DMonday -0.05 (0.03) -0.03 (0.02) -0.00004

DSaturday -0.02 (0.04) -0.01 (0.02) -0.01 (0.01)

DSunday -0.03 (0.04) -0.02 (0.02) -0.01 (0.01)

D2018 -1.21*** (0.20) -0.85*** (0.26) 0.13 (0.19)

D2019 -1.61*** (0.29) -1.11*** (0.30) -0.005 (0.24)

D2020 -1.30** (0.62) -0.90** (0.40) -0.03 (0.27)

Trend 0.001 (0.001) 0.001* (0.0005) 0.001*** (0.0003)

Constant -13.30 (18.66) -2.97 (12.00) -7.81 (6.25)

Observations 1,279 1,279 1,279
R2 0.79 0.94
F Statistic (df = 16; 1262) 305.20*** 1,220.08***
C-D Wald F Stat. 85.06
Stock-Yogo Critical Value 16.38
Kleibergen-Paap LM Stat. 4.18**

Note: Heteroskedastic and autocorrelation consistent (HAC)
standard errors are shown in parentheses,
where the optimal bandwidth (23) is calculated
following Newey and West (1987).

Signif. Codes:
**: 0.01, **: 0.05, *: 0.1
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Table 5: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2) (3) (4) (5) (6)
2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage 2SLS 2nd stage

log(gasUsedbyalldApps) log(gasUsedbygroup1) log(gasUsedbygroup2) log(gasUsedbygroup3) log(gasUsedbygroup4) log(gasUsedbygroup5)

log(marketGasPrice) -0.45*** (0.14) -0.0464 0.09 (0.19) -2.09*** (0.63) -0.59*** (0.13) -0.48*** (0.17)

networkUtilization -1.04*** (0.36) -0.27 (0.41) -0.84 (0.61) -2.37 (1.67) -0.4368 -1.05** (0.51)

networkUtilization2 6.61*** (2.25) 2.51 (2.58) 2.89 (3.60) 17.04* (10.24) 5.44* (2.81) 7.20** (3.04)

log(EtherPrice) 0.20** (0.08) 0.39*** (0.08) 0.03 (0.09) -0.02 (0.23) -0.93*** (0.09) 0.37*** (0.10)

log(EtherV olatility) -0.0000 (0.01) 0.01 (0.01) -0.02 (0.02) -0.005 (0.03) 0.02 (0.02) -0.02 (0.01)

log(gasLimit) 2.49*** (0.92) 1.56 (1.05) -0.75 (1.07) 7.61*** (2.28) 1.88** (0.86) 2.68*** (0.91)

DThursday -0.03 (0.02) -0.02 (0.02) 0.02 (0.04) -0.12 (0.08) -0.0015 -0.09** (0.04)

DFriday 0.01 (0.02) 0.01 (0.02) -0.04 (0.04) 0.03 (0.07) -0.02 (0.03) -0.13*** (0.04)

DWednesday -0.002 (0.02) 0.004 (0.01) -0.02 (0.03) -0.06 (0.05) -0.03 (0.02) -0.0024

DMonday -0.02 (0.02) -0.01 (0.02) -0.03 (0.04) -0.10 (0.07) -0.06** (0.03) -0.12*** (0.03)

DSaturday -0.04 (0.03) -0.07*** (0.03) -0.09** (0.04) 0.13* (0.07) -0.0018 -0.13*** (0.05)

DSunday -0.04 (0.02) -0.08*** (0.02) -0.004 0.14* (0.07) -0.07** (0.03) -0.13*** (0.05)

D2018 -1.25*** (0.28) -1.36*** (0.35) -0.26 (0.31) -1.29 (1.15) -0.66** (0.28) -0.23 (0.30)

D2019 -1.53*** (0.32) -1.80*** (0.40) -0.23 (0.38) -1.69 (1.43) -0.41 (0.35) 0.22 (0.38)

D2020 -1.35*** (0.38) -1.61*** (0.42) -0.29 (0.44) -1.90 (1.35) -0.34 (0.40) 1.37*** (0.42)

Trend 0.002*** (0.0004) 0.003*** (0.0005) -0.001** (0.001) 0.002 (0.001) 0.0004 (0.001) -0.003*** (0.001)

Constant -0.03 (10.36) -18.54 (12.14) 35.66** (14.67) 16.61 (30.89) 24.97* (13.23) 83.40*** (12.13)

Observations 1,279

C-D Wald F Stat. 85.06

Stock-Yogo Critical Value 16.38

Kleibergen-Paap LM Stat. 4.19**

Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses,
where the optimal bandwidth (23) is calculated following Newey and West (1987).
All models use the first-stage regression reported in Table 4.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 6: Interactions with transaction requirements (dApp level)

(1) (2) (3) (4) (5) (6)
log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.66*** (0.21) -0.64*** (0.21) -0.73*** (0.21) -0.59** (0.26) -0.62** (0.27) -0.82*** (0.30)

log(marketGasPrice) × log(avgGas
Requirement)

-0.06 (0.04) 0.02 (0.05)

log(marketGasPrice) × log(avgV alue) 0.14*** (0.04) 0.15** (0.06)

log(marketGasPrice) × log(avgToken) 0.31*** (0.04) 0.40*** (0.09)

log(marketGasPrice) × group2 -0.17 (0.17) -0.08 (0.18) 0.10 (0.20)

log(marketGasPrice) × group3 -0.042 -0.24 (0.15) 0.03 (0.16)

log(marketGasPrice) × group4 -0.17 (0.14) -0.15 (0.14) 0.09 (0.16)

log(marketGasPrice) × group5 0.04 (0.14) 0.09 (0.14) 0.23 (0.16)

log(marketGasPrice) × log(avgGas
Requirement) × group 2

-0.58*** (0.16)

log(marketGasPrice) × log(avgGas
Requirement) × group 3

-0.24** (0.11)

log(marketGasPrice) × log(avgGas
Requirement) × group 4

-0.019

log(marketGasPrice) × log(avgGas
Requirement) × group 5

-0.003 (0.08)

log(marketGasPrice) × log(avgV alue)group2 -0.25 (0.17)

log(marketGasPrice) × log(avgV alue)group3 0.18 (0.16)

log(marketGasPrice) × log(avgV alue)group4 -0.02 (0.08)

log(marketGasPrice) × log(avgV alue)group5 -0.10 (0.11)

log(marketGasPrice) × log(avgTokens)group2 -0.19 (0.15)

log(marketGasPrice) × log(avgTokens)group3 -0.05 (0.13)

log(marketGasPrice) × log(avgTokens)group4 -0.21 (0.14)

log(marketGasPrice) × log(avgTokens)group5 -0.24** (0.11)

log(EtherV olatility) 0.01* (0.004) 0.01** (0.004) 0.01* (0.004) 0.01* (0.004) 0.01* (0.004) 0.01* (0.004)

networkUtilization -1.24*** (0.47) -1.18** (0.47) -1.31*** (0.48) -1.27*** (0.48) -1.25*** (0.48) -1.34*** (0.49)

networkUtilization2 8.87*** (3.30) 8.48** (3.30) 9.37*** (3.36) 9.06*** (3.32) 8.96*** (3.36) 9.54*** (3.40)

log(gasLimit) 1.94*** (0.53) 1.88*** (0.53) 1.95*** (0.54) 1.95*** (0.54) 1.94*** (0.54) 1.99*** (0.55)

Age -0.002*** (-0.0003) -0.002*** (-0.0003) -0.002*** (-0.0003) -0.002*** (-0.0003) -0.002*** (-0.0003) -0.002*** (-0.0003)

Year dummies YES YES YES YES YES YES

Weekday dummies YES YES YES YES YES YES

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 7: Interactions with average performance indicators (dApp level)

(1) (2) (3) (4) (5) (6)
log(Gasused) log(Gasused) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.67*** (0.21) -0.68*** (0.21) -0.64*** (0.21) -0.81*** (0.29) -0.81*** (0.29) -0.59** (0.26)
log(marketGasPrice)) × log(avgDailyTxn) 0.16*** (0.06) 0.39*** (0.08)

log(marketGasPrice)) × log(avgDailyEOA) 0.21*** (0.06) 0.39*** (0.07)

log(marketGasPrice)) × log(avgTxnPerEOA) -0.03 (0.04) 0.02 (0.06)

log(marketGasPrice) × group2 0.08 (0.19) 0.06 (0.19) -0.02 (0.15)

log(marketGasPrice) × group3 -0.12 (0.15) -0.13 (0.15) -0.33** (0.15)

log(marketGasPrice) × group4 0.01 (0.16) 0.02 (0.16) -0.16 (0.14)

log(marketGasPrice) × group5 0.22 (0.15) 0.22 (0.15) 0.06 (0.14)

log(marketGasPrice) × log(avgDailyTxn) × group2 -0.51*** (0.17)

log(marketGasPrice) × log(avgDailyTxn) × group3 -0.64*** (0.14)

log(marketGasPrice) × log(avgDailyTxn) × group4 -0.47*** (0.13)

log(marketGasPrice) × log(avgDailyTxn) × group5 -0.45*** (0.11)

log(marketGasPrice) × log(avgDailyEOA) × group2 -0.0448

log(marketGasPrice) × log(avgDailyEOA) × group3 -0.55*** (0.13)

log(marketGasPrice) × log(avgDailyEOA) × group4 -0.38** (0.15)

log(marketGasPrice) × log(avgDailyEOA) × group5 -0.46*** (0.11)

log(marketGasPrice) × log(avgTxnPerEOA) × group2 -0.46*** (0.10)

log(marketGasPrice) × log(avgTxnPerEOA) × group3 -0.28** (0.12)

log(marketGasPrice) × log(avgTxnPerEOA) × group4 -0.12 (0.08)

log(marketGasPrice) × log(avgTxnPerEOA) × group5 0.03 (0.10)

log(EtherPrice) 0.15*** (0.04) 0.15*** (0.04) 0.15*** (0.04) 0.14*** (0.04) 0.15*** (0.04) 0.15*** (0.04)

log(EtherV olatility) 0.01** (0.004) 0.01* (0.004) 0.01** (0.004) 0.01 (0.004) 0.01 (0.004) 0.01* (0.004)

networkUtilization -1.22** (0.48) -1.25*** (0.48) -1.21** (0.47) -1.40*** (0.50) -1.42*** (0.50) -1.28*** (0.48)

networkUtilization2 8.73*** (3.34) 8.92*** (3.36) 8.66*** (3.29) 10.02*** (3.48) 10.16*** (3.51) 9.12*** (3.33)

log(gasLimit) 1.88*** (0.53) 1.89*** (0.53) 1.90*** (0.53) 2.08*** (0.55) 2.10*** (0.56) 1.95*** (0.54)

Age -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003)

Year dummies YES YES YES YES YES YES

Weekday dummies YES YES YES YES YES YES

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 8: Interactions with usage indicators (dApp level)

(1) (2) (3) (4) (5) (6)
log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.44** (0.17) -0.43** (0.17) -0.0836 -0.66*** (0.21) -0.71*** (0.22) -0.71** (0.29)

log(txnPerEOA) 1.27*** (0.03) 1.28*** (0.04) 1.17*** (0.06)

log(marketGasPrice) × log(txnPerEOA) 0.08*** (0.03) 0.08** (0.04)

log(marketGasPrice) × group2 -0.15 (0.17) -0.002 (0.19)

log(marketGasPrice) × group3 -0.28** (0.13) -0.15 (0.16)

log(marketGasPrice) × group4 -0.0252 -0.02 (0.16)

log(marketGasPrice) × group5 0.05 (0.12) 0.12 (0.15)

log(txnPerEOA) × group2 -0.03 (0.15)

log(txnPerEOA) × group3 0.35*** (0.08)

log(txnPerEOA) × group4 0.01 (0.09)

log(txnPerEOA) × group5 0.17 (0.11)

log(marketGasPrice)×
log(txnPerEOA) × group2

-0.13 (0.15)

log(marketGasPrice)×
log(txnPerEOA) × group3

-0.001 (0.07)

log(marketGasPrice)×
log(txnPerEOA) × group4

-0.02 (0.05)

log(marketGasPrice)×
log(txnPerEOA) × group5

0.16*** (0.06)

log(surplusGasPrice) 0.08*** (0.03) -0.14*** (0.04) -0.07 (0.07)

log(surplusGasPrice)×
log(marketGasPrice)

0.16*** (0.02) 0.16*** (0.03)

log(surplusGasPrice)×
group 2

-0.39*** (0.11)

log(surplusGasPrice)×
group 3

-0.35*** (0.11)

log(surplusGasPrice)×
group 4

-0.18 (0.11)

log(surplusGasPrice)×
group 5

0.14 (0.11)

log(marketGasPrice)×
log(surplusGasPrice) × group2

0.11** (0.05)

log(marketGasPrice)×
log(surplusGasPrice) × group3

0.09* (0.05)

log(marketGasPrice)×
log(surplusGasPrice) × group4

-0.05 (0.05)

log(marketGasPrice)×
log(surplusGasPrice) × group5

-0.18*** (0.05)

log(EtherPrice) 0.15*** (0.04) 0.15*** (0.04) 0.15*** (0.04) 0.14*** (0.04) 0.15*** (0.04) 0.15*** (0.04)

log(EtherV olatility) 0.01** (0.004) 0.01* (0.004) 0.01** (0.004) 0.01 (0.004) 0.01 (0.004) 0.01* (0.004)

networkUtilization -1.22** (0.48) -1.25*** (0.48) -1.21** (0.47) -1.40*** (0.50) -1.42*** (0.50) -1.28*** (0.48)

networkUtilization2 8.73*** (3.34) 8.92*** (3.36) 8.66*** (3.29) 10.02*** (3.48) 10.16*** (3.51) 9.12*** (3.33)

log(gasLimit) 1.88*** (0.53) 1.89*** (0.53) 1.90*** (0.53) 2.08*** (0.55) 2.10*** (0.56) 1.95*** (0.54)

Age -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003) -0.002*** (0.0003)

Year dummies YES YES YES YES YES YES

Weekday dummies YES YES YES YES YES YES

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 9: Robustness checks

(1) (2) (3) (4) (5) (6) (7) (8)

Baseline
Alternative
Dependent

variable

Alternative market
gas price (25th

percentile)

Alternative market
gas price (average

gas price)

Alternative market
gas price (normalized by

ETH supply)

Alternative instrument
(block difference)

Outliers (5th-95th
percentile gas used)

Subsample (specific
difficulty

bomb period)

log(gasUsed) log(txnCount) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.69*** (0.16) -0.63*** (0.15) -0.80*** (0.20) -1.83** (0.61) -0.57** (0.24) - -0.75** (0.24) -0.69** (0.19) -2.70 (2.85)

Observations 1,279 1,279 1,279 1,279 1,279 1,279 1,279 101

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 10: Demand curve comparison MEV vs. dApp groups - OLS only

(1) (2) (3) (4) (5) (6) (7)
OLS OLS OLS OLS OLS OLS OLS

all dApps MEV only Group 1 Group 2 Group 3 Group 4 Group 5
log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) 0.06*** (0.02) 0.26*** (0.09) 0.08*** (0.02) -0.10 (0.08) -0.64*** (0.09) -0.07 (0.08) 0.05 (0.08)

networkUtilization2 1.71*** (0.63) 12.88*** (4.50 ) 1.68** (0.69) -0.24 (2.18) 4.98** (2.03) -4.95* (2.71) -6.58*** (2.48)

log(EtherPrice) 0.13** (0.06) -0.43 (0.29) 0.13** (0.06) 0.70** (0.35) -0.95*** (0.36) 0.36 (0.33) 0.57* (0.31)

log(EtherV olatility) -0.003 (0.004) -0.01 (0.02) -0.003 (0.004) -0.0001 (0.02) -0.02 (0.02) -0.02 (0.02) -0.06*** (0.02)

log(gasLimit) 1.75*** (0.21) 10.32*** (1.26) 1.83*** (0.23) 0.78 (1.01) -0.96 (0.68) 1.13 (0.92) -1.70* (0.90)

DThursday -0.01 (0.01) 0.03 (0.05) -0.01 (0.01) -0.04 (0.06) -0.08 (0.05) 0.01 (0.04) 0.002 (0.08)

DFriday -0.01 (0.01) 0.04 (0.05) -0.01 (0.01) 0.004 (0.06) -0.01 (0.05) -0.01 (0.04) -0.07 (0.06)

DWednesday -0.004 (0.01) 0.01 (0.04) -0.003 (0.01) -0.05 (0.04) -0.05 (0.04) 0.01 (0.03) -0.06 (0.06)

DMonday -0.004 (0.01) 0.08* (0.04) -0.001 (0.01) -0.03 (0.05) -0.01 (0.06) 0.003 (0.03) -0.14*** (0.05)

DSaturday -0.01 (0.01) 0.11* (0.06) -0.02 (0.01) 0.07 (0.08) 0.07 (0.05) -0.002 (0.04) -0.08 (0.06)

DSunday -0.03** (0.01) 0.16** (0.06) -0.03** (0.01) 0.06 (0.07) -0.01 (0.05) 0.03 (0.04) -0.04 (0.07)

Trend -0.0003 (0.0004) 0.005** (0.002) -0.0004 (0.0004) -0.002 (0.002) 0.01*** (0.002) -0.01** (0.002) -0.001 (0.002)

Constant 35.92*** (7.00) -30.03 (42.79) 37.57*** (7.55) 59.20 (37.81) -185.65*** (40.70) 127.24*** (44.48) 34.23 (38.74)

Observations 242 242 242 242 242 242 242

R2 0.93 0.95 0.93 0.18 0.82 0.62 0.36

F Statistic (df = 12; 229) 257.53*** 382.87*** 250.92*** 4.18*** 86.84*** 31.46*** 10.54***

Heteroskedastic and autocorrelation consistent (HAC) standard errors are shown in parentheses, where the optimal bandwidth (23) is calculated following Newey and West (1987).
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Appendix A – Additional formulas

Block time

Ethereum adjusts the mining difficulty for every new block according to the following func-

tion:

blockTimeb =
miningDifficultyb

networkHashRateb−1

Where miningdifficultyb is the average number of hashes it requires to find a new block

and networkhashrateb−1 is the number of hashes computed per second by all miners while

searching for the previous block.

Mining reward

To incentivize miners to provide their computation service, they are rewarded with a mining

reward for every block they find. This reward consists of a static block reward (at the time

of writing, 2 Ether) for finding a new block plus the sum of all gas fees (usually measured in

GWei ; 1 Ether = 109 GWei) paid by all transactions t which a miner includes in this block.

Hence, the mining reward for every block b is:

miningRewardb = 2 +
∑
∀tϵb

gasPricet × gasUsedt
109

Transaction fees

On Ethereum, users only pay for the used gas if the computation is finished before reaching

the limit. Also, only the actually used gas is considered for the block gas limit. Accordingly,

the fees a user has to pay for a transaction t are computed as follows:

transactionFeest =
gasPricet × gasUsedt

109

Appendix B – dApp-level analysis
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The baseline specification for our network level is analogous to our dApp level specifica-

tion but without dApp-level fixed effects:

log(gasUsedtd) = α0 + α1 log(marketGasPricet) + α2networkUtilizationt+

α3networkUtilization
2
t + α4 log(EtherPricet) + α5 log(EtherVolatilityt)+

α6 log(gasLimitt) + µday of week + µyear + µd + trend + ut
where gas used is the equilibrium gas demand for each dApp d in the period t (day). We chose

a log-log specification for gas used and market gas price to be able to interpret α1 as the price

elasticity of the demand. Due to the skewed distributions of Ether price, Ether volatility,

and the gas limit, we use log-transformed versions of these variables in our specification.

The network utilization allows us to control for the degree to which miners use the available

block gas limit on a given day and has been used by prior scholars as a measure of network

congestion (Donmez and Karaivanov 2021). We also add a quadratic term to account for

the nonlinear relationship between gas price and network utilization.26 In addition to these

variables, we also control for the intrinsic growth of the dApp by adding agedt as the number

of days since the dApp entered the platform and specify µd as dApp fixed effects, µdayofweek

as a day of week fixed effects, µyear as a year fixed effects, and ut as the error term.

Baseline dApp-level results

Following our baseline specification, Table 12 reports the results of our 2SLS demand

curve estimation. Column 1 presents the first stage results, where we predict the gas price

(log(Market gas price)) with our IV (difficulty bomb). Column 2 presents the second stage

results, where we use the predicted gas price to estimate the price elasticity of the gas demand

(log(Gas used)).

To establish robustness, we ran a series of alternative models of the network-level analysis

similar to the robustness checks reported in the main paper. Table 13 reports the results of

these robustness checks.

Differing Demand Curves per Group

Column 3 in Table 12 reports the different demand curves for each group of dApps. We obtain

these demand curves by interacting the instrumented market gas price with the group of a

dApp.

26We also compute the same model with a threshold specification where we added only the linear term
and dummy variable that takes on the value one if the utilization level exceeds 90%. They were qualitatively
the same regarding the magnitude and significance of the coefficients we obtained.
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With a positive and significant coefficient (0.27) for our reference group (finance dApps),

our results suggest that the demand curve for these dApps in upward-sloping. An explanation

for this upward-sloping demand curve could be that the entry of additional finance-related

dApps has caused an influx of high willingness-to-pay customers and that the network ef-

fects these finance-related dApps realize compensated for the higher transaction fees these

transaction senders had to pay. This explanation is in line with prior research that describes

networked goods (e.g., financial services) by irregularities such as an upward-sloping demand

curve for low quantity levels (Economides and Himmelberg 1995). Particularly, if a service

relies on strong network effects, no one will pay for the product if no one else uses it. Al-

though the entry of high willingness-to-pay users is typically beneficial for a platform, the

fact that we observe downward-sloping demand curves in the form of negative moderations

of all other groups poses a danger that, particularly in times of high transaction fees, dApps

from other groups are not used anymore and finally have to leave the platform. This re-

duction of complement heterogeneity can ultimately harm the long-term attractiveness of

Ethereum, especially as a general-purpose platform.
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Table 12: Demand curve estimation – baseline model (dApp level)

(1) (2) (3)
log(marketGasPrice) log(gasUsed) log(gasUsed)

difficultyBomb 0.20*** (0.0000)

log(marketGasPrice) -0.64*** (0.21) 0.27*** (0.05)

log(EtherPrice) -0.0004 (0.01) 0.15*** (0.04) 0.18*** (0.04)

log(EtherV olatility) -0.01*** (0.0004) 0.01** (0.004) 0.02*** (0.003)

networkUtilization -2.36*** (0.06) -1.20** (0.47) 0.30*** (0.11)

networkUtilization2 16.30*** (0.37) 8.59*** (3.29) -1.89*** (0.68)

log(gasLimit) 2.40*** (0.03) 1.89*** (0.53) 0.13 (0.20)

Age 0.001*** (0.0000) -0.002*** (0.0003) -0.002*** (0.0002)

Year2018 -0.82*** (0.02) -0.68*** (0.22) -0.09 (0.15)

Year2019 -1.09*** (0.02) -0.66*** (0.25) 0.07 (0.15)

Year2020 -0.95*** (0.02) -0.28 (0.24) 0.36** (0.16)

weekdayThursday -0.02*** (0.001) -0.03*** (0.01) -0.0001

weekdaysFriday 0.02*** (0.001) -0.02** (0.01) -0.03*** (0.01)

weekdaysWednesday -0.005*** (0.001) -0.001 (0.01) 0.002 (0.01)

weekdaysMonday -0.02*** (0.001) -0.03*** (0.01) -0.02** (0.01)

weekdaysSaturday 0.01*** (0.002) -0.07*** (0.01) -0.08*** (0.01)

weekdaysSunday 0.01*** (0.002) -0.08*** (0.01) -0.09*** (0.01)

log(marketGasPrice)group2 -0.43*** (0.15)

log(marketGasPrice)group3 -0.64*** (0.12)

log(marketGasPrice)group4 -0.49*** (0.10)

log(marketGasPrice)group5 -0.28*** (0.09)

Observations 370,392 370,392 370,392
R2 0.78 0.11
Incremental F 121.39
C-D Wald F Stat. 2542.47 118.07
Stock-Yogo Critical Value 16.38 26.87
Kleibergen-Paap LM Stat. 70.04*** 25.16***

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 13: Robustness checks

(1) (2) (3) (4) (5) (6) (7)

Baseline
Alternative
Dependent

variable

Alternative market
gas price (25th

percentile)

Alternative market
gas price (average

gas price)

Alternative instrument
(block difference)

Outliers (5th-95th
percentile gas used)

Subsample (specific
difficulty

bomb period)

log(gasUsed) log(txnCount) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed) log(gasUsed)

log(marketGasPrice) -0.64*** (0.21) -0.42** (0.19) -0.57*** (0.18) -0.82*** (0.26) -1.03** (0.45) -0.58*** (0.20) -1.48* (0.87)

Observations 370,392 370,392 370,392 370,392 370,392 370,392 35,756

HAC standard-errors in parentheses.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Appendix C – dApp age at exit - additional plots

Figure 8: Histogram of dApp age at exit - all groups
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Appendix D – Supplementary survival analysis

To investigate the impact of Ethereum’s transaction validation mechanism on platform com-

plements’ heterogeneity, we examine our explanatory variables’ simultaneous effect on the

overall hazard-rate function by using the semi-parametric Cox proportional-hazards regres-

sion analysis (Cox 1972). Previous scholars have used Cox-proportional hazard models to

study market exit or entry (e.g., Agarwal and Gort 2002, Huang et al. 2013). In our

benchmark specification, we estimate the hazard of dApp d leaving the market on day t as:

hdt = ho(t)exp{β
′

xxt}

Where h0(t) is the baseline hazard, xtis a vector of explanatory and control variables

pertaining to time t. With this model, we are not interested in predicting the exit time

but the effect of gas price as a time-dependent covariate. For the analysis, we cluster the

standard errors on the dApp level to control for heteroskedasticity and nonindependence of

observations. Further, we stratify our observations by the group of the dApp. This allows

us to account for different baseline hazard rates between the groups of dApps. To measure

market exit, we leverage the fact that stateofthedapps.com reports the status of dApps and

classifies discontinued dApps as “abandoned.” For the exact timing of the market exit, we

take the date of the last transaction a dApp has received. Table 14 reports the results of

our analysis. Column 1 shows our benchmark specification. Column 2 depicts the gas price

interacted with the group of the dApp.

Our benchmark specification shows no significant impact of the gas price on the survival

of a dApp. However, after interacting the gas price with the group of a dApp (Column 2),

we find that a 10% increase in the Market price (∼0.095 increase in log(Market price) is

associated with a reduction of the hazard rate ( β = -1.7; hazard rate = exp(0.095×-1.7) =

0.851) by around 16.9% for our base category (group 1, finance dApps). The positive and

(except for group 3) significant interactions indicate that all other groups of dApps profit

less from a higher gas price and face a higher likelihood of market exit. For instance, for

group 2, the hazard rate decrease only equals 10.9% (exp((-1.7 + 0.49) ×0.095)=0.891).

The results of our hazard model suggest that an increase in the market gas price reduces

the likelihood of a market exit on a given day, but groups differ significantly regarding

this effect. Especially when considering that the gas price fluctuates quickly and sometimes

doubles or even triples within a month (e.g., January 2018, June 2020 at the start of the Defi

hype), these results can be of economic significance. Further, the result seems plausible as an

increase in the gas price is typically the consequence of increased demand for gas caused by

more transaction activity with dApps. Again, however, we can see that dApps from group
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Table 14: 2SLS model with 1st and 2nd stage and OLS benchmark (network level)

(1) (2)
all dApps all dApps

stratified by group stratified by group

log(MarketgasPrice) 0.02 (0.09) -0.187

log(MarketgasPrice) × group2 0.49** (0.23)

log(MarketgasPrice) × group3 0.15 (0.10)

log(MarketgasPrice) × group4 0.21** (0.09)

log(MarketgasPrice) × group5 0.22* (0.12)

networkUtilization -6.68 (8.24) -6.89 (8.18)

networkUtilization2 4.01 (5.32) 4.15 (5.28)

log(EtherPrice) -0.04 (0.14) -0.02 (0.14)

log(EtherV olatility) 0.01 (0.04) 0.01 (0.04)

log(gasLimit) 1.07 (0.71) 1.11 (0.71)

Year of entry dummies YES YES

Observations 783,619 783,619

Market exit events 399 3991

Log-likelihood -2,088.39 -2,083.79

Note: Robust standard errors are clustered at the group level and reported in parentheses.
Hazard ratios can be calculated by exponentiating the coefficients reported for each variable.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

one benefit more from this effect than other dApps and thus have an overall higher likelihood

of staying in this market. This differentiating effect is problematic as it corroborates our

main argument by showing that a market for transactions disproportionately favors a specific

type of dApps and thus leads to a long-run reduction of the heterogeneity of dApps offered

on the Ethereum platform.
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